|  | Example Scenario<br>00000000 |  |
|--|------------------------------|--|
|  |                              |  |

# Collecting Energy Consumption of Scientific Data

#### Energy Demands for Files During Their Life Cycle

#### Julian M. Kunkel, Olga Mordvinova, Michael Kuhn, Thomas Ludwig

German Climate Computing Centre Hamburg

> Scientific Computing Department of Informatics University of Hamburg

> > 16-09-2010

|  | Example Scenario<br>00000000 |  |
|--|------------------------------|--|
|  |                              |  |

## Motivation

### Track energy consumption caused by I/O to

- quantify energy costs for storage and processing.
- pull off awareness for energy costs.
- identify expensive applications/workflows.
- identify chances to optimize the storage landscape.
- Do you know how much energy it costs to keep your files?

## Energy Characteristics of Storage

| Model                 | Capacity  | Power Con  | sumption | IOPS                 | Transfer Rate |
|-----------------------|-----------|------------|----------|----------------------|---------------|
|                       |           | (transfer) | (idle)   |                      |               |
|                       | in GBytes | in Watts   | in Watts |                      | in MBytes/s   |
| WD Caviar Green 7,200 | 1,000     | 4.9        | 2.8      | 80                   | 111           |
| Seagate Cheetah 15K   | 600       | 16.4       | 11.7     | 184                  | 204           |
| Intel X25-M G2        | 160       | 0.15       | 0.08     | $\leq$ 35,000 (read) | 250 (read)    |
| Postville MLC         |           |            |          | 8,600 (write)        | 100 (write)   |
| Intel X25-E           | 64        | 2.6        | 0.06     | 35,000 (read)        | 250 (read)    |
| Extreme SLC           |           |            |          | 3,300 (write)        | 170 (write)   |
| Fujitsu Siemens LTO1  | 100       | 18         | N/A      | 0.013                | 16            |
| (PRIMERGY)            |           |            |          |                      |               |
| Quantum LTO4          | 800       | 28.8       | 6.4      | 0.018                | 120           |
| Tandberg LTO5         | 1,500     | 24         | 6.9      | 0.014                | 140           |

|  | Example Scenario |  |
|--|------------------|--|
|  |                  |  |

- 1 Total Energy for the File Life Cycle
- 2 Analytical Model
- 3 Collecting Energy Consumption
- 4 Example Scenario
- 5 Summary

| Total Energy for the File Life Cycle<br>●O |  | Example Scenario |  |
|--------------------------------------------|--|------------------|--|
|                                            |  |                  |  |
|                                            |  |                  |  |

## Metric

### Total Energy for the File Life Cycle = TEFL

The amount of energy consumed by file I/O and long-term storage.

### Possibilities

- Measure real energy consumption.
- Provide an analytical model.

| Total Energy for the File Life Cycle |  |  |
|--------------------------------------|--|--|
| 00                                   |  |  |
|                                      |  |  |

### Difficulties with the Measurement

#### Accounting energy consumption per I/O requires to

measure energy for all components of the parallel file system.

- This requires measurement devices, complex implementation.
- divide energy consumption among concurrently executed I/Os.
  - How do we divide the energy consumption fairly among the I/Os?

#### Interpretation is hard

How do we modify our access pattern/storage policy to reduce energy consumption?

| Analytical Model | Example Scenario<br>00000000 |  |
|------------------|------------------------------|--|
|                  |                              |  |



### 2 Analytical Model

- 3 Collecting Energy Consumption
- 4 Example Scenario

#### 5 Summary

| Analytical Model<br>●○ | Example Scenario |  |
|------------------------|------------------|--|
|                        |                  |  |

### Analytical Model

### **Required characteristics**

- Divide energy consumption among files.
- Be invariant to concurrent operations and processing order.
- Ease interpretation of measured values to derive suggestions.

| Analytical Model | Example Scenario<br>00000000 |  |
|------------------|------------------------------|--|
|                  |                              |  |

## Analytical Model

### Basic idea of the simple model

Split transfer and idle costs depending on system capabilities:

- *E<sub>idle</sub>* = FileSizeOverTime / SystemCapacity · SystemIdleCosts
- *E*<sub>transfer</sub> = TimeForIO · SystemActiveCosts
- Handle storage systems of the storage landscape individually.

#### Drawbacks

- Empty disk space is accounted to the computing facility.
- Assumes energy of the storage is invariant over its life time.

|  | Collecting Energy Consumption | Example Scenario<br>00000000 |  |
|--|-------------------------------|------------------------------|--|
|  |                               |                              |  |

- 1 Total Energy for the File Life Cycle
- 2 Analytical Model
- 3 Collecting Energy Consumption
- 4 Example Scenario

#### 5 Summary

|  | Collecting Energy Consumption |  |
|--|-------------------------------|--|
|  | 000                           |  |
|  |                               |  |

# Collecting Energy Consumption

### Design criteria

- Limited implementation effort
- Compatibility with existing systems
- Low performance overhead
- No background file scanning/update of values necessary

|  | Collecting Energy Consumption |  |
|--|-------------------------------|--|
|  | 000                           |  |
|  |                               |  |

### Metrics to Store

#### Alternatives

- Store accumulated energy consumption directly.
  - File system must know how to compute consumption.
- Account basic I/O information.
  - # reads, writes, blocks read/written and integrated file size.
  - $\blacksquare$   $\Rightarrow$  Additional insight about file usage is provided.
  - Provide tools to compute energy consumption.

#### Storing of energy metrics

- Updates of values must be performed for each I/O.
- Similar to atime
- Allow caching lazy persistency scheme
- Metrics could be stored in Extended Attributes.

|  | Collecting Energy Consumption |  |
|--|-------------------------------|--|
|  | 000                           |  |
|  |                               |  |

### Example Metrics to Store For One Storage System

| system. <b>iocount_read</b>        | = 10                      |
|------------------------------------|---------------------------|
| system. <b>iocount_write</b>       | = 50                      |
| system. <b>blocks_read</b>         | = 1000                    |
| system. <b>blocks_written</b>      | = 1000                    |
| system. <b>file_size_over_time</b> | = 200000 (Byte · Seconds) |
| system.last_file_size_update       | = 2010-05-12 17:00:00.01  |

|  | Example Scenario |  |
|--|------------------|--|
|  |                  |  |

- 1 Total Energy for the File Life Cycle
- 2 Analytical Model
- 3 Collecting Energy Consumption
- 4 Example Scenario
- 5 Summary

|  | Example Scenario |  |
|--|------------------|--|
|  | 0000000          |  |
|  |                  |  |

## **Example Scenario**

### Application access pattern



### Storage landscape configurations

- Tape & hard disks
- Tape & flash
- Hard disks or flash only

|  | Example Scenario |  |
|--|------------------|--|
|  |                  |  |

### Access Pattern Details



#### Iterative application:

- In 10 minute intervals 10 GByte of data is appended to the file.
- 100 iterations ⇒ 1 TByte of data
- I/O on disk is performed in a granularity of 10 MBytes.
- Post-processing and further analysis each read the whole data.

|  | Example Scenario |  |
|--|------------------|--|
|  | 0000000          |  |
|  |                  |  |

## Storage Landscape Setup

#### Online storage

- 130 shelves a 16 disks, RAID-5, shelves are mirrored ⇒ RAID-51
- 2080 WD Cavier Green hard disks
- Total capacity about 1 Petabyte
- For Flash, Intel Extreme, same configuration ⇒ 64 TByte

#### Tape archive

- StorageTek SL8500
- 10 Tape drive trays, capacity of 10,000 tapes a 1 TByte

|  | Example Scenario |  |
|--|------------------|--|
|  | 0000000          |  |
|  |                  |  |

## Storage Landscape Configurations

| Storage        | Power Consumption |        | IOPS   |         | Transfer Rate |         |
|----------------|-------------------|--------|--------|---------|---------------|---------|
| System         | in Watts          |        |        |         | in MBytes/s   |         |
|                | (active estimate) | (idle) | (read) | (write) | (read)        | (write) |
| Hard disk      | 10                | 5      | 80     | 80      | 125           | 125     |
| FS with disks* | 40,000            | 24,000 | 60,000 | 60,000  | 15,000        | 15,000  |
| Flash disk     | 3                 | 0.06   | 35,000 | 8,600   | 250           | 170     |
| FS with flash* | 24,600            | 13,132 | 10 M   | 2,5 M   | 30,000        | 20,000  |
| LTO tape drive | 53                | 35     | 0.01   | 0.01    | 210           | 210     |
| Tape archive*  | 1,200             | 800    | 0.10   | 0.10    | 2,100         | 2,100   |

\* Data of parallel file systems is inspired by vendor information.





### Phases and Resulting Values for the I/O Metrics

|         | Processing Phase | Access            | ed Data           | I/O Operations |                | File Size            |
|---------|------------------|-------------------|-------------------|----------------|----------------|----------------------|
|         |                  | (read)            | (write)           | (read)         | (write)        | Over Time            |
|         |                  | in Bytes          | in Bytes          |                |                | in Bytes · s         |
| Online  | Append           | 0                 | $1 \cdot 10^{12}$ | 0              | $1 \cdot 10^5$ | $30.3 \cdot 10^{15}$ |
| storage | Post-processing  | $3 \cdot 10^{12}$ | $1 \cdot 10^{12}$ | $3 \cdot 10^5$ | $1 \cdot 10^5$ | $42.3 \cdot 10^{15}$ |
|         | Further Analysis | $5 \cdot 10^{12}$ | $2 \cdot 10^{12}$ | $5 \cdot 10^5$ | $2 \cdot 10^5$ | $54.3 \cdot 10^{15}$ |
|         | Append           | 0                 | 0                 | 0              | 0              | 0                    |
| Таре    | Post-processing  | 0                 | $1 \cdot 10^{12}$ | 0              | 1              | 0                    |
|         | Further Analysis | $1 \cdot 10^{12}$ | $1 \cdot 10^{12}$ | 1              | 1              | $15.8 \cdot 10^{19}$ |

#### Table: Storage landscape with tape archive.

| Processing Phase | Access            | ed Data           | I/O Operations   |                | File Size            |
|------------------|-------------------|-------------------|------------------|----------------|----------------------|
|                  | (read)            | (write)           | (read)           | (write)        | Over Time            |
|                  | in Bytes          | in Bytes          |                  |                | in Bytes · s         |
| Append           | 0                 | $1 \cdot 10^{12}$ | 0                | $1 \cdot 10^5$ | $30.3 \cdot 10^{15}$ |
| Post-processing  | $2 \cdot 10^{12}$ | $1 \cdot 10^{12}$ | $2 \cdot 10^5$   | $1 \cdot 10^5$ | $42.3 \cdot 10^{15}$ |
| Further Analysis | $4 \cdot 10^{12}$ | $1 \cdot 10^{12}$ | $4 \cdot 10^{5}$ | $1 \cdot 10^5$ | $15.8 \cdot 10^{19}$ |

Table: Only online storage available.

## Phases and Resulting Energy Consumption

|                | Processing Phase | Energy Consumption in Joules |                     |                     |                    |
|----------------|------------------|------------------------------|---------------------|---------------------|--------------------|
|                |                  | (disk                        | & tape)             | (flash & tape)      |                    |
|                |                  | Idle                         | Busy                | Idle                | Busy               |
| Online storage | Append           | $0.7 \cdot 10^6$             | $2.6 \cdot 10^{6}$  | $6.2 \cdot 10^{6}$  | $1.2 \cdot 10^{6}$ |
|                | Post-processing  | $1.0\cdot10^{6}$             | $10.4 \cdot 10^{6}$ | $8.7 \cdot 10^{6}$  | $3.5 \cdot 10^{6}$ |
|                | Further Analysis | $1.3 \cdot 10^{6}$           | $18.3 \cdot 10^{6}$ | $11.1 \cdot 10^{6}$ | $6.3 \cdot 10^{6}$ |
|                | Append           | 0                            | 0                   | 0                   | 0                  |
| Таре           | Post-processing  | 0                            | $0.6 \cdot 10^{6}$  | 0                   | $0.6 \cdot 10^{6}$ |
|                | Further Analysis | $2.5 \cdot 10^{6}$           | $1.1 \cdot 10^{6}$  | $2.5 \cdot 10^{6}$  | $1.1 \cdot 10^{6}$ |

#### Table: Storage landscape with tape archive.

|                  | Energy Consumption in Joules |                    |                              |                    |  |
|------------------|------------------------------|--------------------|------------------------------|--------------------|--|
|                  | (disk)                       |                    | (flash)                      |                    |  |
|                  | Idle                         | Busy               | ldle                         | Busy               |  |
| Append           | $0.7\cdot 10^6$              | $2.6 \cdot 10^6$   | $6.2 \cdot 10^6$             | $1.2 \cdot 10^6$   |  |
| Post-processing  | $1.0 \cdot 10^6$             | $7.8 \cdot 10^{6}$ | $8.7 \cdot 10^6$             | $2.7 \cdot 10^6$   |  |
| Further Analysis | 3.8 · <b>10<sup>9</sup></b>  | $13 \cdot 10^6$    | 32.4 · <b>10<sup>9</sup></b> | $4.3 \cdot 10^{6}$ |  |

Table: Only online storage available.

|  | Example Scenario |  |
|--|------------------|--|
|  |                  |  |

## Evaluation

#### Total energy spent

- Tape & disk:  $23.3 \cdot 10^6$  Joule,  $0.20 \in$  per kWh  $\Rightarrow 1.30 \in$
- Tape & flash: 21.1 · 10<sup>6</sup> Joule
- Online storage: disk  $3.8 \cdot 10^9$  Joule  $\Rightarrow 211 \in$ , flash 9 times more

#### Observations for our scenarios

- Busy costs are negligible for online storage.
- Busy costs dominate for disks while idle costs dominate for the selected flash drive.

## Summary & Conclusions

- Knowing energy consumption of files is valuable.
- I/O statistics can be treated similar as atime.
- The example scenarios show the importance of tape.
- Optimal migration reduced the TEFL to 0.5%.
- Capacity helps to leverage idle costs of hard disk drives.
- In the future we will embed statistics into (parallel) file systems.