
Monitoring and Optimization of I/O performance with
SIOX

Julian Kunkel1 Michaela Zimmer1 Marc Wiedemann1

Alvaro Aguilera2 Holger Mickler2

Xuan Wang3 Andriy Chut3 Thomas Bönisch3

Jakob Lüttgau1 Roman Michel1 Johann Weging1 Daniela Koudela2

1 University of Hamburg
2 ZIH Dresden

3 HLRS Stuttgart

Sept. 5 – 2013, Gauß-Allianz

1 Introduction

2 Flexible Architecture

3 Intelligent Handling

4 Status and Outlook

5 Summary

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 2 / 25

Introduction

Project Goals

MPI

MPI-IO

Application

I/O-lib.

GPFS

C
lie

n
t

...ServerServer ServerServer

Activity & state

Activity & state

Activity & state

Activity & state

I/O-strategy

SAN

S
IO
X

Activity SIOX will
collect and analyse

activity patterns and
performance metrics

in order to
assess system performance
locate and diagnose problem
learn optimizations

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 3 / 25

Introduction

Example Cause-and-Effect Chain

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 4 / 25

Introduction

Partners and Funding

Funded by the BMBF
Grant No.: 01 IH 11008 B
Start: Juli 1st, 2011
Duration: 36 Months

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 5 / 25

Introduction

Increasing SIOX’s Capabilites

The project proposal targets instrumentation of
Selected applications, MPI-IO, POSIX and GPFS.

We designed a flexible modular architecture and API.

This allows us to integrate arbitrary:
Libraries
File systems
Hardware information and statistics

An individual instantiation of modules is also possible:
Decide which modules are configured:

For each layer, process, compute and server nodes

Each module has an XML configuration

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 6 / 25

Introduction

Industry Collaboration

We collaborate to develop industry-relevant software

Collaborating companies: Xyratex, Netapp

We aim to deliver components to the Exascale10 (EIOW) middleware
Monitoring, machine learning, automatic optimization

SIOX is licensed under LGPL3

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 7 / 25

Flexible Architecture

Faces of SIOX (1): General System Architecture

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

Compute node / file system server

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

patterns,
optimizations
and system-
information

updates of
systeminfo,
plugindata

Data gathered is stored via the monitoring path.
Components receive the knowledge gleaned via the knowledge path.

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 8 / 25

Flexible Architecture

Faces of SIOX (2): Configuration for Online Mode

No pattern recording, optimization without machine learning

2) SIOX
Daemon

correlates component-wide
and compresses

5) SIOX
Knowledge Base

holds analyses
and optimizations

patterns,
optimizations
and system-
information

Compute node

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

updates of
systeminfo
and plugindata

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 9 / 25

Flexible Architecture

Faces of SIOX (3): Configuration for Static Knowledge

Apply static best-practices with low overhead

Compute node

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 10 / 25

Flexible Architecture

Overview of Concepts and Mechanisms

User-level monitoring API
“Wrapper” to ease instrumentation of software layers

Relation of activities
Implicit linking of process-internal activities
Explicit linking to remote activities
Explicit links are created during the ETL into the warehouse

Analysis of observed activities and statistics by plug-ins
Synchronous and/or asynchronous
Activities can be handled stateful (within a process) or stateless
May use (static) system information/knowledge

Incorporation of system knowledge
One database entry per node, file system, storage device
Plugins may create their own node/fs/device specific entries
Detect hardware changes (upon startup)

Local and global “reasoning” to assess system state

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 11 / 25

Flexible Architecture

Semi-Automatic Instrumentation of Software-Layers

Workflow
1 Save relevant function prototypes in a header file
2 Annotate functions in the header
3 Tool parses header and creates either

a shared library for LD_PRELOAD
a library to use with ld ––wrap

Instrumentation can be done incrementally

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 12 / 25

Flexible Architecture

Example Header for POSIX

1 // @component "POSIX"
2

3 // @register_metric fileName "File Name"
↪→ SIOX_STORAGE_STRING

4 /////// END GLOBAL SECTION ////////////////
5

6 // @activity
7 // @activity_attribute fileName pathname
8 // @horizontal_map_put_int ret
9 // @error ’’ret < 0’’ errno
10 int open(const char *pathname , int flags , mode_t mode);
11

12 // @activity
13 // @activity_attribute bytesToWrite count
14 // @activity_link_int fd
15 // @error ’’ret < 0’’ errno
16 ssize_t write(int fd, const void *buf , size_t count);

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 13 / 25

Intelligent Handling

Putting the Knowledge to Good Use

SIOX will exploit the knowledge gleaned to
control available I/O optimizations

Internally, we will use it to
adapt own level of activity to the host system’s state
reduce the amount of data logged
focus and guide its acquisition of new data (active learning)

Why can’t we capture all events?

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 14 / 25

Intelligent Handling

Putting the Knowledge to Good Use

SIOX will exploit the knowledge gleaned to
control available I/O optimizations

Internally, we will use it to
adapt own level of activity to the host system’s state
reduce the amount of data logged
focus and guide its acquisition of new data (active learning)

Why can’t we capture all events?

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 14 / 25

Intelligent Handling

The Data Deluge – A Numerical Example

Assume program writes a 1 GB file to a parallel file system. . .
. . . of 100 I/O servers managing 5,000 storage devices
⇒ 200 KB per device to write. . .
. . . writing 4 KB per block on device
⇒ 250,000 blocks to write. . .
. . . logging 20 B per block written
⇒ 5 MB logging data
⇒ 0.5 % logging overhead.

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 15 / 25

Intelligent Handling

The Data Deluge – A Numerical Example, Continued

The HPC Cluster Blizzard at DKRZ reads and writes. . .
. . . 10 GB/s, 24/7, 365 days a year
⇒ 50 MB/s to log for SIOX
⇒ 1.6 PB/a. . .
. . . at a very conservative estimate!

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 16 / 25

Intelligent Handling

Intelligent Components

Each layer and daemon may use:
Plug-ins to detect exceptional behavior and steer logging
Plug-ins to suggest possible optimizations

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

patterns and
optimizations

Compute node

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

ADPIs

and

SOPIs

Component

A BACAADAE...
Activity History

xyz: 3.573393
def: 4263.885635
mol: 42.000000
...

System Statistics

ADPI
ADPI

ADPI
...

A
n
o
m

a
ly

D
e
te

ct
io

n

SOPI
SOPI

SOPI
...S

e
lf-

O
p
ti

m
iz

a
ti

o
n

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 17 / 25

Intelligent Handling

Building SIOX’s Brain

To harness the data gathered, SIOX uses Knowledge Packages.

A Knowledge Package. . .
consists of

a Machine Learning Plug-In
and corresponding plugins

Anomaly Detection Plug-In
Self-Optimization Plug-In

Knowledge Package may use private Action Tables in the Knowledge Base.

The MLPI will create (and possibly update) the action table, which may
also be done manually.

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 18 / 25

Intelligent Handling

SOPI Example for posix_fadvise()

A more complex Action Table: Injecting non-functional calls

Action table

Pattern Response
SequentialRead() SequentialRead() SequentialRead() seq & willneed(size)

Open(ext = "nc") willneed(0, 20KiB)

Open(ext = "dat") noReuse & random

RandomWrite(size < 4K){5x} noReuse & random

A plug-in may use a state machine to track monitored activities

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 19 / 25

Intelligent Handling

The SIOX Daemon

Daemon

StatPI
StatPI

StatPI
...

S
ta

ti
st

ic
s

Self-
Control

Reasoner

Metric

System Statistics History

Min. Max. Avg. StdDev. Last100
xyz
def
mol

...

...

... ...
...
... ...

...

... ...
...
... ...

...

...

A physical node’s daemon holds:
Recent node-local system statistics, updated regularly
A module with plug-ins to provide node-local system statistics
A rule-based reasoner classifying system-state and bottlenecks
A module with plug-ins to control SIOX’s behavior

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 20 / 25

Intelligent Handling

Reasoning

Node-local reasoner decides when and how long to log
System-state, detected bottlenecks and reasons are communicated

E.g. “Server overloaded”, “Bad I/O pattern“
Refined knowledge is transferred to a global reasoner
Overview is communicated to all daemons

Each reasoner maintains statistics for later investigation
Feedback to user upon application termination

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 21 / 25

Status and Outlook

Currently Working Prototype

SIOX manages data within a single process
Full instrumentation for POSIX
Partial instrumentations for NetCDF and HDF5

Application behavior can be recorded in files
Ontology and system information is stored in files
Trace-reader parses all files

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 22 / 25

Status and Outlook

Currently Working Prototype – Internals

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 23 / 25

Status and Outlook

Towards a Prototype for SC’13

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 24 / 25

Summary

Summary

SIOX aims to capture and optimize I/O
on all layers and filesystems

Intelligent filtering reduces log size
Integrated reasoning tries to localize causes and bottlenecks

We are building a flexible and open system

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 25 / 25

Finally: SIOX and You

Think we missed a problem?
Think you could solve one?
Like to see SIOX on your
favourite file system?

We cordially invite you to become
involved at

http://www.HPC-IO.org

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 26 / 25

Backupslides

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 27 / 25

SOPI Example 1

A simple Action Table: Adjusting a system parameter

Action table for an SOPI write-behind plug-in

Pattern Buffer Size
Open() 4MiB

Write(size < 2KiB){5x} 1MiB

Write(size < 4MiB) Write(size < 4MiB) 20MiB

Write(size ≥ 100MiB) direct-write

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 28 / 25

Self-Optimization Plug-Ins

What SOPIs can do:
SOPI
SOPI

SOPI
...S

e
lf-

O
p
ti
m
iz
a
ti
o
n

Take any action available via any interface accessible, e.g.:
Adjust system parameters (cache size, MPU size,. . .)
Inject non-functional calls (fadvise(), MPI hints,. . .)
Inject "housekeeping" calls (flush(), refresh page,. . .)
Adjust parameters of functional calls (access mode, optional
caching,. . .)
Select between alternative modules to employ (MPICH2 vs.
OpenMPI, shmem vs. TCP,. . .)

SOPIs are controlled via Action Tables in the Knowledge Base.

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 29 / 25

Machine Learning Plug-Ins (MLPIs)

2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

patterns and
optimizations

Compute node

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Monitoring Path

Knowledge Path

MLPIs

Run off-line, on-demand
Analyse data archived in the
Data Warehouse with machine
learning algorithms or heuristics
Refine their findings into
instructions for their ADPI
and/or SOPI
Store these in a plug-in-specific
"action table" in the Knowledge
Base
Action tables may also be built
manually (usually to implement
common heuristics)

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 30 / 25

Interplay Between Monitoring and Knowledge Path (1)

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 31 / 25

Scalability through Hierarchical Data Transport

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 32 / 25

Damming In the Data Deluge

Damming in the Data Deluge

Anomaly Detection

Self-Improving Filters

Logging Data Generated

Sliding History Window

Logging Data Logged

Logging
every Activity
on every Level
all of the time

will cause prohibitive overhead.

The SIOX solution:
Log to local window,
discard the uneventful
Focus on anomalies
(good & bad)
Learn from logs
to improve filters

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 33 / 25

Damming In the Data Deluge

Instrumentation and the Activity Multiplexer

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 34 / 25

Damming In the Data Deluge

Activity Multiplexer Normal Behavior

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 35 / 25

Ac

ity Sequence (Regular Processing)

Log(Acti

Ac

ity Multiplexer

nimty Q)

Queue Activity
Mutex Queue

Activit

Listener | | Listener
1 n

invoke lbacks registered

Push(Acti

Unlock;

Notifier may have
been inactive

due to Queue
being empty!

)

otifer will work
through Queue
until Activity

is reached

ack_a_1(Activity)

ack_a_n Activity)

When finding Queue empty,)
deactivate Notifer until
woken again by Queue

Unloc)

il

Activity Activity
Queue Queue

Notifier I

Listener | | Listener
1 n

Damming In the Data Deluge

Activity Multiplexer Throttling (Overflow) Behavior

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 36 / 25

Acti

y Sequence (Queue Overflow)
Act

y Multiplexer

Activity Listener | | Listener
Multiplexer | Queue Activity Notifier 1 n
Mutex Queue

Log(Actbity)

Lock()

Fullz()
Problem:
Queue already filled to capacity.
Notifier processing but overwheimed!
Push() is rejected, Activity lost;
Queue enters overflow mode.
rejecting any further Push) calls.

TRUE
NLost := 1
Unlock()

Multiplexer discards any activities logged. merely counting them in NLost
Meanwhile, Notifier processes Queuel unti reaching the last entry

R |

|_cui0
| Lastactivity
unlockf]

Callback_a_1(LastActivity)

Callback_a_n(LastActivity)

invoke all asynchronous callbacks registered

Lock()

|_cu0
EMPTY
|

Once Queue is emptied from overflow mode.
signal Notfier to reset all listeners
and re-enter processing mode

reset0 1 1|

NLost
Unlock()
Callback r_1(NLost_1)
Callback_r_n(NLost_n)
invoke Reset() callbacks for alllisteners to be enabled;
for all others, increase NLost_i by NLost
When finding Queue empty,
deactivate Notifier unti
woken again by Queue
Lock()
pull)
EmPTY
Unlock()
Multiplexer [Activity - Activity Notifier Listener | | Listener
Queue Queue 1 n

Mutex

Damming In the Data Deluge

Anomaly Detection Plug-Ins

What ADPIs can do:
ADPI
ADPI

ADPI
...

A
n
o
m
a
ly

D
e
te
ct
io
n

Detect anomalies (exceptional system behaviour)
Adjust log-levels
Report recent activity history for analysis
Mark recent activity sequence for future "watchlist":
⇒ Timely adjustments to log-levels before anomaly recurs
Make every byte logged count!

ADPIs are controlled via Action Tables in the Knowledge Base.

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 37 / 25

Damming In the Data Deluge

ADPI Example 1

A simple rule-based and stateless plug-in detecting exceptional performance

Mathematical model and Action Table

fUtilization(Component, Activity) =
tpossible(Component, Activity)

Time(Activity)

tpossible =
Size(Activity)

SequentialTransferRate(Component)
+ Latency(Component)

Result Action
fUtilization < 0.10 Report("Exceptionally low")

0.10 < fUtilization < 0.95 No Action

0.95 < fUtilization Report("Exceptionally high")

“Component” can be a software layer, a compute node, or a file system.

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 38 / 25

Damming In the Data Deluge

ADPI Example 2

A very simple Action Table implementing a “watchlist”

Action table to detect a write cache filling up

Pattern Buffer Size
Write(fast) Write(slow) Report("Cache full")

Number of
Activities

Activity's
Throughput

cacheduncached

write()

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 39 / 25

Damming In the Data Deluge

Prototype (2)

Application behavior can
be recorded in files
Activities and their
metrics are read from
files
Replayer to mimic
program behavior
Machine learning
restricted to parameters
in heuristics

Julian M. Kunkel Monitoring and Optimization of I/O performance with SIOX 40 / 25

	Introduction
	Flexible Architecture
	Intelligent Handling
	Status and Outlook
	Summary
	Appendix
	Damming In the Data Deluge

