Towards Intelligent Self-Optimisation in HPC 1/0

Julian Kunkel Michaela Zimmer Marc Wiedemann

University of Hamburg

June 20, ISC '13

@ Introduction

@ Architecture

© Intelligent I/0O-Handling

Q Summary

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0

June 20, ISC '13

1ol0X
n

2/28

Introduction

Project Goals

SIOX will
o collect and analyse

o activity patterns and
o performance metrics

Application

Client

in order to

o assess system performance

o locate and diagnose problem

B o

o learn optimizations

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 3/28

Introduction

Partners and Funding

% Bundesministerium
fiir Bildung
und Forschung

o Funded by the BMBF
Grant No.: 01 IH 11008 B

o Start: Juli 1st, 2011
o Duration: 36 Months

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0

DKRZ

DEUTSCHES.
KLIMARECHENZENTRUM

I
r
A
—
0n

Zentrum far Informationsdienste
und Hochleistungsrechnen

June 20, ISC '13

LT 1) ¢

4/28

Architecture

Architecture

Application
or

Library

1) sioxlib

monitor data
and apply
optimizations

Compute node

Julian Kunkel (Univ. of Hamburg)

Self-Optimisation in HPC 1/0

June 20, ISC '13

1ol0X
n

5/28

Architecture

Architecture

Compute node

r - T -
- 1) sioxlib reports 2) slox
Application Daemon
or monitor data n:1
Library and apply supports correlates component-wide
optimizations and compresses

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 5/ 28

Architecture

Architecture

Compute node

r - T -
1) sioxlib reports 2) slox 3) SI0X
Application Daemon m:1 Transaction System
or monitor data n:1
Library and apply supports correlates component-wide onitoring collects and correlates
optimizations and compresses data across system boundaries

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 5/ 28

Architecture

Architecture

Application
or
Library

1) sioxlib

monitor data
and apply
optimizations

reports

Compute node

n:1

supports

2) slox
Daemon

correlates component-wide
and compresses

3) s1ox
Transaction System

collects and correlates
across system boundaries

Julian Kunkel (Univ. of Hamburg)

Self-Optimisation in HPC 1/0

extract,
transform
and load
process
(off-line)

4) slox
Data Warehouse

cleanses, compresses
and archives

June 20, ISC '13

,Slo0X
n

5/28

Architecture

Architecture

r
r
Compute node
r T
r T
»
1) sioxlib reports 2) SI0X 3) SI0X
Application Daemon m:1 Transaction System
or monitor data n:1
Library and apply supports correlates component-wide onitoring collects and correlates
optimizations and compresses data across system boundaries 1
H 1
H ' 1
extract, | 1
transform 1
and load ! 1
process 1 [|
(off-line) | 1
1
. 1
s Monitoring Path 4) slox v
Data Warehouse
cleanses, compresses
and archives
o Data gathered is stored via the monitoring path.
,SIOX

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 5/ 28

Architecture

Architecture

r
r
Compute node
r T
r T
»
1) sioxlib reports 2) SI0X 3) siox
Application Daemon m:1 Transaction System
or monitor data n:1
Library and apply supports correlates component-wide onitoring collects and correlates
optimizations and compresses data across system boundaries 1
H 1
H ' 1
extract, | 1
transform 1 1
€ | patterns and and load |

| optimizations process | 1
(off-line) | 1
machine :

learmi
=== Monitoring Path 5) s10X a|;2;irllr?,$\5 4) slox v

Knowledge Base _(ff_f-iirle_)_ . Data Warehouse
holds analyses cleanses, compresses
and optimizations and archives
o Data gathered is stored via the monitoring path.
LT 1) ¢

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 5/ 28

Architecture

Architecture

r
r
Compute node / file system server
r - T -
»
1) sioxlib reports 2) SIoX 3) sI0X
Application - Daemon m:1 Transaction System
or monitor data n:1 S
Library and apply supports correlates component-wide onitoring collects and correlates
optimizations and compresses data across system boundaries 1
H 1
H ' 1
extract, | 1
updates of patterns, transform 1
systeminfo, | £ | optimizations and load | 1
plugindata ~ | and system- process 1 [|
~ | information (off-line) | 1
I machine :
P learning
=== Monitoring Path 5) s10X algorithms 4) slox v
=== Knowledge Path Knowledge Base (off-line) Data Warehouse
holds analyses < {m = === om|mm Cleanses, compresses
and optimizations and archives

o Data gathered is stored via the monitoring path.

o Components receive the knowledge gleaned via the knowledge path.

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 5/ 28

Architecture

Alternative Architecture Configuration: Online-Mode

I
Compute node
r T
I L
o 1) sioxlib reports 2) SI0X
Application > Daemon
or monitor data n:1
Library and apply supports correlates component-wide
optimizations and compresses
updates of patterns,
systeminfo £ optimizations
and plugindata - and system-
information

5) S10X
Knowledge Base

holds analyses
and optimizations

_ ,-SloX
Configuration is loaded upon startup and initializes modules
Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 6 /28

Architecture

Overview of Concepts and Mechanisms

o User-level monitoring API
o “Wrapper' to ease instrumentation of software layers
o Relation of activities
o Implicit linking of process-internal activities
o Explicit linking between remote activities
o Link is created while transerring data to the warehouse
o Observed activies and statistics are processed by multiple plugins
o Synchronous and/or asynchronous
o Activities can be handled statefull (within a process) or stateless
o May use (static) system information/knowledge
o Usage: Learning of optimizations, intelligent logging, own overhead
o System knowledge
o One database entry per node, file system, storage device
o Plugins may create their own node/fs/device specific entries

o Detect hardware changes (upon startup)

" N Si0X
o Local and global “reasoning” to assess system state T

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 7/ 28

Architecture

Semi-Automatic Instrumentation of Software-Layers

Q Saving relevant function prototypes in a header file
Q Annotate functions in the header

©Q Tool parses header and creates either

o a shared library for LD _PRELOAD
o a library to use with 1d -wrap

Workflow

Instrumentation can be done incrementally

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13

,Slo0X
n

8/28

Architecture

Example Header for POSIX

1| //@component "POSIX"

3| //@register_descriptor fileName "File Name"
< SIOX_STORAGE_STRING

a\/////// END GLOBAL SECTION ////////////////

5

6| //Qactivity

7| //@activity_attribute fileName pathname

8| //@horizontal_map_put_int ret

o| //@error ’’ret < 0°’ errno

10| int open(const char *pathname, int flags, ...);

11
12| //@activity

13| //C@activity_attribute bytesToWrite count

14| //C@activity_link_int fd

15| //@error ’’ret < 0’’ errno

16| ssize_t write(int fd, const void *buf, size_t count);

Siax
T

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 9 /28

Intelligent 1/0-Handling

Logical View of the Monitoring Path

[Physical Node)
Process)
Layer 3)
(original) (instrumented)
SIOX Data Warehouse
all ystem Statistics
Store
Layer 2)
report L Activity .
Component 2 [Luse _ _T Component2 sioxlib
(original) (instrumented) Activity
Store
7
Thread
all
all
Layer1 /) \
Component | _use _ _| Componentl Adtivit
(original) (instrumented)

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 10 / 28

Intelligent 1/0-Handling

Intelligent Components

Activity History
BACAADAE...

System Statistics

Component

mol:

\
>< =
—_ | def: 4263.885635

3.573393

42.000000

Each component/layer holds:
o Plug-ins to detect exceptional behaviour
o Plug-ins to suggest possible optimizations
Additionally, a daemon holds:
o Recent system statistics, updated regularly
o Statistics plug-ins
o A plugin to control SIOX behavior

o A rule-based reasoner classifies system-state and bottlenecks

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0

June 20, ISC '13

,SlO0X
"

11/ 28

Intelligent 1/0-Handling

Building SIOX's Brain

To harness the data gathered, SIOX uses Knowledge Packages.

A Knowledge Package. ..

contains of

@ a Machine Learning Plug-In
and corresponding plugins
o Anomaly Detection Plug-In
o Self-Optimization Plug-In
Knowledge Package may use private Action Tables in the Knowledge Base.

The MLPI will create (and possibly update) the action table, which may

also be done manually. e
1
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 12 / 28

Intelligent 1/0-Handling

Interplay Between Monitoring and Knowledge Path (1)

SIOX Knowledge Base

Anomaly Detection

Action Tables ._ |

AMux Plug-Ins_J
User Application I
System Information
Store
call |~ 'y
>
Component ’
. -
(instrumentcd) Self-Optimization
T Action Tables
——
usc !
I
+ ‘
=]
Component —~] w‘:ﬂ“’nr&ha
o, (original) .
Activity
Store

s

System Statistics

Store ox

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 13 /28

Intelligent 1/0-Handling

Interplay Between Monitoring and Knowledge Path (2)

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 14 / 28

if logging is enabled

STIOX Daemon)

OX Data Warehouse

AMux Plugins)

Process

AMux Plugins

controls logging

SMux Plugins Activity
Store
if logging is enabled .
+Sy5tem Statistics

Store
controls loggin

Activity

observation, reasons

observation, reasons

e e o m— e m— — m— o m— — m— — m— — m— — m— — — — o e e e e e e e e e e e e e o o e e e e e e e e e e o e e e e e e T

Intelligent 1/0-Handling

Reasoning

o Node-local reasoner decides when and how long to log

o System-state, detected bottlenecks and reasons are communicated
o E.g. “Server overloaded”, “Bad 1/O pattern
o All knowledge to global reasoner
o Overview is communicated to all daemons

o Global reasoner maintains statistics for later investigation

Compute Node 1 Compute Node 2 File System Server 1

SIOX Daemon

i Reasoner I

SIOX Daemon

i Reasoner I

SIOX Daemon

i Reasoner I

4

SI

Global Reasoner

,SlO0X

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 15 / 28

Intelligent 1/0-Handling

Anomaly-Detection Plugin Example 1

A simple rule-based and stateless plugin detecting exceptional performance

Time(Activity)
texpected(COmponent, Activity)

fUtilization(Component, Activity) =

Size(Activity)

A : -+ latency(Component
XPEEe T Sequential TransferRate(Component) ()
Result | Action
fUtilization < 0.10 Report("Exceptionally low")
0.10 < fytilization < 0.95 No Action
0.95 < fytilization Report("Exceptionally high")
Component can be a subset of {current software layer, compute node, e
file system} ™

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 16 / 28

Intelligent 1/0-Handling

Self-Optimization-Plugin Example 1

A simple Action Table: Adjusting a system parameter

Action table for an SOPI write-behind plug-in

Pattern | Buffer Size
Open() 4MiB
Write(size < 2 KiB){5x} 1 MiB
Write(size < 4 MiB) Write(size < 4 MiB) | 20 MiB
Write(size > 100 MiB) direct-write

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 17 / 28

Intelligent 1/0-Handling

Self-Optimization-Plugin Example 2

A more complex Action Table: Injecting bespoke non-functional calls

Action table for an SOPI fadvise() plug-in

Pattern | Advice

SequentialRead() SequentialRead() SequentialRead() | seq & willneed(size)
Open(ext = "nc") willneed(0, 20 KiB)
Open(ext = "dat") noReuse & random
RandomWrite(size < 4K){5x} noReuse & random

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 18 / 28

Intelligent 1/0-Handling

Towards a First Prototype

SIOX Full Processing Cycle
(Simple DB-less Version)

User Application I

call
_use T Component
(original)

Replayer enacts Activities
as if they had been called

by original User Application

T component
"L (wrapped)

””_i'"i'”ihh

Amwty .
File

Julian Kunkel (Univ. of Hamburg)

Step 1: Hard-coded into pmg ins.
Slep 2: Read from files
Step 3: True tables in DB

Acmn
Tables

Self-Optimisation in HPC 1/0

o Application behavior can
be recorded in files

o Activities and their
metrics read from files

o Replayer to mimic
program behavior

@ Machine learning

restricted to parameters
in heuristics

1ol0X
n

June 20, ISC '13 19 / 28

Summary

o SIOX aims to capture and optimize /O
o on all layers and filesystems

o Intelligent filtering reduces log size

o Integrated reasoning tries to localize causes and bottlenecks

o We are building a flexible and open system

,Slo0X

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 20 / 28

Finally: SIOX and You

o Think we missed a problem?
o Think you could solve one?

o Like to see SIOX on your
favourite file system?

We cordially invite you to become
involved at

Meet SIOX people at SC'12

http://www.HPC-10.org

,SlO0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 21 /28

Backupslides

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 22 /28

Scalability through Hierarchical Data Transport

Application A Application B Application C

i Nodea Nodeb Nodec | : Noded Nodee | i Nodef
ElT T2 (T3 Ta || T T | i i T To T3 | i i |Tl T2, T3 T4 T5

LT 1) ¢
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 23 /28

The Data Deluge — A Numerical Example (1)

A program writes a 1 GiB file to a parallel file system. ..
@ ...of 100 I/O servers managing 5,000 storage devices
o = 200 KiB per device to write. ..
o ...writing 4 KiB per block on device

= 250,000 blocks to write. ..

... logging 20 B per block written

= 5 MiB logging data

= 0.5 % logging overhead. . .

20X

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 24 / 28

The Data Deluge — A Numerical Example (2)

The HPC Cluster Blizzard at DKRZ reads and writes. . .
o 10 GiB/s, 24/7, 365 days a year
o = 50 MiB/s to log for SIOX
o = 1,576 PiB/a logging information

,Slo0X
n

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 25 /28

Activity Sequence

Higher

Instrumented Component

Level
Component

Cormnponent
(instrumented)

Component
(original)

T
[calit paramel

ers)

activity_end()

=

(Activity)

Instrumentation and the Activity Multiplexer

Result f
i i
Higher Compenent Compenent
Level (instrumented) (original)
Cornponent

Julian Kunkel (Univ. of Hamburg)

Self-Optimisation in HPC 1/0

.
I
I
I
I
I

June 20, ISC '13

,Slo0X
n

26 / 28

Activity Multiplexer Normal Behavior

Activity Sequence (Regular Processing)

Invoke all synchronous callbacks registered b.

I
I

|‘_| .llleX
|

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 27 / 28

Ac

ity Sequence (Regular Processing)

Log(Acti

Ac

ity Multiplexer

nimty Q)

Queue Activity
Mutex Queue

Activit

Listener | | Listener
1 n

invoke lbacks registered

Push(Acti

Unlock;

Notifier may have
been inactive

due to Queue
being empty!

)

otifer will work
through Queue
until Activity

is reached

ack_a_1(Activity)

ack_a_n Activity)

When finding Queue empty,)
deactivate Notifer until
woken again by Queue

Unloc)

il

Activity Activity
Queue Queue

Notifier I

Listener | | Listener
1 n

Activity Multiplexer Throttling (Overflow) Behavior

Activity Sequence (Queue Overflow)

Problem:
Queue already filled to capacity,
Motifier processing but overwhelmed!
Push(} is rejected, Activity lost;
Queue enters overflow mode,
rejecting any further Push() calls.

ox

Julian Kunkel (Univ. of Hamburg) Self-Optimisation in HPC 1/0 June 20, ISC '13 28 / 28

Acti

y Sequence (Queue Overflow)
Act

y Multiplexer

Activity Listener | | Listener
Multiplexer | Queue Activity Notifier 1 n
Mutex Queue

Log(Actbity)

Lock()

Fullz()
Problem:
Queue already filled to capacity.
Notifier processing but overwheimed!
Push() is rejected, Activity lost;
Queue enters overflow mode.
rejecting any further Push) calls.

TRUE
NLost := 1
Unlock()

Multiplexer discards any activities logged. merely counting them in NLost
Meanwhile, Notifier processes Queuel unti reaching the last entry

R |

|_cui0
| Lastactivity
unlockf]

Callback_a_1(LastActivity)

Callback_a_n(LastActivity)

invoke all asynchronous callbacks registered

Lock()

|_cu0
EMPTY
|

Once Queue is emptied from overflow mode.
signal Notfier to reset all listeners
and re-enter processing mode

reset0 1 1|

NLost
Unlock()
Callback r_1(NLost_1)
Callback_r_n(NLost_n)
invoke Reset() callbacks for alllisteners to be enabled;
for all others, increase NLost_i by NLost
When finding Queue empty,
deactivate Notifier unti
woken again by Queue
Lock()
pull)
EmPTY
Unlock()
Multiplexer [Activity - Activity Notifier Listener | | Listener
Queue Queue 1 n

Mutex

	Introduction
	Architecture
	Intelligent I/O-Handling
	Summary
	Appendix

