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ABSTRACT
DECICE is a Horizon Europe project that is developing an AI-

enabled open and portable management framework for automatic

and adaptive optimization and deployment of applications in com-

puting continuum encompassing from IoT sensors on the Edge to

large-scale Cloud / HPC computing infrastructures. In this paper,

we describe the DECICE framework and architecture. Furthermore,

we highlight use-cases for framework evaluation: intelligent traffic

intersection, magnetic resonance imaging, and emergency response.
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1 INTRODUCTION
In the past decade, cloud computing has revolutionized computing

by providing services over the Internet that can scale elastically

for user requirements. The economics of scale have resulted in

powerful computing and storage resources being provided at re-

duced costs. Furthermore, fault tolerance mechanism including

replication allow to significantly enhance availability of services

deployed in the cloud. Moreover, various application areas includ-

ing smart home, smart city, or industrial automation come with

needs that require computing services to be deployed closer to the

end-user. Edge computing complements cloud computing by plac-

ing compute resources at the edge of the network [8]. It also allows

for connecting Internet of things devices that utilize alternative

wireless protocols such as LoRaWAN.

While cloud and edge computing do share some characteristics,

there are also characteristics and features thatmake edge computing

unique. Placing computational resources in the proximity of users
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or data sources reduces latency and data transport and can even

prevent shipping of sensitive data. The trend of placing computing

resources outside of the data center has resulted in the emergence

of the term compute continuum (or cloud continuum) [14]. Having

a continuum of resources available from the network edge (and

beyond) to cloud and HPC data centers has attracted increased

interest, also in the European context [5]. The emergence of a

compute continuum is of particular interest for workflows that

extend beyond the data center and have to leverage services that

provide access to distributed edge, cloud, and HPC resources across

federated infrastructures.

Due to inter-dependencies between distributed components and

the potentially high level of heterogeneity of the compute, storage,

and network resources, the scheduling of these resources becomes

a huge challenge [3]. The problem of finding the optimal sched-

uling decisions may be NP-complete. Moreover, dynamic factors

such as faults, changing network capabilities and system topolo-

gies require constant monitoring and automatic adjustments to the

placement of processes and data such that the manual creation of

good static assignments of processes to hardware becomes infeasi-

ble. To overcome these challenges, we believe that new approaches

are necessary that include the utilization of AI methods to facili-

tate timely resource allocation decisions for complex systems with

thousands of nodes.

In this paper, we describe DECICE project [9] that is developing

an AI-based, open, and portable cloud management framework for

automatic and adaptive optimization and deployment of applica-

tions in a compute continuum. The framework relies on holistic

monitoring to construct a digital twin of the system that reflects

all components and characteristics of the system. This digital twin

will supply schedulers with information such that scheduling de-

cisions for dynamic load balancing and data placements can be

reached. This will lead to improved throughput and reduced re-

source consumption. The framework’s prototype will be integrated

into Kubernetes, which is the most popular solution for orchestrat-

ing containers in the cloud. Kubernetes itself has no built-in support

for edge computing. For this, DECICE relies on an extension of Ku-

bernetes that is called KubeEdge [15] and allows for transparently

integrating edge nodes in the main cluster. Furthermore, to support

HPC-like batch job execution in Kubernetes [10] the prototype

will explore the utilization of technology such as Volcano [4]. The

DECICE project is working towards the following:

• Development of a cloud management framework based on

open source and standards, which can seamlessly connect

and deploy applications to devices across HPC, cloud and

edge continuums.

• Providing system administration and DevOps tools to access,

control and manage the continuous service environment
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that includes the deployment of network, computing, data

infrastructures and services.

• Creating a dynamic digital twin for heterogeneous infras-

tructure by supplying relevant data via monitoring systems

such that it can enable simulations and AI-based forecasting.

• Enhance application performance, reliability, throughput,

energy efficiency and cost by automating decisions for ap-

plication scheduling with the help of AI models.

The rest of this paper is structured as follows. Section 2 provides

context information. An overview of DECICE framework is pro-

vided in Section 3. Section 4 describes the architecture. The strategy

for evaluating the DECICE via use-cases is described in Section 5.

Section 6 concludes the paper.

2 CONTEXT
For the rise of cloud computing, the ability to provide virtualized re-

sources has been critical. Beyond virtual machines, containers have

become a widely used technologies with Kubernetes being the de

facto orchestration platform for managing execution of containers

at scale. Kubernetes is an open source container orchestration plat-

form that is able to dynamically handle containerized workloads

across thousands of nodes by assigning resources and virtualizing

networks. One of the major reasons for the widespread usage of Ku-

bernetes is its adaptability, which enables anyone to extend, replace

and remove various parts of these systems.

Before the times of cloud computing and container orchestra-

tion solutions, scaling resources available to a service required

proprietary solutions for integrating load balancing capabilities

and adding additional servers. Such approaches had various short-

comings as it was hard to roll out application updates or to dynam-

ically react to sudden bursts in service requests.

The virtualization offered by containers simplifies orchestration

systems like Kubernetes the choice of the physical machine for

running the service as long as it provides enough resources. This

works well for data centers with homogeneous hardware and fast

and stable networks. This situation changes in an environment

with different types of hardware as it is typically the case when

including edge devices.

Another challenge is that Kubernetes has been designed for

cloud computing data centers and not for distributed environ-

ments involving edge devices. This challenge has been addressed

by KubeEdge [15], which extends Kubernetes such that it is able to

use edge devices. The key features of KubeEdge are its lightweight

Kubernetes installation for less powerful edge devices and a pull-

based network infrastructure. Via this network infrastructure, edge

devices can appear as regular nodes on Kubernetes. A key feature

of KubeEdge is an implementation of OSI network protocol layers

that enables connecting edge devices and cloud servers within one

virtual network.

With edge devices being added, the underlying set of hardware

resources becomes heterogeneous and, therefore, scheduling of

resources significantly more complex. Scheduling refers here to

algorithms that allow – based on the current state of available re-

source utilization – to decide on where to place a new container. To

the best of our knowledge there are currently no solutions available

to address the resulting scheduling challenges and to, e.g., decide

on whether to execute containers on cloud or edge nodes. For this,

the specific hardware characteristics of the available edge nodes

as well as the current network connectivity need to be taken into

account.

Container scheduling is an active research field with various

techniques being explored. Ahmad et al. [1] classifies scheduling

techniques into one of four categories: (1) Mathematical modeling

techniques, (2) heuristic techniques, (3) meta-heuristics techniques

and (4) machine-learning techniques.

Mathematical techniques provide a mathematical description

of an optimization problem that must be solved taking a set of

constraints under account. Integer linear programming is a widely

used technique. A typical challenge with such techniques is that

they become too complex for large-scale systems and take too

long to solve. Heuristic techniques are generally scalable and fast,

however, there is no guarantee for good scheduling decisions.

Meta-heuristic and machine-learning techniques have generally

become generally popular for optimization problems related to

parallel computing systems (see [13] for a recent survey). Meta-

heuristic techniques are based on search strategies for finding good

but not necessary optimal solutions for a given optimization prob-

lem. Typically nature-inspired algorithms are used [6].

Machine-learning techniques train a model using data collected

in a given context. These models later allow to make scheduling

decisions based on what has been learned earlier, for instance by

using the model for making predictions about the number of needed

containers [11].

For DECICE it is planned to use machine-learning techniques for

anomaly detection. Such techniques have already been successfully

used for HPC systems (see, e.g., [2]). Furthermore, such techniques

have been used for reducing energy-to-solution (see, e.g., [12]).

Within DECICE extending such approaches to the compute contin-

uum will be explored.

Recently, a very significant increase of popularity of the digital

twin concept can be observed. It is based on the realization of one

or more virtual entities that describe a physical entity. A key feature

of digital twins is the twinning of the physical and virtual entities,

i.e., the implementation of physical-to-virtual twinning and virtual-

to-physical twinning processes [7]. To the best of our knowledge,

the concept of digital twinning has not been applied to the case of

cloud-edge systems.

3 FRAMEWORK OVERVIEW
DECICE aims to develop an AI-based, open, and portable cloud

management framework for automatic and adaptive optimization

and deployment of applications in a federated infrastructure, in-

cluding computing from the very large (e.g., HPC systems) to the

very small (e.g., IoT sensors connected on the edge).

Working at such vastly different scales requires an intelligent

management plane with advanced capabilities that allow it to proac-

tively adjust workloads within the system based on their needs,

such as latency, compute power, and power consumption. There-

fore, we envision an AI-model, which can use a digital twin of the

resources available, to make real-time scheduling decisions based

on telemetry data from the resources.
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The DECICE framework will be able to dynamically balance

different workloads, optimize the throughput and latency of the

system resources (compute, storage, and network) regarding per-

formance and energy efficiency and quickly adapt to changing

conditions. The framework also provides the necessary tools and

interfaces for the administrators and deployment experts to inter-

face with all the infrastructure components and control them to

achieve the desired result.

The integration of the DECICE framework with orchestration

systems will be done through open APIs to make it portable, mod-

ular, and extensible. The DECICE framework will be co-designed

and evaluated through concrete use cases.

Figure 1: An example of computing continuum

The system depicted in Figure 1 can be seen as an example of a

computing continuum executing a non-trivial application. Consider

an application that requires programs running on IoT devices to

collect data, which is transferred via two edge nodes to the cloud

nodes. Due to heavy computation and privacy requirements, a data

center might contribute compute resources and data volumes in a

private cloud. The results are then transferred back to the cloud

where they are served to the end users. Finally, the cloud offers

frontends that allow the end users to access the application and

the results of the computation, for example, via a webpage. The

distribution of data across the continuum is another open challenge

that is scheduled to tackle during the performance test phase.

4 DECICE ARCHITECTURE

Figure 2: High-level DECICE architecture

The DECICE framework is built on top of existing open-source

technologies that are already well-established in the community.

Kubernetes, KubeEdge, Prometheus, SEDNA and Volcano are

part of the Cloud Native Computing Foundation (CNCF), which is a

hub for many open source projects from the cloud native ecosystem

as well as over 250 members including many public cloud and

enterprise cloud vendors.

Application users deploying to cloud-edge face multiple chal-

lenges and are usually not experts in cloud management frame-

works or heterogeneous hardware resources. DECICE aims to help

such users by minimizing the effort required to efficiently utilize

diverse hardware devices for their application needs. For exam-

ple, users of the DECICE framework will be able to build hybrid

edge/cloud/HPC workloads using standard containers, knowing

that the DECICE scheduler will allow them to specify data locality,

network latency or other constraints and that the AI-based sched-

uler will place their jobs according to the requirements – and move

them if needed. Primarily these capabilities will be provided via the

careful selection of base technologies and use of standardized inter-

faces for interacting with DECICE. More importantly, via properly

mapping and modeling the entire heterogeneous continuum into

respective DECICE model.

Users interact with DECICE via the standard Kubernetes inter-

face, which is extended with DECICE-specific extensions. This al-

lows them to use an existing, well-supported and familiar interface.

Furthermore, it allows the immediate movement of existing work-

loads into DECICE and minimizes the “learning curve” required for

users to begin using DECICE.

The compute plane, the DECICEManager and theDECICEModel

as illustrated in Figure 2 will be outlined in the following sections.

4.1 Compute Plane
The compute plane exists to run the user workloads. It is built on

existing open source technology, which is then integrated with the

DECICE components in the control plane. The primary component

in the compute plane is Kubernetes. It provides the basic build-

ing blocks for running containerized jobs over multiple physical

systems. Kubernetes is further extended with KubeEdge to allow

the use and management of autonomous edge devices. Addition-

ally, Prometheus is used to gather metrics from devices via Ku-

bernetes/KubeEdge interfaces. Finally, SEDNA provides AI model

training capabilities, while Volcano adds the ability to run HPC

jobs.

4.2 DECICE Manager
The DECICE Manager integrates the Digital twin and AI models

with the orchestration system (e.g., Kubernetes) through its stan-

dard API. This integration can be adapted to make the DECICE

framework portable across orchestration frameworks allowing in-

tegration with any commercial or open source cloud solutions.

Furthermore, the DECICE manager also includes a data reposi-

tory for storing metadata of infrastructure and applications as well

as monitoring data. This data is used to update the Digital twin

and train the AI-models. Moreover, the manager also provides a
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synthetic training and test environment to simulate different in-

frastructure and application deployment scenarios for the training

of AI-models.

4.3 DECICE Model
The Dynamic Digital Twin is a virtual representation of an actual or

potential system at micro and macro level. It models the complete

life-cycle of the system using simulation, real-time monitoring and

enables forecasting, which is then used to make decisions. Creating

a digital twin of the heterogeneous cloud-edge infrastructure and

the deployed applications is one of the main goals of the project.

The DECICE twin models the compute, memory, storage and net-

work resources as well as the application tasks. Simulation and real

time monitoring are used to continuously update the model. AI

models are then used to forecast the system behavior in case of new

deployment or a failure. AI modeling is also used to continuously

predict the application performance based on the current state of

the system and makes suggestions of optimization or adaptation to

increase performance, energy efficiency, reliability and throughput.

These suggestions are then acted upon by the DECICE manager.

4.4 Virtual Training Environment
In order to train, improve and test AI models for scheduling, we

employ a Virtual Training Environment (VTE), which simulates a

Digital Twin (DT) based on a pre-configured scenario. The train-

ing process involves running the AI model under training against

training scenarios, updating the scenario and evaluating the perfor-

mance of the AI scheduler based on a set of metrics. This process is

depicted in Figure 3 with the VTE loading a given training scenario,

which in turn is used to configure the DT. Within the main loop of

the training, the VTE advances the scenario by progressing through

the scenario, which in turn submits additional updates in the form

of metrics and jobs to the DT. Afterward, the scheduler accesses

the DT to perform scheduling decisions.

As the VTE is responsible for advancing the scenario through

the simulation and the AI scheduler itself has no concept of past

states, it is possible to perform faster than real-time training. This

enables us to quickly train many instances of the AI scheduler in

parallel and keep the best performing instances for further training.

The training loop used by the VTE in Figure 3 is similar to the

scheduling loop that will be deployed on real systems. Instead of

a VTE, the real system is controlled by the Cloud Manager (CM)

and updates of the DT are pulled in from the Metrics System (MS)

and the CM. Furthermore, the scheduling decisions requested by

the CM are then forwarded to the underlying Kubernetes (K8s)

platform and realized.

Notably, the AI scheduler always views the entire DT, which

also includes the entire job queue and state of all running jobs. The

AI scheduler has no obligation to immediately schedule a newly

arrived job but its goal is to optimally utilize the underlying cluster

for all active and queued jobs while honoring the user specifications.

This also includes rescheduling running jobs if a better placement

becomes available by regularly reevaluating the current status of

the system.

Overall, the AI scheduler is able to view and optimize the en-

tire cluster through the DT. A common heuristics-based scheduler

operates by individually evaluating each queued job but could be

expanded to view all jobs at once. However, from our understand-

ing, this would highly increase the complexity of the used heuristics

without gaining value from a deeper understanding of the inter-

play of the components of the system as a machine learning-based

scheduler would do. We will also explore various deep learning

strategies.

4.5 CI/CD-Test Strategy
The objective of our CI/CD systems is to verify that all components

are functional individually and in composition. Components de-

veloped in the context of the DECICE project, such as the Cloud

Manager, the Digital Twin and the AI scheduler have their logic

verified through individual component and mock testing.

As the DECICE systems integrate with an underlying orchestra-

tion platform that also evolves together with its ecosystem inde-

pendently of DECICE, it becomes necessary to regularly perform

integration tests. For now, the prototype of the DECICE systems

only targets Kubernetes as an orchestration platform.

By definition, the DECICE systems should be usable by admin-

istrators of heterogeneous compute systems that include cloud,

edge and HPC resources. Administrators may have additional re-

quirements such as using a specific version of Kubernetes on their

systems, which might be distinct from the version used to develop

DECICE. Therefore, the integration tests of DECICE cover a range

of versions that are commonly used to ensure compatibility.

The testing of individual components is done via unit and mock

testing. Integration testing, however, requires spinning up a tem-

porary Kubernetes cluster and deploying the components into it

before running tests on them. This allows using various configura-

tions, versions and additional elements (e.g., edge and HPC nodes)

over multiple test runs.

In practice, we are looking at GitLab runners for handling our

CI/CD pipelines. They can be integrated with Terraform and Open-

Stack to automatically roll out virtual machines, install Kubernetes

on them and deploy our DECICE systems into it. Such a system

enables us to perform complete end-to-end tests of our software

against multiple versions of Kubernetes, KubeEdge and Volcano.

5 EVALUATION STRATEGY
In this section we describe our approach for evaluation of DECICE

framework. The DECICE project adopts a co-design process in or-

der to ensure that functionality and performance of the DECICE

solutions do meet demands for real-life challenges. Figure 4 de-

picts use-cases that are used for demonstrating the capabilities of

technology developed in this project,

• Intelligent intersection

• Magnetic resonance imaging (MRI)

• In-the-field intelligence supporting emergency response

5.1 Intelligent intersection
This use case focuses on real-time processing aspects in Connected

& Autonomous Driving and Cooperative Intelligent Transportation

Systems (C-ITS). Connected and Autonomous Vehicles (CAVs) use

their onboard sensors for object detection and situation awareness.

Intersections introduce additional difficulties, challenges, and safety
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Figure 3: Sequence diagram: Virtualized Training; VTE: Virtual Training Environment; DT: Digital Twin

Figure 4: Use-cases for DECICE evaluation: intelligent inter-
section, MRI, and emergency response

issues due to varying road users (cars, trucks, buses, pedestrians,

bicycles, motorcycles, wheelchaired users, etc.) in varying numbers

moving in different directions. Road user including Vulnerable Road

User (VRU) detection is crucial and critical to ensuring safety and

traffic efficiency. Road users which might be behind other objects

or corners may not be detected by onboard sensors in vehicles. This

poses risks to both road and driving safety and traffic efficiency. In

addition to sharing the status information of the vehicles, it is aimed

to share the information obtained from the sensors (e.g. camera) in

the vehicles and at the intersections with the road users (vehicles,

VRUs, etc.) in real-time. This approach is included by C2C-CC in

Day 2 and Day3+ applications.

Cameras positioned at an intersection continuously monitor

the Region of Interest (RoI) and the captured images/videos are

analyzed for object (vehicle, VRU, etc.) detection, which thereafter

has to be shared with the road users (vehicles, VRUs). Processing of

images and communication has to be in real-time (at low latencies)

to provide safety and avoid possible accidents.

The question arises on the level of hierarchy where the images

will be processed. It could be done in the cloud, or edge, depend-

ing on the requirements and cost of doing that. Accuracy, latency,

efficiency are the key technical performance metrics to measure.

Data communication between the camera, and the central cloud in-

troduces additional (communication) delay which is not acceptable.

Therefore, there are general aims of carrying some fast processing,

low latency, fast response applications at the edge, while learning

models can work at the edge and cloud. On the other hand, re-

source utilization, cost, and traffic safety are the business-related

performance metrics. DECICE provides an efficient, fast processing,

low-latency, energy-efficient edge and cloud computing continuum

that also considers the load at edge nodes due to the spatiotem-

poral variation of the users (vehicles, VRUs) and environmental

conditions (light, illumination, weather conditions, etc).

5.2 Magnetic resonance imaging (MRI)
MRI scans are a common tool for medical examination due to the

noninvasive way to get a view of the inner body parts. Typically,

MRI scans are conducted on edge nodes; they only cover individual

body parts of a patient and create a high-resolution 3D-image of
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the body part using magnetic fields. Advances in technology lead

to higher resolutions and, consequently, larger data sizes. Like

other medical data, MRI scans often contain sensitive personal

information about the patient. Therefore, special care with respect

to storage, transfer and access is necessary. We propose the analysis

of MRI scans as a use case for the DECICE framework to validate

restrictions on storage and access rights for data. Furthermore, a

fast and accurate analysis of the MRI scans is important, adding

fast compute times to the list of requirements.

The analysis of the MRI scans poses difficulties, both from a com-

pute and storage perspective. Each MRI scan consists of multiple

slices of data, thus creating a complex object for analysis. Complex

models for analysis can be challenging for the compute capabil-

ities of edge devices. Thus, moving analysis jobs to the cloud or

HPC system can be necessary. Managing access rights to the data,

the storage location of data and preventing data loss are key com-

ponents from the storage perspective. Additionally, the network

transfer can be a limiting factor creating a complex decision envi-

ronment. Instead of having users manually figure out a solution, the

DECICE schedule will map the data and tasks to suitable locations

and also adapt to changes in system topology.

5.3 In-the-field intelligence supporting
emergency response

In an emergency response, compute infrastructure and connectivity

in the mission area can be seriously disturbed and unreliable. To

enable continuous monitoring of the affected areas and an effective

response after a disaster struck, drones can be of help, data from

multiple sensors in the drones and also additional data sources

such as satellite images can be integrated to define mission areas or

extend the area of interest. Quadcopters are an interesting oppor-

tunity but they have limited mission time. Also, image processing

on board can be used but needs to be adapted to conditions, we

need flexibility of computation. Recharging stations can be used to

increase drones autonomy by also supporting upload of mission

plans, data gathering, and communication. Missions can be made

adaptive to weather. Coordination between operators and drone

surveys to cover areas that are not covered by operators. The pro-

cessing must be optimized, the integration of external sources such

as satellite data to upgrade missions is possible.

We aim at developing an open digital platform to support emer-

gency response operators exploiting data from drones and satellites.

The objective is to bring intelligence in the operational activities in

the field, by providing the computation support for embedding ML

algorithms to support drone autonomous flight as well as mission

operations. To do so, the platform will implement an efficient and

adaptive computation of AI algorithms in-the-field, orchestrating

the processing and the communication between cloud/edge/drone

in a fault-tolerant fashion, allowing the operator to control the data

flows between the computation entities and providing the adap-

tivity in the system platform necessary to handle the emergency

situation, such as size of the area to be explored, recognition tasks to

be performed, communication link bandwidth, energy availability

and weather conditions.

6 CONCLUSIONS
The cloud computing industry has grown massively over the last

decade and with that new areas of application have arisen. Modern

cloud applications have also become more complex as they usually

run on a distributed computer system, split up into components

that must run with high availability.

In the DECICE project, our goal is to develop an open and

portable cloud-edge management framework for automatic and

adaptive optimization of applications by mapping jobs to the most

suitable resources in a heterogeneous system landscape and com-

pute continuum. By utilizing holistic monitoring, we construct a

digital twin of the system that reflects on the original system. An

AI-scheduler makes decisions on placement of jobs and data as

well as conducting job rescheduling to adjust to system changes

dynamically. A virtual training environment is developed that gen-

erates test data for training of ML-models and the exploration of

what-if scenarios. The portable framework is integrated into the

Kubernetes ecosystem, co-designed and evaluated using relevant

use cases on real-world heterogeneous systems.

As this project was starting in Q4/2022, we cannot yet present

results but are actively developing the DECICE framework at the

moment.
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