Secure HPC: A Workflow Providing a Secure Partition on an HPC

System

Hendrik Nolte®*, Nicolai Spicher’?, Andrew Russel®, Tim Ehlers?, Sebastian Krey?,
Dagmar Krefting® and Julian Kunkel®

Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Géttingen, Germany

b Institut fiir Medizinische Informatik der Universititsmedizin Gottingen, Germany

“Cornelis Networks Inc, USA

ARTICLE INFO

Keywords:

high performance computing
sensitive data

secure computing

data encryption

ABSTRACT

Driven by the progress of data and compute-intensive methods in various scientific domains, there is an
increasing demand from researchers working with highly sensitive data to have access to the necessary
computational resources to be able to adapt those methods in their respective fields. To satisfy the
computing needs of those researchers cost-effectively, it is an open quest to integrate reliable security
measures on existing High Performance Computing (HPC) clusters. The fundamental problem with
securely working with sensitive data is, that HPC systems are shared systems that are typically trimmed
for the highest performance — not for high security. For instance, there are commonly no additional
virtualization techniques employed, thus, users typically have access to the host operating system.
Since new vulnerabilities are being continuously discovered, solely relying on the traditional Unix
permissions is not secure enough. In this paper, we discuss Secure HPC, a workflow allowing users to
transfer, store and analyze data with the highest privacy requirements. Our contributions are the design
of a multi-node secure workflow with parallel I/0, a strict security model enforced by the system and
network features, and lastly the demonstration of a medical use case. In our experiments, we see
an advantage in the asynchronous execution of 10 requests in dm_crypt, while reaching 80% of the
ideal performance. When comparing eCryptFs with GoCryptFS as two representative filesystem-level
encryption stacks, eCryptFS was twice as fast. In a real use case, we observed on average 97% of the

native performance.

1. Introduction

The increasing adoption of data and compute-intensive
algorithms in digital humanities or life sciences (Uecker,
Ong, Tamir, Bahri, Virtue, Cheng, Zhang and Lustig, 2015;
Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock and
Knoll, 2018) has drastically increased the demand for cost-
effective solutions in research domains that are subjected
to very strict data security restrictions, like the General
Data Protection Regulation (GDPR) or the Health Insurance
Portability and Accountability Act (HIPAA). Historically,
HPC systems in public data centers serve those tasks for
insensitive data for capacity as well as capability comput-
ing. Here, different users share the available resources and
can run their compute jobs simultaneously on shared or
exclusive subsets of nodes. Due to the optimization for
performance, it is very common, that users interact directly
with the operating system of the host. Users are trusted
to some extent, and, thus, any local vulnerability can be
immediately exploited by users or bots that gained con-
trol of user credentials. Taking into account that there are
continuously new attacks discovered that lack a reliable
solution over a sustained period of time (Jattke, van der
Veen, Frigo, Gunter and Razavi), sensitive data should only
be transferred, stored, and processed with care in public data
centers. Some industry and government data centers (such as

*Corresponding author

%4 hendrik. nolte@gwdg. de (H. Nolte)
ORCID(S): 0000-0003-2138-8510 (H. Nolte)

for weapon research) limit access and employ strict policies
regarding system access, even to the point where sensitive
data is physically disconnected if not needed. However, re-
stricting system access does not resolve the problem with the
data access, since administrators basically have full access.
We believe, that even in the case of a privilege escalation
leading to a compromised cluster, the integrity of data should
be guaranteed.

This article extends our previous work (Nolte, Sarmiento,
Ehlers and Kunkel, 2022), where a generic workflow to
transfer, store and process sensitive data on a shared HPC
system is presented. The previous workflow is limited to
single nodes. In this paper, the original idea was extended
to support multi-node applications while providing an even
higher security standard compared to the single node setup.
The higher security standard is achieved by the higher degree
of network isolation of the compute nodes which now also
involves network partitioning of the high speed interconnect.
There are several challenges involved when scaling from a
single node to multi node support. The first challenge is to
ensure a secure communication, which can be done either by
encrypting and decrypting the messages on the nodes, or by
partitioning the entire network. The second challenge is to
support as many native multi-node application as possible,
which partly rely on parallel I/O across multiple nudes,
which, however, needs to be encrypted locally on each node
to guarantee that no unencrypted data is written to the global
filesystem. The third challenge is to guarantee proper user
authentication, to ensure that even the root user has no access

Nolte et al.: Preprint submitted to Elsevier

Page 1 of 18

Secure HPC

to the nodes and therefor to the unencrypted data, and proper
node initialization to ensure that the necessary decryption
keys are available on all nodes. Our new contributions are:

e extension to multi-node secure workflows
e support for parallel I/O

e improved security for the execution of the user job
script using Slurm

e improved isolation for the nodes using advanced net-
work features of Omni Path (OPA)

In the following, related works will be discussed in Sec-
tion 2, a general overview of the architecture of HPC systems
is provided in Section 3, the design of the secure workflow
is presented in Section 4 followed by the description of the
actual implementation on our HPC system in Section 5. A
security analysis is done in Section 7 followed by bench-
marks in Section 8 to measure the overhead of the applied
methods. The user story, demonstrating the presented Secure
HPC environment in a real use case, i.e. sleep stage scoring,
is provided in Section 9 which also includes a comparison
of run-times to an insecure workflow. The conclusion is
provided in Section 10.

2. Related Work

The general need for secure compute capabilities and
the resulting requirements for refinement of existing security
concepts, particularly for HPC systems, is acknowledged in
the literature. Christopher et al. describe in (Christopher,
Jung and Doane, 2019) that “At UC Berkeley, this has
become a pressing issue* and it has “affected the campus’
ability to recruit a new faculty member*.

In BioMedIT (Coman Schmid, Crameri, Oesterle, Rinn,
Sengstag and Stockinger, 2020), a distributed network is
described, where virtualization is used to create completely
isolated compute environments that are exclusively reserved
for a particular project, in a private cloud. However, the
use of virtualization for isolation purposes is only effective,
if it is ensured that other users can not access the host
system directly. Therefore, this approach requires dedicated
hardware and software, which drastically increases the cost
of hosting such a system.

A similar approach is described in (Scheerman, Zarrabi,
Kruiten, Mogé, Voort, Langedijk, Schoonhoven and Emery,
2021), where Private Cloud on a Compute Cluster (PCOCC)'
is used to deploy a private virtual cluster. The outlined Slurm
integration allows for direct integration into an existing HPC
system. However, a dedicated Lustre file system is needed
and it remains unclear how this virtualized cluster is secured
against a compromised host.

Systems like SELinux (Smalley, Vance and Salamon,
2001) or AppArmor (Bauer, 2006) are using the Linux Se-
curity Modules to enforce mandatory access control with
the general goal to prevent zero-day-exploits. However, once

Thttps://github.com/cea-hpc/pcoce

an attacker found a vulnerability these mechanisms become
useless. Here, intrusion detection systems, like auditd, could
be used to detect such an system (Karns, Protin and Wolf,
2012). In contrast, the goal of this paper is to provide
a Secure HPC partition under the assumption that a root
exploit was already successfully done. Therefore, these two
approaches work completely independently of each other.

In order to limit the actions a malicious root can take on
a compromised system, one can use kerberized filesystems
(Miller, Neuman, Schiller and Saltzer, 1988). This would
then, however, limit the functionality of non-interactive
batch jobs, and/or would require the additional usage of e.g.
Yubikeys by all its users.

One possible way to isolate a single task on a multi-
tenant node is the use of Trusted Execution Environments
(TEEs). Here, access to sensitive data or code, which is
loaded into memory, is secured from access from the host
kernel. There exist several different solutions, including
commercial solutions like Intel’s SGX (McKeen, Alexan-
drovich, Anati, Caspi, Johnson, Leslie-Hurd and Rozas,
2016) and open-source solutions like Keystone (Lee, Kohlbren-
ner, Shinde, Asanovi¢ and Song, 2020) which are based
on basic primitives provided by the respective hardware.
In order to utilize those so-called enclaves, changes to the
source code of the corresponding application are necessary.
To mitigate this issue, solutions like Graphene (Tsai, Porter
and Vij, 2017) enable users to run unchanged code within
an enclave. Similarly, SCONE (Arnautov, Trach, Gregor,
Knauth, Martin, Priebe, Lind, Muthukumaran, O’keeffe,
Stillwell et al., 2016) was developed to support Linux secure
containers for Docker. These solutions for TEEs are very
interesting to secure and isolate a running process, including
its data, from malicious access but are in itself not sufficient
to provide an end-to-end workflow to securely upload, store
and process sensitive data on an untrusted, shared system.

Containers are processes which are executed on the host
operating system and are pseudo-isolated by namespaces
and cgroups. This allows the provisioning of a private root
file system in order to execute software in a portable envi-
ronment. As with any other process, containers are executed
with the rights of the user, which can be extended with an
setuid. A common container technology on HPC systems is
Singularity (Kurtzer, Sochat and Bauer, 2017).

Secure storing of sensitive data on a shared, untrusted
storage on an HPC system was explored in (Smith, Riley,
Syed, Kupcevic, Edmon and Yockel, 2019). Here, Ceph
Object Gateways (Weil, Brandt, Miller, Long and Maltzahn,
2006) are deployed on single-tenant compute nodes along-
side an S3FS which bind-mounts the corresponding S3-
Bucket as an POSIX compatible directory onto the host.
The host-based configuration then performs automatic en-
cryption/decryption of data that is written/read to/from this
specific directory. While this is an important part of secure
data processing, it is only a part of a holistic solution that we
present. For instance, features such as secure transfer of the
necessary keys for accessing the S3-Bucket and for perform-
ing the decryption/encryption are important. Additionally,

Nolte et al.: Preprint submitted to Elsevier

Page 2 of 18

Secure HPC

some data center policies may require a strict separation
between the HPC and the storage networks.

Other ways to securely store sensitive data on a typi-
cal filesystem include Linux Unified Key Setup® (LUKS),
eCryptFS?, and GoCryptFS*. LUKS, which is based on
dm_crypt, provides encryption for a block device and allows
for multiple passphrases to be used. On the other hand,
eCryptFS and GoCryptFS offer filesystem-level encryption
which is based on a FUSE filesystem. To allow for efficient
file access while still using a block-cipher, they are splitting
each file up into independent blocks, or extends as it is called
in the case of eCryptFS. The metadata about these blocks
are managed by initialization vectors that precede a group
of blocks. The advantage is, that random access to a file
is faster, since only each involved block needs to be de- or
encrypted, instead of the entire file.

In contrast to the related work, we present a blueprint for
a holistic end-to-end processing pipeline suited for sensitive
data to be used on a shared, untrusted HPC system. This is
complemented by a detailed discussion about the security
implications as well as extensive benchmarking to assess the
general applicability.

3. General Usage of HPC systems

This section describes the architecture of HPC systems,
as well as the general usage of HPC systems. Following this
introduction, a security risk analyzes is performed.

3.1. Architecture of HPC systems

Generally, HPC systems are composed of different node
types. They serve different purposes and have, therefore,
different security policies applied to them. In the following,
an overview of typical node types is provided and their
interactions are explained. This will further serve as the basis
for the nodes which are deemed as secure, even in the case
of a privilege escalation of a user.

The general architecture of an HPC system is illustrated
in Figure 1. HPC systems are commonly guarded by a
perimeter firewall, requiring users to connect via a Virtual
Private Network (VPN) or a jump host. Afterwards they can
login via Secure Shell (ssh) on a frontend node. Frontend
nodes are shared by all users and are used to build software,
move data, or submit compute jobs to the batch system.
Access to computing resources is granted by a resource
manager, like Slurm (Yoo, Jette and Grondona, 2003), which
schedules user jobs in such a way, that the general utilization
of the system is maximized. The batch system dispatches
jobs to the compute nodes. Although an interactive com-
pute job is generally possible, the majority of the available
compute time is consumed by non-interactive jobs, i.e. they
run completely without any user interaction. The frontend
as well as the compute nodes share at least one parallel
file system, like Lustre (Braam, 2019) or BeeGFS (Herold,
Breuner and Heichler, 2014).

Zhttps://gitlab.com/cryptsetup/cryptsetup/
3https://www.ecryptfs.org/
“https://github.com/rfjakob/gocryptfs

The management nodes are comprised of several differ-
ent nodes that are solely reserved for the admins. Hence, they
share the basic requirement, that they need to be protected
from any user access. Typically, there is a specific admin
node, which is used just for login. Very important for our
secure workflow is the so-called image server, i.e., the node
which is used to provision the golden images to all the
nodes, including the frontend and the compute nodes. If an
attacker would gain access to this server, the images could
be compromised and distributed to the nodes. In order to
increase the security of this node, it is placed in the Level
2 security zone, where access is highly limited and requires
further activation and authorization. In order to decrease the
attack surface from the image server in the Level 2 security
zone, compared to the admin nodes which are being operated
in the Level 1 zones, the image server does not allow
access from any other system located in a lower security
level, i.e. the Level 1 admin nodes and the user nodes. In
addition, there are no user accessible daemons listening on
any ports. Write access to the images is strictly limited to
this image server. The read access for the compute nodes via
the Preboot Execution Environment (PXE), necessary for the
actual deployment of the images to the nodes, is only done
by an admin node located in the Level 1 layer. In this way,
a possible exploit in the cluster manager, i. e. the system
responsible for distribution the golden images, cannot lead
to a compromised image.

Another important node is the one, that the resource
manager is running on. This server is responsible to enforce
the correct assignment and access of the jobs and users to
the compute nodes. The last pieces of infrastructure are the
networks that connect the different nodes.

The provisioning of software is usually done via an
environment module system, like Lmod (McLay, Schulz,
Barth and Minyard, 2011) or Spack (Gamblin, LeGendre,
Collette, Lee, Moody, De Supinski and Futral, 2015), and is
cluster wide available, which allows replicating the desired
working environment by loading the appropriate modules on
any node of the cluster.

3.2. Typical User Workflow

The typical workflow to execute a job on an HPC system
is depicted in Figure 2. A user logs in and can write or
submit a batch script. This is typically similar to a shell
script, where the desired resources and the commands to
be executed are specified. The resource manager checks,
whether or not the specified resources are eligible for the
uid the request is coming from, i.e. if the user is authorized
to use the specified resources. If the request is permissible,
the resource manager schedules the job in an appropriate
time slot for execution with the overarching goal to maxi-
mize overall system utilization. The input and output data
on a paralle] file system can be accessed from all nodes.
The necessary communication between the storage nodes
and the compute nodes or, in the case of multi-node jobs
which are communicating via the Message Passing Interface
(MPI), takes place via a high performance interconnects like

Nolte et al.: Preprint submitted to Elsevier

Page 3 of 18

Secure HPC

Management Nodes

Isolated Network

Image|Server

i
Frontend

User

&

Switch Parallel File
System

Compute Nodes

Figure 1: A schematic sketch of an HPC system. As shown, HPC systems are typically protected by a perimeter firewall and can
only be accessed via a VPN or a jump host. The system consists of frontend, compute, and management nodes, as well as a
network and a parallel file system. User access should be restricted to the frontend and the compute nodes, which are shown in
blue. The management nodes, shown in red, must be inaccessible for users and from nodes with user access.

Management Nodes

Isolated Network

1) Submit y 1
A Resource|NManager

Job
Ld— —
Frontend |

User

[\{ 2) Resource __' - v“I?
\\\9\}’ anh

Switch Parallel File
System

Compute Nodes

Figure 2: A schematic sketch of the typical workflow for users on an HPC system. Usually, users submit a batch script to the
resource manager. The access permission of a user to a certain node is hereby solely based on the wid. Since data is stored
unencrypted on a shared file system and the integrity of the software stack does not have to be guaranteed, the job can start
without any further overhead. This workflow is only secured by the user isolation of the utilized nodes Linux kernel.

Omni-Path (Birrittella, Debbage, Huggahalli, Kunz, Lovett,
Rimmer, Underwood and Zak, 2015) or Infiniband (Pfister,
2001).

3.3. Possible Attack Scenarios

From the HPC system architecture and user workflow,
we can infer potential security risks that we discuss in the
following. We assume that a privilege escalation, i.e. a user
gaining root privileges, can happen on any system accessible
to users, in particular the frontend and the compute nodes
because the nodes and storage systems users have direct
access to are solely protected by the permission system of
the Linux kernel, the trusted code base is very large and
has a large attack surface which presumably yields unknown
vulnerabilities (Chen, Mao, Wang, Zhou, Zeldovich and
Kaashoek, 2011) that has been exploited in the past.

For the following security analysis, it is therefore as-
sumed, that an attacker can gain root access or can imper-
sonate the user on one of these nodes.

3.3.1. Data Stored on a Shared File System

Starting from the node the attacker gained root privi-
leges, root can get access to any file stored on one of these
nodes or is located on a shared file system mounted on
this node. This direct access can be made a little bit more
uncomfortable, for instance, by an Network File System
(NFS) root-squash prohibiting direct root access. Such is-
sues can be circumvented by an attacker by changing the uid.
Therefore, we consider all data to be compromised.

3.3.2. Data Stored on a Compute Node

Additionally, after the job has started, the user is also
able to log in on these nodes, for instance via ssh. The access
is hereby granted by the resource manager solely based on
the uid. Thus, a root user has immediate access to all nodes
allocated to users and therefore access to the local data
and processes. Furthermore, a root user can submit jobs to
the batch system with an arbitrary uid, thus gaining access
to compute nodes reserved by the resource manager for a
specific user group.

Nolte et al.: Preprint submitted to Elsevier

Page 4 of 18

Secure HPC

3.3.3. Manipulation of the Provided Software

A malicious root user can also tamper with the provided
software stack or with the individual system image of the
node the attacker is currently on. Such a compromised
system can then continuously leak data.

3.3.4. Manipulation of the high-speed interconnect

When the processing power for application needs to be
scaled-up, the application’s data is typically divided between
multiple processor cores and run as parallel tasks (often
called ranks), and an MPI library is used to manage the
communication of data between the ranks. For small num-
bers of ranks, this can be on a single host computer; for
larger numbers, multiple hosts (often called nodes) are used,
and the capabilities of the interconnect become important.
To get the best scalability, that is the efficiency with which
additional cores deliver additional performance, high-speed
interconnects like Omni-Path (OPA) or Infiniband are used
in HPC systems to provide better latency, message rate and
bandwidth than a conventional Ethernet would.

The MPI data is injected into the high-speed interconnect
unencrypted. Encrypting the MPI data, even with hardware,
would add latency. Even a minor increase in latency can have
a significant impact on scalability, and so encrypting MPI
data is undesirable.

In practice, the unencrypted MPI data consists of nu-
merical data exchanged between the ranks of the job as it
performs the calculations required by the application. As
such, a bad actor managing to access this data is unlikely
to be able to derive any value from it. Every node in the job
knows the identities of the other nodes, so for a bad actor to
partake in the MPI data exchanges, it would need to spoof the
identity of a valid node. Therefore, the risk of data leakage,
even in an unsecured network, is fairly low.

However, it is always possible that if an unsecured node
hosting a bad actor can send data to a secured node, then it
may be able to exploit some previously unknown weakness
within the secured systems.

These high-speed interconnects are switched networks
which rely on a subnet manager, also known as a Fabric
Manager (FM), for configuration, including the creation of
the used routing tables. An attacker can try to imitate the FM
on hijacked nodes and bombard the switches with malicious
configurations. In addition, an attacker could try to spoof
its source node and ingest packages in order to maliciously
manipulate the execution of the job on the secure node.

Because the MPI data is unencrypted, it is desirable to
apply additional measures to ensure the overall security of
the system, and this is discussed in later sections.

4. General Design of the Secure Workflow

As motivated before, all systems to which users have
direct access could be considered to be compromised and
insecure as (unknowingly malicious) software running by
a user may have gained administrator permissions. Also,
an administrator (Unix root user) should not be considered
completely trustworthy and permissions should be limited

as much as possible. In order to design the secure workflow,
data and software need to be protected on such an exposed
system and a mechanism is necessary to trust selected nodes,
on which the actual computations can be securely done.
Based on the discussed security problems identified in Sec-
tion 3.3 a secure workflow was designed which mitigates
these problems. This secure workflow is presented in the
following.

4.1. Assumption

In order to provide trust in an otherwise untrusted sys-
tem, this trust needs to be derived from a secure source
system. Therefore, it will be assumed that i) the image server
of the HPC system as well as ii) the local system of the
user, for instance, the respective workstation or laptop, is
secure. These assumptions are reasonable because on the
one hand the image server, as shown in Figure 1, is located
within the 2nd security level of a cybersecurity onion of
the already highly guarded admin nodes, which deploy only
limited services and orchestrate the cluster. On the other
hand, the local system of the user is the system where the
data resides unencrypted at the beginning of the workflow.
Therefore, it has to be secure since otherwise the data would
be leaked without any involvement of the secure workflow.

4.2. Overview

As discussed in Section 3.3 there are different attack
scenarios that a secure workflow has to protect against.
These scenarios can be divided into the protection of the data
in transit, at rest, and during compute. In order to secure data
during transit and at rest, encryption is typically used. To
secure data during compute, one needs an ideally air-gaped,
but at least an isolated system or node. Based on these two
simple ideas a generic secure workflow was developed as
depicted in Figure 3.

Unlike in the case of the typical workflow, presented in
Figure 2, it is not possible to upload data, containers, and
batch scripts directly into the shared file system, since this
would leave the workflow vulnerable to attacks depicted in
Section 3.3, except if it is encrypted using state-of-the-art
encryption. therefore, the first step is to encrypt the data
as well as the container on the local system of the user.
Afterward, in Step 2 the encrypted data is then uploaded onto
the shared storage of the HPC system. The key is uploaded
onto a key management system. This communication chan-
nel is completely independent of the HPC system and can
therefore be considered out-of-band. Analogously should be
proceeded with the containers.

In order to be able to retrieve the keys from the key
management system, a valid access token needs to be pro-
vided in the batch script. To prevent this token from be-
ing leaked to an attacker on the frontend, the batch script
needs to be encrypted as well. This can happen completely
independent of the used resource manager by implementing
this mechanism on the secure node, the job should run on.
For this, a public-private key pair is created on the system
image of the secure node. The public key is then distributed
to the users and can be used to encrypt the batch script

Nolte et al.: Preprint submitted to Elsevier

Page 5 of 18

Secure HPC

Management Nodes

Isolated Network

1) Encrypt
Data 2y ypioad

f Data
Iy,

o
User o) Upload o
Key

Key Management
Server

3) Submit
Job

Frontend

Admin|

anager .
,,,,,,,,,,,,,, ‘Allocation - I
5) Verify

4) Resource [\

Parallel File

Identi
- — System

8) Mount Data
Batch-Script

7 Retrieve
Key

Compute Nodes

Figure 3: A schematic sketch of the secure workflow on an HPC system, which is divided into distinct steps. First, the sensitive
data along with the container and the batch script are encrypted on the local machine of the user. Additionally, the batch script
is also signed by the user. After encrypting, the components are safe to be uploaded into the shared file system of the HPC
system (Step 2). Although the batch script is signed and encrypted, it can be normally submitted in Step 3. As usual, the resource
manager will allocate the required resources and start the job in Step 4. In Step5, the authenticity of the user request is verified
and in Step6, the batch script is decrypted. Using the provided token for the key management system (KMS) the keys are
retrieved in Step 7 and used to decrypt the data and container on the isolated, secure node in Step 8.

while the private key has to be highly guarded. Since it is
only available on the secure node and on the image server,
this mechanism depends on the safety of the latter. This
encrypted batch script can be submitted to the resource
manager just like any other unencrypted script. For this, a
corresponding decrypt_and_execute command needs to be
implemented on the secure node, which takes as input the
encrypted shell script.

The resource allocation made by the resource manager
in Step 4 is only dependent on the used uid of the user on the
HPC system. As discussed in Section 3.3 this is not secure
enough, therefore the authenticity of the batch script needs
to be checked. In this proposed reference workflow, this
problem is solved by the user signing the batch script after
it was encrypted with a private key. Here, the corresponding
public key has to be made available to the secure node before
a job can be submitted.

During Steps 5 and 6 the counterpart of the previously
described Step 1 is done. This means, that first the signature
of the batch script is checked to verify that this batch script
was legitimately submitted. Here, the stored public key of
the user the request was made from is used to match the
signature. If that verification was successful, the batch script
is decrypted, yielding a shell script that can be executed.

Within this script, an access token for the key manage-
ment is provided. This token is used in Step7 to retrieve
the keys needed to decrypt the data and container. Since by
design every legitimate job has to successfully retrieve keys
in order to be executed, the success is monitored and the job
is killed upon failure.

In Step8 the keys are used to decrypt the data and
container from the shared file system on the secure node.
Now, the intended job of the user can be executed within
the container. Using a container at this stage probably is

the easiest way to maintain a heterogeneous software stack
that is required to support the diverse processing steps.
As mentioned, the additional advantage here is, that the
container image itself can be encrypted and thus the integrity
can be ensured, since tampering is only possible if the key
is known. Furthermore, mounting all unsafe file systems per
default read-only into the container prevents an accidental
data leak, for instance by files that are temporarily written
by the program without the knowledge of the user.

4.3. Securing an OPA Fabric

Broadly, security is applied in two areas: (1) Partitioning
the job’s nodes from the other nodes in the cluster, and (2)
Securing the Fabric Manager (FM) from malicious interfer-
ence.

Partitioning: This prevents packets from an unsecured
node from reaching a secured node (and packets from a
secure node from leaking to an unsecured node).

Omni-Path (in common with Infiniband) uses a system
of Partition Keys (PKeys). PKeys are a mechanism used to
support Soft Partitions, which enable the creation of mul-
tiple, overlapping communication domains. Using PKeys,
we can run the secured nodes in a separate partition to the
other nodes of the HPC cluster. Within the configuration of
the Fabric Manager (FM), we can specify the partitions we
require, and the nodes that we want to be members of those
partitions.

The FM sends the PKeys over the fabric to the switches
and the adapters in the nodes. The FM updates the PKeys
whenever there is a change in the FM’s PKey configuration.
If the switch receives a packet for a node that does not have
the required PKey, it will block it. This is a very secure
system, implemented in the hardware of the switches and
adapters, and can only be controlled by the FM. The adapter

Nolte et al.: Preprint submitted to Elsevier

Page 6 of 18

Secure HPC

is logically split into a fabric side and a PCle side; the
PKeys are managed from the fabric side, so there is no
way that malicious code on the node can change the PKey
configuration of the adapter. Therefore, by using PKeys, we
can be sure that no unsecured node can send packets to a
secured node.

Because a node can be a member of more than one
partition (if it has been given more than one PKey), a user
needs to specify which PKey to use when running a service
that accesses the high-speed interconnect.

For example, to launch an MPI job on PKey 0x0012, the
user sets the PSM2_PKEY environment variable to 0x0012.

For the IP network interfaces typically used by storage
systems, a network interface device is configured for each
PKey that needs to be accessed. From within Linux, these
devices behave in the same way as Ethernet devices and each
will be configured on a different IP subnet. The network
interface running with the default PKey appears as the
familiar ibO, and an additional interface on PKey 0x0022
would appear as the device ib0.8022°.

Securing the FM. The FM provides the PKeys to the
switches and adapters in the fabric, it is necessary to prevent
it from becoming compromised or that some malicious
interference with the Fabric Manager can take place.

It is possible that a bad actor on the bare metal of an
unsecured node could bring up a competing FM. It would be
difficult to do this with predictable results, but the activity
could be disruptive. The FM’s traffic runs in the Admin
vFabric with its own PKey, and in a secure configuration,
only the FM node(s), identified by the hardware GUID of
its adapter card, are full members of this vFabric. Thus, any
FM-like activity from a node that has not been authorized
will be blocked.

Therefore, it is important that the FM node (and its
standby) are secured, meaning that only the most privileged
admin users are able to login to these nodes.

4.4. Isolating Compute Nodes

In order to be able to provide secure compute capacity,
an isolated node or subcluster is exclusively available to
an individual or group for an arbitrary amount of time.
These nodes have restrictive firewall settings, the running
administrative services are slimmed down, for instance, the
usual monitoring is deactivated, and no login capability, e.g.
via ssh, is available. Furthermore, the nodes need to reliably
boot a trustworthy operating system and must enforce that
only authorized users can access the node. This is done in
two steps: 1) Users can only submit jobs that are running in a
non-interactive mode, therefore they are required to submit a
batch script to the resource manager, and ii) this batch script
needs to be signed with a secret on the local system of the
user. This secret is a private key, which must never become
compromised. The matching public key is available on the
secure node to verify the authenticity of the submitted job.
Since this secret will never be uploaded to the HPC system,

5The 0x8000 bit is always set in the device name.

an attacker can’t get access to it and can’t submit jobs to a
secure node from a false uid.

Software that is usually provided via environment mod-
ules needs to be installed in the system image of the secure
node, since using these shared modules would mean import-
ing an untrusted codebase into the secure node.

4.5. Key Management System

The usage of the key management system should also
follow certain best practices. Although the depicted security
measures should be sufficient, it is favorable to use a one-
time token mechanism to retrieve the keys from the key
management system. If an attacker got their hands on a
token, with which the keys can be retrieved, the legitimate
request from the user will fail, because the token was already
used. Thus, it is immediately obvious that a security incident
took place. The token should be short-lived as well, to limit
the availability of the keys in the case that a job crashes
before the token could be used.

Additionally, we place a reverse proxy in front of the
key management system. Here, the received AP/ calls can
be filtered based on the source IP address. The goal is to
allow an upload of keys from anywhere, however, limit the
legitimate requests to retrieve keys via HTTP get to the
secure nodes.

5. Implementation of the Secure Workflow

The design and implementation were done with a mini-
mal number of assumptions so that it can be considered as
a blueprint for other systems with different requirements as
well. Based on the general design presented in Section 4, an
implementation was done on an HPC system at GWDG.

5.1. Key Management System

Vault® is used for the key management system (KMS). It
allows for the distribution of personal tokens to individual
users. With those, users can generate tokens with limited
permissions and a short, configurable lifetime. A response
wrapping is used on these tokens in order to enable single-
use tokens to access the deposited keys. In addition, the root
token can be reliably deactivated, preventing the root user
from spying on the user keys.
In front of Vault NGINX' with the ngx_http_geo_module is
deployed as a reverse proxy. It performs IP-address filtering
based on the http-verb in order to allow an upload of a key
from external systems but restricts the response for the key
retrieval to be only sent to a secure node.

5.2. Data and Software Management

Since most HPC applications expect a POSIX-IO com-
patible file system, Linux Unified Key Setup (LUKS) was
used to encrypt the data. These LUKS containers can be
mounted, if the decryption key is available, thus providing
the expected interface while transparently encrypting every-
thing written to that mount.

Shttps://www.vaultproject.io/
7https://www.nginx.com

Nolte et al.: Preprint submitted to Elsevier

Page 7 of 18

Secure HPC

vFabric | Full Members | Limited Members

General General
Secure Secure
Storage Storage General, Secure

Table 1
Partitions and their Members

In order to use encrypted containers, Singularity is used.
Similar to the native LUKS data containers, these encrypted
Singularity images are decrypted in kernel space as well.
This means they reside decrypted in the RAM of the host,
thus swapping needs to be deactivated on these secure nodes,
to prevent that sensitive data is written unencrypted onto
a non-volatile storage medium like a local SSD. By bind
mounting only the LUKS data containers into the Singularity
container, it is ensured that only encrypted write access is
possible from the container onto the file system.

5.3. Isolating a Secure OPA vFabric

The Omni-Path FM uses a concept of VirtualFabrics
(vFabrics) that can be used to create partitioned groups
of nodes and/or apply QoS to different classes of traffic.
In this discussion, we will focus on partitioning. When
used for partitioning, vFabrics use PKeys as the underlying
mechanism.

Nodes are assigned membership of partitions within the
configuration of the FM. Nodes can be Full Members or
Limited Members. Full Members can communicate with all
members, but Limited Members can only communicate with
Full Members. This feature is useful when nodes in different
partitions need access to the same shared resource.

This description is simplified to remove some of the site-
specifics configuration at GWDG.

e We create 3 DeviceGroups in the FM configuration:
General, Secure and Storage. These DeviceGroups
hold the identities of the relevant nodes.

e We create 3 vFabric partitions: General, Secure and
Storage which contain the corresponding Device-
Groups as Full Members.

e Additionally, we define the General and Secure De-
viceGroups to be Limited Members of the Storage
vFabric.

In this way, both General and Secure nodes can access the
Storage nodes, but General and Secure cannot access each
other. The Storage nodes must be secured in a similar way
as the FM node(s), as a bad actor on these nodes could get
access to the nodes in the Secure vFabric.

Note: Currently, the OPA FM is not able to implement
the Full/Limited functionality in the GWDG environment,
and so a workaround is required using only Full Member-
ship. The workaround provides the same protections but with
less flexibility, and will be removed when the functionality
is available.

5.4. Isolating a Secure Node

In order to isolate a secure node, the system image is
hardened. To prevent an attacker from login into that node, a
restrictive firewall configuration is used. In addition, suitable
services for accessing these nodes, like ssh, are turned off.
For all services which need to be listening on a specific
port, like the slurmd, only the IP address of the known
counterpart, like the node where the slurmctld is running
on, is reachable. In order to ensure these settings, a node
needs to directly boot into these restrictive configurations
and the image server, as well as the network which is used for
the PXE boot, need to be trusted. Therefore it is mandatory,
that an attacker can not reach the management nodes, and
particularly not the level 2 layer of the employed security
onion, which was outlined within the made assumptions.

In order to allow for secure inter node communication
via our Omni-Path Fabric, a secure vFabric (virtual Fabric)
has to be configured. It is important to disallow the ingestion
of management packages from any HFI port that is not
connected to the dedicated fabric managers. These fabric
managers also have to be located within the security onion
of the admin nodes. Additionally, the fabric manager needs
to be configured to quarantine nodes if they try to spoof their
identities, for instance in order to reach into a secure vFabric.

5.5. Submitting a Batch Job

In order to use encryption for the batch script, a 4096-bit
RSA (Rivest, Shamir and Adleman, 1978) key pair is created
in the system image, and the public key is shared with the
user. Since the scheduler might, like Slurm does, require a
valid bash-script to be submitted, a small workaround needs
to be used. The actual command, one wants to execute is
encrypted in a gpg® message and passed to a helper function
located on the secure node, as shown in, yielding a valid
bash-script and an effectively encrypted bash-script. Such a
batch script is shown with a shortened PGP message in the
following listing:

#!/bin/bash
/usr/bin/decrypt_and_execute <<EOF

hQIMASErHWKpRkmoAQ/+LyPQJORoQwC5UjgNgXPcebqVYXfqgdt1rPo
[...]
=cRKs

As previously discussed, the authenticity of the compute
request needs to be ensured on the secure node. In order to
do that, a detached signature of the batch script is created
on the local system of the user and is uploaded into the same
directory as the batch script (on the HPC system). When sub-
mitting the batch script to Slurm via the sbatch command,
the batch script is parsed and sent to the slurmctld. From
there it is copied to a secure node using a communication
channel between the slurmd on the secure node and the
slurmctld. After this is done, the slurmd starts executing the

8https:/gnupg.org/

Nolte et al.: Preprint submitted to Elsevier

Page 8 of 18

Secure HPC

job. However, before the just received and locally stored
bash-script is invoked, the Slurmd Prolog is executed. Since
this is the first piece of code that gets triggered to be
executed on the secure node, here the detached signature
the user-provided is compared to the local copy of the batch
script. Only when this detached signature matches, the user-
provided code starts to be executed. Upon failure, one can
choose to either cancel the job or quarantine the node.

After the batch script is decrypted, the resulting bash-
script is executed by the decrypt_and_execute method. Here,
the provided token is used to get the keys from Vault. These
keys are then briefly stored in a tmpfs to mount the LUKS
data containers and to execute the Singularity container.
Since any legitimate job will require at least two keys, one
for the Singularity container and one for the LUKS data
container, the successful retrieval of the keys is also mon-
itored and mandatory to continue the execution. The keys
used to mount the data on the secured node can be deleted
afterward. The key for the Singularity container, however,
needs to remain for the duration of the execution on the
node. Since only the LUKS data containers have a writable
bind mount within the Singularity containers, results can
only be stored there, thus enforcing compliance with data
security regulations per design. After the job has finished
or was killed by the resource manager Slurm, all mounted
LUKS data containers are unmounted and the stored key
for the Singularity container is deleted from the tmpfs. This
behavior can be enforced within the Slurm Epilog. In the end,
the user can download the LUKS output container, where the
results are stored for further inspection.

6. Extension for a Parallel Secure Workflow

The described secure workflow was so far only intended
for single node-jobs. When extending this approach to multi-
node jobs, which run for instance via MPI (Clarke, Glendin-
ning and Hempel, 1994), one is confronted with three dis-
tinct challenges. The first is to ensure secure communica-
tion between the nodes running the job. This was already
achieved by the previously presented secure OPA configu-
ration. The second challenge is the key distribution. Since
there might be multi-node jobs where the number of nodes
is not known before the job actually starts, or the orchestra-
tion across nodes is difficult and therefore error-prone, it is
advantageous to keep the general idea of single-use tokens
and distribute them the keys after the successful retrieval.
The third challenge is to provide suitable, encrypted parallel
I/0.

These aspects are discussed in the following.

6.1. Parallel Starter

In order to port our single-node approach to support
multi-node applications, we need to distribute the decryption
keys to all involved nodes in a secure manner. Since multi-
node support requires a secure network to allow for safe
MPI communication, one can reuse this network to safely
distribute the keys to all nodes. For this, a Parallel Starter
can be used, which is an MPI-capable program, where only

- ko e s |
Key Management
Server ?@

Figure 4: Schematic sketch of the parallel starter. Only the
process with Rank O uses the token from the KMS to retrieve
the keys. Afterwards the process with Rank 0 distributes the
keys to the other processes using the secured network.

the process with Rank O will access the single-use tokens to
receive the keys from the key management system. After-
ward, the process with Rank O uses a broadcast to distribute
the keys to all other processes, where then each process
needs to acquire a lock, like a node-local semaphore, for the
particular node they are located on. This process is depicted
in Figure 4. If multiple processes are running on a single
node, the first process that gets the lock will write the file to
the /keys path, which is a tmpfs, and initiates the mounting
of the encrypted data on the node. The other processes on
a shared node will skip this step. This ensures that on a
single node the keys are only written once to the /keys path
and no race condition occurs. Since this is a standalone
tool, it is completely independent of the used scheduler.
Alternatively, when using Slurm, one can also simply use
a srun -procs-per-node=1.

It is noteworthy, that there might be other, more specific
methods like the sbcast tool from Slurm. Although this can
be a full-fledged drop-in replacement, one needs to ensure
that the communication only takes place inside the secured
network. This is guaranteed if the node is properly isolated
as described in Section 5.4.

6.2. Creating and Managing a Secure Partition

A Secure Partition specifies an isolated sub-cluster
within the used HPC system. This sub-cluster is also man-
aged by the resource manager, e.g. Slurm, within a private
partition where only predefined users can submit to. In addi-
tion, the nodes which comprise the secure partition can com-
municate with each other over a high-speed interconnnect,
e.g. OPA. This is securely possible since the secure nodes
of a secure partition are all within a dedicated vFabric. This
means, that no traffic is being routed from an unsecure node
to a secure node, therefor enforcing network isolation of the
secure partition on the switch level. Of course, all of the
nodes in a secure partition are booted into the same secure
system image. In summary, all changes necessary to create
a secure partition can be done in software, rendering an
additional procurement unnecessary.
Since only software and configuration changes are neces-
sary, switching nodes from unsecure to secure operation can
be done dynamically to match the provided resources to the
actual demand. For this, a script can be executed on the
admin node which automatically changes the configuration
of the resource manager, the cluster manager, the fabric

Nolte et al.: Preprint submitted to Elsevier

Page 9 of 18

Secure HPC

manager, the reverse proxy settings on the key management
system to adjust the ip filtering of the http verb, and triggers
a reboot of the corresponding machine to boot it into the
secure/unsecure system image. Due to this high degree of
automation, the partitioning can be done quickly without
much effort by the administrators. The required time to
reconfigure a secure partition as described above is mainly
determined by the time a node needs to reboot.

6.3. Parallel Input/Output

The concurrent write access to a LUKS container from
multiple nodes is not possible by design and would corrupt
the file system. Read-only mounts are supported as they
prevent the modification of the file system, therefore, the
input containers could be mounted on all nodes.

We assume the amount of data to be written by the
application is unknown prior execution but can be bounded
(e.g. 10 GiB). Hence, a LUKS container with the maximum
expected size can be created as a file with holes and for-
matted’. Thus, the actual occupied capacity of the LUKS
container is small regardless of its size. For example, a
10 GiB container file formatted with ext4 requires 69 MiB of
space and 85 MiB if created with LUKS and then formatted
with ext4.

In the following, when we mention usability this refers
to the overall complexity introduced. We could provide tools
that automate and simplify the handling for any of these
cases, still some difficulty would remain for the application.

In order to support parallel write, there are various
design alternatives with individual advantages:

Single rank I/0O with an encrypted LUKS container
(SL). Only one rank in particular Rank 0 writes to a ded-
icated output container. Pros: the container could be auto-
matically created and mounted; no change of applications
with traditional (non-parallel I/O) is necessary; the output
container can be fetched by the user and directly be mounted.
Cons: It does not allow output from multiple nodes, hence
performance scalability is limited. This strategy is suitable
for small volumes of output.

Parallel 1/0 to independent LUKS containers (PIL).
Here, the ranks of each node write output to the node-
local LUKS containers. Pros: utilizes a parallel file systems
with the maximum performance and provides a node-local
metadata cache. Cons: usability, the number of containers
is dependent on the number of nodes - making it difficult
to gather and aggregate the results for the user. This may
require adjustment of the application and post-processing
toolchain. This strategy is useful for cases with demanding
I/O and a robust post-processing pipeline.

Parallel 1/0 to encrypted files with keys stored in a
LUKS container (PFKL) Each process writes the data
directly to the parallel file system but they encrypt each

9For example using the command $ dd if=/dev/zero of=/tmp/test
bs=1024 count=1 seek=$((1024x1024x10)).

file (individually). Practically, at program runtime, the pro-
cesses decide upon an encryption key and Rank O stores the
key for this file in the initially prepared LUKS container
where it can later be fetched by the user. A file might be
created collectively (requires coordination of the key) or
individually. Pros: individual keys for each file increase
security. Compatible with independent or shared files. Cons:
difficult to handle key retrieval in the post-processing and
data analysis. Either the I/O path or the application must
support encryption. This strategy is not advised due to the
introduced complexity.

Parallel 1/0 to encrypted files with pre-shared key
(PFSK) In this scenario, the user would embed a key into
the application or retrieve it from Vault that then is used
for the encryption of any created files. Pros: individual keys
for each file increase security. Compatible with independent
or shared files. Cons: the I/O path or the application must
support encryption. As the key is known by the user a-
priori, this strategy is superior to PFKL while integrating
the advantages of the other methods.

Parallel I/0 with an overlay file system with pre-shared
key (POSK) 1In this scenario, a user would start a MPI job,
where Rank 0 would fetch the key from Vault. This key is
then distributed across all nodes and an encrypted mount
is created on all compute nodes using a stacked crypto-
graphic file system like eCryptFS, GoCryptFS, EncFS'?, or
fscrypt!'!. Pros: easy way to provide a POSIX compliant file
system. No support of application needed. Minimal barrier
for the user. Cons: user must be cautious to not write files
unencrypted, i.e. to a wrong path!?. Parallel /O to a shared
file is not possible.

A qualitative comparison of the different methods is
given in Table 2. Compatibility refers to the support I/O
modes in the application and complexity to the overall setup
and resulting artifacts. PFSK is currently our favorite solu-
tion, however, to achieve optimal compatibility the transpar-
ent encryption in the I/O path or the utilized I/O library is
necessary. POSK is a good alternative but we need to spend
more time on it to prevent users to accidentally store data on
an unencrypted directory. Also modifications to the stacked
file system to support parallel I/O to a shared file must be
made.

Files with holes are a problem with ecryptfs, as a file
that is seeked beyond current EOF and written is completely
filled by ecryptfs.

7. Security Analysis

Based on the general design, presented in sec. 4, and
the actual implementation, presented in sec. 5, a concluding
assessment of possible attack scenarios along with their

10https://github.com/vgough/encfs

https://github.com/google/fscrypt

12This could be prevented (in the future) by only making the encrypted
mounts accessible.

Nolte et al.: Preprint submitted to Elsevier

Page 10 of 18

Secure HPC

Method ‘ Performance | Compatibility Usability | Complexity
SL - - + +
PIL + - - -

PFKL T + - -

PFSK ++ + + 0

POSK ¥ ¥ ++ +

Table 2

Comparison of different storage strategies

respective mitigation strategies presented before, is done in
this section.

7.1. Man-in-the-Middle attack

A man-in-the-middle attack can happen in this secure
workflow during the execution of Step 2, as shown in Fig-
ure 3. One can see, that on the one side, a man-in-the-middle
attack can happen during the communication with Vault.
This communication is done via the provided Rest API and
is secured via TLS.On the other side, an interception of
packages can also happen during the upload of data to the
HPC system. Here, data is secure since it was encrypted on
the client-side and the communication itself is guarded via
ssh.

In both cases, the attacker would end up with state-
of-the-art encrypted data, which can’t be used without the
corresponding decryption key. As presented, these are highly
guarded and only retrievable for authorized users. Thus,
access to the network infrastructure outside of the HPC
system can’t diminish the security of this workflow.

7.2. Privilege Escalation

A user only uploads encrypted data and encrypted Sin-
gularity containers, thus the attacker can neither gain access
to the decrypted data nor can the software environment
that accesses the data directly be compromised. The same
argument holds for the submitted batch scripts. These are
encrypted as well and thus ensure the confidentiality of the
token of the key management system.

As discussed, a root user can submit jobs from the uid of
a legitimate user. This can neither be prevented by the kernel
nor by the resource manager relying on the kernel. The
obvious mitigation would be a multi-factor authentication
which is prompted upon the submission of a batch script
by a trusted management server. This, however, needs to be
supported by the individual resource management software
in use. A resource manager independent way was presented
before, where the batch script needs to be signed by an
S/MIME certificate.

To summarize, a root user can neither get access to the
decrypted data, tamper with the software or system image,
and can not impersonate a user on the system.

7.3. IP-Spoofing

In order to prevent that an attacker can retrieve the keys
stored in Vault with a stolen token, Nginx was used as a
reverse proxy in front of Vault, in order to filter out GET
requests from an IP address, which is not a secure node. This

is configured on the key management system and to change
that, access to this system is required, including access to
the administrative network where the ssh port is available.
An attacker can, however, use a false source IP address and
mimic that the request was done from a secure node. Then,
Vault would send the requested keys but would do so to the
specified secure node. Thus an attacker would still need to
get access to such a hardened node.

7.4. User Operating Errors

Since the presented secure workflow has quite some
steps which a user has to execute correctly to ensure the
integrity of the processing, mistakes can happen and poten-
tially impair the security measures. In order to simplify the
application for a user, wrapper scripts are provided, which,
for instance, automatically create and mount LUKS contain-
ers on the local system of a user while using strong random
passwords. Furthermore, it is ensured, that the created keys
are only uploaded to our Vault instance, and not accidentally
on an untrusted system. Lastly, once a user has written
locally a batch script that is ready for submission, a script
can be used locally, to encrypt, sign, upload, and submit the
batch script.

7.5. Network Manipulations

Depending on the used high-speed interconnect, which
is typically used in HPC systems, like Omni-Path or Infini-
band, there are additional threats associated. In Section 5.4
it was discussed that a Omni-Path fabric can be securely
locked down to ensure reliable operation even in the case
of a privilege escalation on the connected, user-accessible
nodes.

8. Performance Analysis

In order to determine the performance costs when switch-
ing from the unsecured workflow depicted in Section 3.2 to
the secure workflow presented in Section 4 and Section 5,
different benchmarks have been done. These benchmarks
can be roughly divided into two distinct groups. One type
of benchmark is designed to quantify the static overhead as-
sociated with the secure workflow, while the other measures
the dynamic cost of the used encryption. The performance
measurements of the encryption is done once for a single
node with LUKS and once with multiple nodes on an
eCryptFS and GoCryptFS stacked filesystem. Since the
secure nodes are otherwise isolated, there are no additional
costs during compute.

8.1. Measuring Encryption Costs

Encryption and decryption take place during write and
read operations to a storage device, like a parallel file system.
In order to simulate different I/O patterns to get a better
understanding of the potential performance decrease, the
10500 (Kunkel, Bent, Lofstead and Markomanolis, 2016)
benchmark was used. The encryption was done with AES512
in the case of LUKS (Moh’d, Jararweh and Tawalbeh, 2011)
and with AES-256 in the case of eCryptFS and GoCryptFS.

Nolte et al.: Preprint submitted to Elsevier

Page 11 of 18

Secure HPC

Operation (unit) Performance
Encrypted \ Unencrypted
ior-easy-write [GiB/s] 0.6 2.8
mdtest-easy-write [KIOPS] 15.2 24.4
ior-hard-write [GiB/s] 0.06 0.01
mdtest-hard-write [KIOPS] 15.9 6.2
find [KIOPS] 270.8 211.8
ior-easy-read [GiB/s] 0.6 2.2
mdtest-easy-stat [kIOPS] 194.0 121.1
ior-hard-read [GiB/s] 0.3 0.4
mdtest-hard-stat [klOPS] 69.6 44.4
mdtest-easy-delete [klIOPS] 22.6 334
mdtest-hard-read [kKIOPS] 0.7 2.1
mdtest-hard-delete [kKIOPS] 17.8 35

Table 3
10500 results on BeeGFS

8.1.1. Performance Comparison on the Parallel File
System on a single node with LUKS

As discussed in Section 4, the typical use case for the
secure workflow is assumed to be that users upload their
encrypted data onto the shared parallel file system and only
decrypt them on the secure nodes. In order to measure the
performance costs, two different scenarios are benchmarked.
In the first case, an unsecured workflow is used, where
an unencrypted Singularity container executes the before
mentioned /0500 benchmark on a native bind mount on the
parallel file system. In the second case an encrypted LUKS
container, using cryptsetup, is mounted locally on the node
with a loopback device. The latter case represents the secure
workflow, therefore also an encrypted Singularity container
is used to perform the /0500 benchmark. Both container
images in these two benchmarks were created using the same
Recipe-file.

The benchmarks were done on a dedicated node of the
Scientific Compute Cluster hosted by GWDG. It features
an Intel Xeon Platinum 9242 CPU with 376G of DDR4
memory operating at 2934 MT/s and runs on an 3.70.0-
1160.36.2.el7.x86_64 Linux Kernel. The used filesystem
runs BeeGFS and has 4 metadata servers and 14 storage
servers. The node is connected to the BeegFS storage via
a 100 Gb/s OPA fabric.

Before the benchmarks has been started, 343G of the
376G available memory has been filled up and the swap was
deactivated. The LUKS container was opened via cryptsetup
2.3.3 and was mounted as an ext4 file system.

The results of the performed benchmarks are presented
in Table 3. The first observation here is, that the ior-easy-
write, which is sensible to streaming performance, reaches
in the encrypted case only & 23% of the bandwidth of
the unencrypted case. For the other operations it is much
harder to interpret these results correctly. The reason is,
that two concurrent effects which are close to impossible
to disentangle have a influence on the performance. The
first effect comes from the previously mentioned encryption
which is done by dm_crypt, which therefor leads to a de-
creased read/write performance when being flushed out of

the page cache. The second effect is, that the unencrypted
10500 run uses for its metadata operations the metadata
servers of the BeeGFS cluster. The encrypted 10500 run,
however, does (almost all) metadata operations on the local
node, since it has locally mounted an ext4 filesystem. For the
BeeGFS filesystem this LUKS container containing this ext4
filesystem is only one large file. The metadata operations,
which are primarily benchmarked in the different mdtest
runs, are therefor handled by the local node itself, not by the
metadata servers from the BeeGFS filesystem. This problem
becomes even greater when compairing the ior-hard runs,
since here 47008 Bytes are written/read/stat/deleted. During
the mdtest-easy runs no data is written, and during the
mdtest-hard runs only 3901 Bytes are written. Therefor,
it is tricky to directly compare the metadata performance
between those two runs.

In summary, one can observe a non-negligible perfor-
mance degradation, particularly during streaming 1O, when
compared to the unencrypted measurement. This can be seen
in the operations containing an easy.

8.1.2. Analysis of Cryptsetup

A recent analysis of the dm-crypt implementation found
that the different work queues used to enable asynchronous
processing of I/O requests can actually drastically slow done
performance. To circumvent this problem, dm-crypt can be
instructed to avoid a queuing of IO requests and execute
them synchronously. This feature was merged into the Linux
Kernel in version 5.9'3.

In order to further analyze the origin of the previously
observed performance difference between the encrypted and
the unencrypted use case, the kernel of the used node was
updated to the most recent version 5.16.3, and cryptsetup
2.4.3 was compiled from source. Since the clients for the
parallel file systems of the Scientific Compute Cluster do not
support newer kernel versions, the performance difference
could only be measured on the node. For this, a tmpfs was
used, which has the additional advantage of offering the
lowest latency and highest bandwidth. This means, that any
additional overhead can not be hidden by bottlenecks located
on the storage device. The file for the loopback device had a
size of 340G of the available 376G. In order to support the
vader BTL of OpenMPI (Gabriel, Fagg, Bosilca, Angskun,
Dongarra, Squyres, Sahay, Kambadur, Barrett, Lumsdaine
et al., 2004) additional 10G was provided in a tmpfs.

The results of these measurements can be seen in Table 4.
Since in both cases, i. e. the encrypted and the unencrypted
ones, a ext4 filesystem residing in RAM is mounted via a
loop back device. This means, that unlike in the case before,
here also the performance of the metadata operations can
be compared, since all deviations can be accounted to the
overhead of dm_crypt. One can see, that there are only slight
differences, however no clear trend can be recognized.

One important observation is that it can be confirmed
that using encrypted Singularity containers does not have

Bhttps://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit

/?7id=39d42fa96balb7d2544db3{8ed5da8tb0d5cb877

Nolte et al.: Preprint submitted to Elsevier

Page 12 of 18

Secure HPC

Operation [unit] Synchronous Asynchronous
10 Processes 1 Process 10 Processes ‘ 1 Process
Encrypted ‘ Unencrypted | Encrypted ‘ Unencrypted | Encrypted ‘ Unencrypted | Encrypted ‘ Unencrypted
ior-easy-write [GiB/s] 1.2 1.2 1.1 1.0 1.6 1.7 1.0 1.0
mdtest-easy-write [kIOPS] 111.7 1233 70.0 70.6 111.4 1115 69.0 69.0
ior-hard-write [GiB /s] 0.6 0.6 11 11 0.7 0.7 11 1.0
mdtest-hard-write [kKIOPS] 18.8 19.8 31.6 33.9 155 15.3 311 35.6
find [kIOPS] 3821.4 3858.6 1493.4 1460.7 7093.1 5847.2 1456.0 1490.6
ior-easy-read [GiB/s] 1.0 11 1.0 1.0 2.1 1.8 13 13
mdtest-easy-stat [kIOPS] 558.9 537.9 183.5 180.0 | 566.7 567.1 179.1 181.6
ior-hard-read [GiB/s] 13 13 1.4 15 1.9 1.9 1.5 15
mdtest-hard-stat [kIOPS] 391.7 4225 186.4 186.7 448.3 403.7 184.8 187.6
mdtest-easy-delete [kIOPS] 78.3 74.2 102.6 103.3 81.4 82.2 103.5 102.4
mdtest-hard-read [kIOPS] 188.0 180.7 48.5 49.2 213.8 209.3 45.7 46.2
mdtest-hard-delete [kIOPS] 64.9 62.4 75.3 79.4 63.2 60.7 78.6 73.7
Table 4

Results of the I0500 benchmark on an encrypted LUKS container residing in a tmpfs. The specification Encrypted and Unencrypted

refers to the Singularity container

Operation (unit) Performance
1 Process [10 Processes
ior-easy-write [GiB/s] 0.9 2.1
mdtest-easy-write [klIOPS] 68.9 131.0
ior-hard-write [GiB/s] 0.8 0.8
mdtest-hard-write [KIOPS] 324 30.8
find [KIOPS] 1391.2 5832.1
ior-easy-read [GiB/s] 2.1 2.6
mdtest-easy-stat [KIOPS] 180.3 584.3
ior-hard-read [GiB/s] 2.6 2.0
mdtest-hard-stat [klIOPS] 173.8 380.4
mdtest-easy-delete [kKIOPS] 98.7 72.4
mdtest-hard-read [kIOPS] 72.8 206.9
mdtest-hard-delete [kIOPS] 77.5 61.4

Table 5
10500 results on an ext4 mounted loopback device residing in
an tmpfs

any measurable performance impact at runtime. The second
observation is, that in this particular case one profits from
an asynchronous execution of the encrypted 10 operations
during parallelized execution with 10 processes. This can
clearly be seen in the highlighted cells containing the results
from the streaming intensive ior-easy-write and ior-easy-
read operations as well as in the ior-hard-read test. The
reason for this could be the use of loopback devices and
device mappers, which causes differences in the execution
of the IO requests at the block device level, when compared
to a natively encrypted block device, like a hard drive or an
SSD.

In order to estimate the actual encryption cost, a baseline
for an unencrypted scenario was measured, wherein the
exact similar setup of the same file was mounted as an ext4
file system with an loopback device without the usage of
cryptsetup. The results are shown in Table 5. By comparing
the performance increase when scaling from 1 process to 10,
there is still very limited scalability exhibited. The source for
this issue is assumed to lie within the usage of a loopback de-
vice. Comparing the results of the ior-easy-write, where by
far the most data is being written and therefore is mostly hit

by the cryptographic overhead one can see that by comparing
to the asynchronous test in Table 4 ~ 80% performance was
achieved. The achieved value of = 2.1 GiB/s is very close
to the value of ~ 2.3 GiB/s one obtains when running the
provided benchmark suite of cryptsetup.

In summary, one can clearly see a performance advan-
tage of newer Linux kernels, however, it was not possible
to replicate the advantage of synchronous cryptographic 10
execution on this system.

8.1.3. Performance Comparison on the Parallel File
System on multiple nodes with eCryptFS

In order to extend the secure workflow to multi-node
support, and to offer alternatives to LUKS, also filesystem-
level encryption is examined. For this eCryptFS was set up
on 10 nodes, which were otherwise identical to the system
described in Section 8.1.1. On these 10 nodes, the same di-
rectory on the shared parallel filesystems, i.e. the previously
described BeeGFS cluster, was mounted using the same
passphrase. The specified symmetric cipher is AES with an
32-byte key and activated filename encryption. Unlike the
OpenPGP standard, eCryptfs allows for random access in a
single file (Halcrow, 2005). To this end, eCryptFS breaks a
file into different distinct parts so called extents, which have
been encrypted with a cipher operating in block chaining
mode. Therefore, any read or write operation only requires
the entire extent to be decrypted, not the entire file. This
however also entails, that parallel IO of multiple processes
from multiple nodes needs to respect this offset which is
defined by the size of the extends. Unlike the case of an
unencrypted file system, it is not enough to define a non-
overlapping offset among all processes to ensure undisturbed
file access, but this non-overlapping needs to be ensured on
an extend level.

Therefore, the I0500 configuration needs to be adapted,
to accommodate this issue. Here, all shared file I/O was
disabled to ensure an undisturbed run.

The results of this reduced run are shown in Table 6.
One can see nearly linear scalability in streaming operations,
i.e. primarily ior-easy-write and ior-easy-read, when scaling

Nolte et al.: Preprint submitted to Elsevier

Page 13 of 18

Secure HPC

Operation (unit) eCryptFS GoCryptFS Native
Nodes, Procs. per Node 11] 110101 | 111101018010 || 1,1] 1,10 | 101 | 80,10
ior-easy-write [GiB/s] 0.4 15 3.4 0.2 1.6 1.6 6.0 1.4 3.8 3.8 9.2
mdtest-easy-write [kIOPS] 1.9 7.6 | 13.4 19 | 11.8 | 155 59.4 5 259 313 83.5
mdtest-hard-write [kIOPS] 1.7 27| 6.7 | 1.05 2| 57 7.8 2.4 5.1 75 | 120
find [kIOPS] 83.1 | 271.8 | 28.3 129 | 345 | 53.2 | 156.1 || 74.9 | 251.2 | 268.4 | 966.1
ior-easy-read [GiB/s] 0.4 15| 25 04| 14| 25 3.2 0.5 2 2.9 8.7
mdtest-easy-stat [KIOPS] | 20.5 | 98.3 | 4.6 || 10.6 30 | 84.1 | 374.1 || 15.4 | 124.4 | 137.8 | 392.7
mdtest-hard-stat [kKIOPS] | 20.6 | 56.8 2 9.1 93| 764 | 751 | 179 | 555 | 112.8 | 138.6
mdtest-easy-delete [kKIOPS] 5.1 88 | 1.9 31173 | 164 | 531 7.1 | 311 | 323 | 575
mdtest-hard-read [kIOPS] 0.2 21 12 03| 32| 25| 1138 0.4 2.1 24 | 238
mdtest-hard-delete [kIOPS] 4.4 3.6 1.2 23| 28 6 10.5 3.9 2.8 4.6 13.3

Table 6

10500 results of an eCryptFS layer on top of a BeeGFS cluster compared to a native BeeGFS mount.

from 1 node to 10. Please note, that in Table 6 the ior-easy-
write for one process on one node was rounded up from 0.35
GiB/s.

When comparing the performance of the eCryptFS
stacked filesystem against the native BeeGFS mount, one
can see a performance drop of 75% when comparing the
performance of the ior-easy-write for a single process on
a single node. However, when scaling out to 10 processes
on a single node, this difference was already reduced to
a 60% performance drop. When using 1 process per node
and 10 nodes the performance difference is reduced further
to 8% performance penalty. These values are obtained by
dividing the unrounded values from the eCryptFS rows with
the matching ones from the Native table. The rather constant
performance difference in the mdtest-easy-write comes from
the mismatch of the 3901 Byte write operation compared
to the size of an extent, since always the entire needs to
be processed for the block-cipher. Since there is a slightly
higher performance drop when there are 10 processes on a
single node, there might also be the effect of shared, and
stacked caches, as described by Wang, Wen, Kong and Yi
(2012). Similar arguments hold for the reverse operation,
i.e. the read.

8.1.4. Performance Comparison on the Parallel File
System on multiple nodes with GoCryptFS

GoCryptFS also provides file-based encryption based on
a FUSE filesystem and was inspired by EncFS. It encrypts
files using AES-256. Similar to eCryptFS, it also splits a file
up into individual blocks of 4KiB in size and generates a
128-bit Initialization Vector. Additionally, filenames are also
encrypted using AES-256. Analog to the previous analysis in
Section 8.1.3, the IO500 benchmark was run with 1 process
on a node, with 10 processes on a node, with 1 process, and
10 nodes, and with 10 processes on 80 nodes.

Comparing the performance of eCryptFS with GoCryptFS
one can see a clear advantage of eCryptFS when comparing
the scaling from one node to ten nodes. Here, the single
process and the multi-node ior-easy-write performance
is twice as large, while the saturation on a single node
with multiple processes is similar. However, GoCryptFS
exhibits still scalability when extending from 10 nodes to 80.

Although it can not catch up to the performance of the native
BeeGFS mount, it performance reasonable results with two
thirds of the native performance, while still having a more
predictable behaviour when scaling since it does not depend
on the process idstribution on the different nodes as much as
eCryptFS does.

When comparing the small file IO performance, e.g.
mdtest-easy-write with the native BeeGFS client in Ta-
ble 6 one can see again the performance drop caused by
a mixture of the mismatch of the 3901 Byte which gets
written compared to the block size of 4096 Bytes of a single
block and the general encryption overhead. The first has the
effect, that after the first file of 3901 Bytes, always an entire
block, in total 4096 Bytes, needs to be first read or written
by the filesystem and afterward need to be decrypted and
encrypted.

8.2. Measuring the Static Overhead

In order to determine the static overhead of this secure
workflow, a node was booted into the secure image and
the workflow was executed 1000 times. The static overhead
contains the verification of the signature and the consecutive
decryption of the batch script, the retrieval of the keys from
Vault, the mounting, umounting of the LUKS containers,
decrypting and starting the Singularity container, and the
deletion of the keys residing in memory. The reference job
is executing sleep 10 on bare metal as baseline and within
an encrypted singularity container for the secure workflow
measurements, and the complete wall clock time was mea-
sured with time. This job was submitted 1000 times with the
normal workflow discussed in Section 3.2 and 1000 times
with the secure workflow as implemented in Section 5. For
each job, 3 keys had to be retrieved, one for the Singularity
container, one for the LUKS container with the input data,
and another one to store the output data in. Both LUKS
containers have a size of 20 GB. The batch script, which
needs to be decrypted, has a size of 544 bytes unencrypted.
The result of the benchmark is obtained by subtracting the
average amount of the 1000 normal submissions from the
individual wallclock time spent in the secure submission.
The resulting distribution is shown in Figure 5. One can
see that it follows a normal distribution with an expectation

Nolte et al.: Preprint submitted to Elsevier

Page 14 of 18

Secure HPC

Overhead of the Secure Workflow

—— Gaussian fit
——=- 3-sigma interval
——- Mean at 6.626 s
B Experiment

60 -

50 A

40 4

30 A

Occurence

20 A

10 1

6.56 6.58 6.60 6.62 664 666 668 6.70
Seconds

Figure 5: Distribution of the individual static overhead mea-
surements of the secure workflow when compared to the same
job executed with the normal workflow.

value at 6.63 s and a 3 sigma limit of & 0.04 s. This overhead
is negligible compared to a typical runtime of 10s of minutes
to several hours.

9. User Story

This section describes a real use case, where the se-
cure workflow was used. The intent is to further illustrate
a concrete setup of an end-to-end secure workflow, with
a particular focus on the client machine, and to compare
the performance of the secure workflow with a bare metal
system on a real use case and hereby offer additional inside
into its applicability compared to the synthetic IO500 bench-
mark. For this a machine learning use case was chosen, since
those are typically heavily relying on IO performance. This
use case resembles the case discussed in Section 8.1.1, where
in the naive setup without any optimizations a performance
drop of & 75% in streaming performance was observed.

9.1. General Description

In order to compare the secure workflow introduced
in Section 4 to an unsecured workflow as described in
Section 3.2, we evaluate their performance using a typical
example from life science. We choose the task of sleep
stage assessment by analysis of nocturnal polysomnography
(PSG) data. This data is acquired in sleep laboratories and
is inspected usually by medical experts who divide the data
into epochs of 30 seconds and assign a class to each epoch
depending on the depth of sleep (Berry, Brooks, Gamaldo,
Harding, Lloyd, Marcus and Vaughn, 2015). Due to the large
amounts of data this is a tedious and costly task, and —
although the sleep classifications are indented to provide an
objective assessment — there is still room for subjective inter-
pretation (Zhang, Dong, Kantelhardt, Li, Zhao, Garcia, Glos,
Penzel and Han, 2015). This raised the interest in developing
algorithms for faster and more objective classification.

PSG recordings recordings typically include different
biosignals such as electroencephalography (EEG), elec-
trooculography (EOG), electromyography (EMG), and elec-
trocardiography (ECG) which are measured continuously.
These signals not only contain information about the pa-
tient’s health status but can also be used to identify him/her
(Biel, Pettersson, Philipson and Wide, 2001) (Wang, Hu and
Abbass, 2020) which makes the protection of this data highly
relevant.

For our experiment, we use data of the SIESTA project
(Klosh, Kemp, Penzel, Schlogl, Rappelsberger, Trenker,
Gruber, Zeithofer, Saletu, Herrmann, Himanen, Kunz, Bar-
banoj, Roschke, Varri and Dorffner, 2001) which includes
recordings of 98 patients with sleep disorders (e.g. sleep
apnea, periodic limb movement syndrome) and 194 healthy
controls. The data was recorded in different European sleep
laboratories and is stored European Data Format (EDF) with
atotal file size of 104 Gigabytes. We randomly pick 100 EDF
files for analysis.

Sleep stages classification is performed using the pre-
trained “Stanford Stages” algorithm (Stephansen, Olesen,
Olsen, Ambati, Leary, Moore, Carrillo, Lin, Han, Yan, Sun,
Dauvilliers, Scholz, Barateau, Hogl, Stefani, Hong, Kim,
Pizza, Plazzi, Vandi, Antelmi, Perrin, Kuna, Schweitzer,
Kushida, Peppard, Sorensen, Jennum and Mignot, 2018)
which consists of three independent convolution neural net-
works for EEG, EOG, and EMG data which are jointly fed
into a long short-term memory network. The final output
layer assigns the labels “wake”, ”Stage 1 sleep”, ’Stage 2
sleep”, “’Stage 3/4 sleep”, “Rapid eye movement (REM)
sleep”, or "Unscored” to 15 second intervals. This algorithm
was pre-trained on multiple thousands PSGs stemming from
12 different sleep centers in diverse recording environments
and following different protocols.

We use the source code of the master branch!“, ap-
ply conda for installing dependencies as described in the
README file, and define a custom JSON file containing our
configuration. The algorithm processes each EDF file sepa-
rately and generates a visual output termed “hypnodensity
plot” showing time on the x- and probability of each class
on the y-axis. Fig. 6 shows this visualization exemplary for
one night (7.5h) of a single patient. The y-axis shows the
probability distribution per sleep stage and thereby allows to
assess the certainty of the algorithm: Columns with constant
colors (stages) depict time ranges where the algorithm has
a high certainty and the more colors (stages) there are in a
column, the lower the certainty. A higher level of uncertainty
can typically be observed in transition between stages and
is also present when medical experts annotate data. For the
data depicted in Fig. 6, typical patterns of sleep become
visible with phases of deep sleep in the first half of the night,
more often REM sleep in the second half of the night, and
phases of brief awakenings in the early morning.

I4https ://github.com/Stanford-STAGES/stanford-stages

Nolte et al.: Preprint submitted to Elsevier

Page 15 of 18

https://github.com/Stanford-STAGES/stanford-stages

Secure HPC

9.2. Setup of the Secure Workflow

For illustration purposes and reproducibility, we provide

the code of this use case in our GitHub repository 1. As
shown in Figure 3, the starting point of the secure workflow
is a safe client machine. In this particular setup a virtual
machine (VM) in an OpenStack environment (Sefraoui,
Aissaoui, Eleuldj et al., 2012) was used to simulate this
client machine. Once the described input data is copied into
a LUKS container using a provided helper script, this LUKS
container can be uploaded to a specific path in the user’s
scratch space. An additional empty LUKS container for the
output data is created and uploaded. The two keys remain se-
curely on the local VM. A completely analogous procedure
is followed with the encrypted Singularity container, which
is built once and is then uploaded into the user’s home.
The remainder of the secure workflow is processed by a fully
automated script. The job-specific commands, i.e. the gen-
eralized batch script that should be executed on the HPC sys-
tems, are written into a single file called command. sh. template.
After this job-specific file has been written, the automated
secure workflow script can be executed. Here, command. sh is
created as a copy of the template. Then the keys are uploaded
and the necessary single-use tokens are generated in Vault,
which are then automatically inserted into the command.sh
using sed. Afterwards the command. sh script is encrypted and
copied into a run.sh as shown in Section 5.5. Lastly, using
gpg —detach-sign a detached signature is created and stored
as run.sh.sig. Both files, run.sh and run.sh.sig are copied
to the HPC system into the same folder, which must be
readable for root. Since Slurm is used in this particular use
case, sbatch was used to submit the job to a secure partition.
After the job is finished, the output LUKS container is
downloaded to the secure client machine, in this case, the
beforementioned VM, using scp and the LUKS container is
mounted locally to get access to the data.

It should be mentioned, that the creation of the input data
LUKS container was not part of this fully automated process,
since the job was run on the same input data multiple
times. Generally, the creation and uploading of the input
data container can be part of this automated script to offer
a complete end-to-end secure processing pipeline.

9.3. Results

Fig. 7 shows a comparison of run times when using an
unsecured workflow (max: 302s, min: 208s, median:213.5)
vs. the secure workflow (max: 338s, min: 212s, median:220).
Run time was measured using differences in time stamps of
the hyponedensity plots. As can be seen, results are bimodal
with two clusters with the majority of run times being in
the first within the interval 208 — 250s. The second cluster
begins at around 300s and represents larger EDF files due to
longer night sleep. In 79% the secure workflow has a longer
run time, in 4% it is equal, and in 17% the secure workflow
is faster than the insecure one. This is a clear indication, that
the runtime of at least 40% of all runs is so close to each other
that statistical fluctuations of the system performance are the

15https ://github.com/gwdg/secure-hpc

Frequency [%]

1.0 7

0.8 4

0.6 4

0.4

‘
|
+
ml

1250 1500 1750

0.2 4

o

o

| A\f’

i

Figure 6: Resulting hypnodensity plot for a single night
with values on the x-axis representing 15s windows. Stages
are "wake” (white), "Stage 1 sleep” (pink), "Stage 2 sleep”
(turquoise), "Stage 3/4 sleep” (blue), "REM sleep” (green).

o

- —
500 750

1000

30
I Unsecure Workflow
[Secure Workflow

25

20

15

10

0 I .

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
Processing Time [s]

Figure 7: Distribution of the running times when processing
single nights for sleep stage classification using the secure
workflow compared to the insecure workflow.

dominating factor, not the overhead of the secure workflow.
When comparing the medians one can see that the secure
workflow takes =~ 3% longer than the insecure workflow.
Considering that the secure workflow enables the pro-
cessing of sensitive data and therefore creates the opportu-
nity to reuse a shared and existing HPC cluster for analysis
of patient data which — due to privacy constraints — would
be impossible otherwise, a 3% performance drop seems fair.

10. Discussion & Future Work

In conclusion, a secure workflow for HPC systems is
presented which enables the processing of sensitive data
on an existing, untrusted system. This presented workflow
can serve as a blueprint for other systems. An in-depth
security analysis is discussed based on our actual implemen-
tation at GWDG. Extensive benchmarking of three different
cryptographic software stacks is done, clearly revealing the
cryptographic cost. Then the worst-case scenario is used
to showcase an end-to-end automated workflow performing
on automatic sleep stage scoring using machine learning.

Nolte et al.: Preprint submitted to Elsevier

Page 16 of 18

https://github.com/gwdg/secure-hpc

Secure HPC

Here 97% efficiency was reached on average, highlighting
the applicability of the presented work.

In future work, we want to look closer at the discussed
TEE. The current solutions require a reboot and dedicated
public/private keys for each individual group working with
sensitive data. Although a privilege escalation is still pos-
sible by a member of these groups, this person can only
gain access to data already available to him/her. Using TEEs
would additionally shield independent processes from each
other and could potentially allow to share a node between
groups.

On the other side, one needs to closely evaluate the
cryptographic costs caused by the need for encryption. As
soon as all required file system clients are available for
newer kernels, the impact on the BeeGF'S performance will
be tested. Additionally, the performance costs of loopback
devices should be further analyzed.

Lastly, only a reduced subset of the IO500 benchmark
could be run, due to the mismatch of the random access offset
and the size of the blocks/extends in eCryptFS/GoCryptFS.
Here, some work needs to be done on these stacked file
systems to enable parallel IO to shared files and thereby
offering the full capabilities of the underlying parallel file
systems.

Acknowledgements

We gratefully acknowledge funding by the “Niedersachsis-
ches Vorab” funding line of the Volkswagen Foundation
and “Nationales Hochleistungsrechnen” (NHR), a network
of computing centers in Germany to provide computing
capacity and promote methodological skills.

References

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C.,
Lind, J., Muthukumaran, D., O’keeffe, D., Stillwell, M.L., et al.,
2016. {SCONE}: Secure linux containers with intel {SGX}, in: 12th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16), pp. 689-703.

Bauer, M., 2006. Paranoid penguin: an introduction to novell apparmor.
Linux Journal 2006, 13.

Berry, R.B., Brooks, R., Gamaldo, C.E., Harding, S.M., Lloyd, R.M.,
Marcus, C.L., Vaughn, B.V., 2015. The AASM Manual for the Scoring
of Sleep and Associated Events: Rules, Terminology and Technical
Specifications. Illinois: American Academy of Sleep Medicine.

Biel, L., Pettersson, O., Philipson, L., Wide, P., 2001. Ecg analysis: a new
approach in human identification. IEEE Transactions on Instrumentation
and Measurement 50, 808—-812.

Birrittella, M.S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T., Rimmer,
T., Underwood, K.D., Zak, R.C., 2015. Intel® omni-path architecture:
Enabling scalable, high performance fabrics, in: 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, IEEE. pp. 1-9.

Braam, P., 2019. The lustre storage architecture. arXiv preprint
arXiv:1903.01955 .

Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, N., Kaashoek, M.F.,
2011. Linux kernel vulnerabilities: State-of-the-art defenses and open
problems, in: Proceedings of the Second Asia-Pacific Workshop on
Systems, pp. 1-5.

Christopher, J., Jung, G., Doane, C., 2019. Making it more secure: The tech-
nical and social challenges of expanding the functionality of an existing
hpc cluster to meet university and federal data security requirements,

in: Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (learning), pp. 1-5.

Clarke, L., Glendinning, I., Hempel, R., 1994. The mpi message passing
interface standard, in: Programming environments for massively parallel
distributed systems. Springer, pp. 213-218.

Coman Schmid, D., Crameri, K., Oesterle, S., Rinn, B., Sengstag, T.,
Stockinger, H., 2020. Sphn-the biomedit network: A secure it platform
for research with sensitive human data. Digital Personalized Health and
Medicine 270, 1170-1174.

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres,
J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al., 2004.
Open mpi: Goals, concept, and design of a next generation mpi im-
plementation, in: European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, Springer. pp. 97-104.

Gamblin, T., LeGendre, M., Collette, M.R., Lee, G.L., Moody, A.,
De Supinski, B.R., Futral, S., 2015. The spack package manager:
bringing order to hpc software chaos, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-12.

Halcrow, M.A., 2005. ecryptfs: An enterprise-class encrypted filesystem
for linux, in: Proceedings of the 2005 Linux Symposium, pp. 201-218.

Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock,
T., Knoll, F., 2018. Learning a variational network for reconstruction of
accelerated mri data. Magnetic resonance in medicine 79, 3055-3071.

Herold, F., Breuner, S., Heichler, J., 2014. An introduction to beegfs.

Jattke, P., van der Veen, V., Frigo, P., Gunter, S., Razavi, K., . Blacksmith:
Scalable rowhammering in the frequency domain .

Karns, D., Protin, K., Wolf, J., 2012. iSSH v. Auditd: Intrusion Detection in
High Performance Computing. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

Klosh, G., Kemp, B., Penzel, T., Schlogl, A., Rappelsberger, P., Trenker,
E., Gruber, G., Zeithofer, J., Saletu, B., Herrmann, W., Himanen, S.,
Kunz, D., Barbanoj, M., Roschke, J., Varri, A., Dorffner, G., 2001. The
siesta project polygraphic and clinical database. IEEE Engineering in
Medicine and Biology Magazine 20, 51-57. doi:10.1109/51.932725.

Kunkel, J., Bent, J., Lofstead, J., Markomanolis, G.S., 2016. Establishing
the i0-500 benchmark. White Paper .

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: Scientific
containers for mobility of compute. PloS one 12, €0177459.

Lee, D., Kohlbrenner, D., Shinde, S., Asanovi¢, K., Song, D., 2020.
Keystone: An open framework for architecting trusted execution en-
vironments, in: Proceedings of the Fifteenth European Conference on
Computer Systems, pp. 1-16.

McKeen, F., Alexandrovich, 1., Anati, I., Caspi, D., Johnson, S., Leslie-
Hurd, R., Rozas, C., 2016. Intel® software guard extensions (intel®
sgx) support for dynamic memory management inside an enclave, in:
Proceedings of the Hardware and Architectural Support for Security and
Privacy 2016, pp. 1-9.

McLay, R., Schulz, K.W., Barth, W.L., Minyard, T., 2011. Best practices for
the deployment and management of production hpc clusters, in: SC’11:
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE. pp. 1-11.

Miller, S.P., Neuman, B.C., Schiller, J.I., Saltzer, J.H., 1988. Kerberos
authentication and authorization system, in: In Project Athena Technical
Plan, Citeseer.

Moh’d, A., Jararweh, Y., Tawalbeh, L., 2011. Aes-512: 512-bit advanced
encryption standard algorithm design and evaluation, in: 2011 7th In-
ternational Conference on Information Assurance and Security (IAS),
IEEE. pp. 292-297.

Nolte, H., Sarmiento, S., Ehlers, T., Kunkel, J., 2022. A secure workflow
for shared hpc systems, in: 22nd International Symposium on Cluster,
Cloud and Internet Computing (CCGrid).

Pfister, G.F., 2001. An introduction to the infiniband architecture. High
performance mass storage and parallel I/0 42, 10.

Rivest, R.L., Shamir, A., Adleman, L., 1978. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM
21, 120-126.

Nolte et al.: Preprint submitted to Elsevier

Page 17 of 18

http://dx.doi.org/10.1109/51.932725

Secure HPC

Scheerman, M., Zarrabi, N., Kruiten, M., Mogé, M., Voort, L., Langedijk,
A., Schoonhoven, R., Emery, T., 2021. Secure platform for processing
sensitive data on shared hpc systems. arXiv preprint arXiv:2103.14679

Sefraoui, O., Aissaoui, M., Eleuldj, M., et al., 2012. Openstack: toward
an open-source solution for cloud computing. International Journal of
Computer Applications 55, 38-42.

Smalley, S., Vance, C., Salamon, W., 2001. Implementing selinux as a linux
security module. NAI Labs Report 1, 139.

Smith, A., Riley, J., Syed, M., Kupcevic, M., Edmon, P., Yockel, S.,
2019. Exploring untrusted distributed storage for high performance
computing, in: Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), pp. 1-6.

Stephansen, J.B., Olesen, A.N., Olsen, M., Ambati, A., Leary, E.B., Moore,
H.E., Carrillo, O., Lin, L., Han, F., Yan, H., Sun, Y.L., Dauvilliers,
Y., Scholz, S., Barateau, L., Hogl, B., Stefani, A., Hong, S.C., Kim,
T.W., Pizza, F., Plazzi, G., Vandi, S., Antelmi, E., Perrin, D., Kuna,
S.T., Schweitzer, P.K., Kushida, C., Peppard, P.E., Sorensen, H.B.D.,
Jennum, P., Mignot, E., 2018. Neural network analysis of sleep stages
enables efficient diagnosis of narcolepsy. Nature Communications 9.
doi:10.1038/541467-018-07229-3.

Tsai, C.C., Porter, D.E., Vij, M., 2017. Graphene-sgx: A practical library
{OS} for unmodified applications on {SGX}, in: 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), pp. 645-658.

Uecker, M., Ong, F., Tamir, J.I., Bahri, D., Virtue, P., Cheng,J.Y., Zhang, T.,
Lustig, M., 2015. Berkeley advanced reconstruction toolbox, in: Proc.
Intl. Soc. Mag. Reson. Med.

Wang, L., Wen, Y., Kong, J., Yi, X., 2012. Optimizing ecryptfs for better
performance and security, in: Linux Symposium, Citeseer. p. 137.

Wang, M., Hu, J., Abbass, H.A., 2020. Brainprint: Eeg biometric identifica-
tion based on analyzing brain connectivity graphs. Pattern Recognition
105, 107381.

Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C., 2006.
Ceph: A scalable, high-performance distributed file system, in: Proceed-
ings of the 7th symposium on Operating systems design and implemen-
tation, pp. 307-320.

Yoo, A.B., Jette, M.A., Grondona, M., 2003. Slurm: Simple linux utility
for resource management, in: Workshop on job scheduling strategies for
parallel processing, Springer. pp. 44—60.

Zhang, X., Dong, X., Kantelhardt, J., Li, J., Zhao, L., Garcia, C., Glos,
M., Penzel, T., Han, F., 2015. Process and outcome for international
reliability in sleep scoring. Sleep and Breathing 19, 191-5.

Nolte et al.: Preprint submitted to Elsevier

Page 18 of 18

http://dx.doi.org/10.1038/s41467-018-07229-3

