
A Secure Workflow for Shared HPC Systems
1st Hendrik Nolte

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
hendrik.nolte@gwdg.de

2nd Simon Hernan Sarmiento Sabater
Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany

3rd Tim Ehlers
Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany

4th Julian Kunkel
Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany

Abstract—Driven by the progress of data and compute-
intensive methods in various scientific domains, there is an in-
creasing demand from researchers working with highly sensitive
data to have access to the necessary computational resources to
be able to adapt those methods in their respective fields. To satisfy
the computing needs of those researchers cost-effectively, it is an
open quest to integrate reliable security measures on existing
High Performance Computing (HPC) clusters. The fundamental
problem with securely working with sensitive data is, that HPC
systems are shared systems that are typically trimmed for the
highest performance – not for high security. For instance, there
are commonly no additional virtualization techniques employed,
thus, users typically have access to the host operating system.
Since new vulnerabilities are being continuously discovered,
solely relying on the traditional Unix permissions is not secure
enough. In this paper, we discuss a generic and secure workflow
that can be implemented on typical HPC systems allowing users
to transfer, store and analyze sensitive data. In our experiments,
we see an advantage in the asynchronous execution of IO
requests, while reaching 80% of the ideal performance.

Index Terms—high performance computing, sensitive data,
secure computing

I. INTRODUCTION

The increasing adaption of data and compute-intensive
algorithms in digital humanities or life sciences [1], [2] has
drastically increased the demand for cost-effective solutions in
research domains that are subjected to very strict data security
restrictions, like GDPR or HIPAA. Historically, HPC systems
in public data centers serve those tasks for insensitive data
for capacity as well as capability computing. Here, different
users share the available resources and can run their compute
jobs simultaneously on shared or exclusive subsets of nodes.
Due to the optimization for performance, it is very common,
that users interact directly with the operating system of the
host. Users are trusted to some extent, and, thus, any local
vulnerability can be immediately exploited by users or bots
that gained control of user credentials. Taking into account
that there are continuously new attacks discovered that lack a

We gratefully acknowledge funding by the “Niedersachsis-ches Vorab”
funding line of the Volkswagen Foundation and “Nationales Hochleis-
tungsrechnen” (NHR), a network of eight computing centers in Germany to
provide computing capacity and promote methodological skills.

reliable solution over a sustained period of time [3], sensitive
data should only be transferred, stored, and processed with
care in public data centers. Some industry and government
data centers (such as for weapon research) limit access and
employ strict policies regarding system access, even to the
point where sensitive data is physically disconnected if not
needed. However, restricting system access does not resolve
the problem with the data access, since administrators basically
have full access. We believe, even in the case of a privilege
escalation leading to a compromised cluster, the integrity of
data should be guaranteed.

In this work, we
• present a generic workflow to transfer, store and process

sensitive data
• discuss the implementation on the HPC system at GWDG
• provide benchmark results to measure performance

In the following, related works will be discussed in Section II,
a general overview of the architecture of HPC systems is
provided in Section III, the design of the secure workflow
is presented in Section IV followed by the description of the
actual implementation on our HPC system in Section V. A
security analysis is done in Section VI followed by bench-
marks in Section VII to measure the overhead of the applied
methods. The conclusion is provided in Section VIII.

II. RELATED WORK

The general need for secure compute capabilities and the
resulting requirements for refinement of existing security
concepts, particularly for HPC systems, is acknowledged in
the literature. Christopher et al. describe in [4] that “At UC
Berkeley, this has become a pressing issue“ and it has “affected
the campus’ ability to recruit a new faculty member“.

In BioMedIT [5], a distributed network is described, where
virtualization is used to create completely isolated compute
environments that are exclusively reserved for a particular
project, in a private cloud. However, the use of virtualization
for isolation purposes is only effective, if it is ensured that
other users can not access the host system directly. therefore,
this approach requires dedicated hardware and software, which
drastically increases the cost of hosting such a system.



A similar approach is described in [6], where Private Cloud
on a Compute Cluster (PCOCC)1 is used to deploy a private
virtual cluster. The outlined Slurm integration allows for direct
integration into an existing HPC system. However, a dedicated
Lustre file system is needed and it remains unclear how this
virtualized cluster is secured against a compromised host.

One possible way to isolate a single task on a multi-
tenant node is the use of Trusted Execution Environments
(TEEs). Here, access to sensitive data or code, which is loaded
into memory, is secured from access from the host kernel.
There exist several different solutions, including commercial
solutions like Intel’s SGX [7] and open-source solutions like
Keystone [8] which are based on basic primitives provided
by the respective hardware. In order to utilize those so-called
enclaves, changes to the source code of the corresponding
application are necessary. To mitigate this issue, solutions
like Graphene [9] enable users to run unchanged code within
an enclave. Similarly, SCONE [10] was developed to support
Linux secure containers for Docker. These solutions for TEEs
are very interesting to secure and isolate a running process,
including its data, from malicious access but is in itself
not sufficient to provide an end-to-end workflow to securely
upload, store and process sensitive data on an untrusted, shared
system.

Secure storing of sensitive data on a shared, untrusted
storage on an HPC system was explored in [11]. Here,
Ceph Object Gateways [12] are deployed on single-tenant
compute nodes alongside an S3FS which bind-mounts the
corresponding S3-Bucket as an POSIX compatible directory
onto the host. The host-based configuration then performs
automatic encryption/decryption of data that is written/read
to/from this specific directory. However, it remains unclear,
how the necessary keys for accessing the S3-Bucket and
for performing the decryption/encryption are secured from a
privilege escalation on the corresponding nodes. Additionally,
some data center policies may require a strict separation
between the HPC and the storage networks.

Containers are processes which are executed on the host
operating system and are pseudo-isolated by namespaces and
cgroups. This allows the provisioning of a private root file
system in order to execute software in a portable environment.
As with any other process, containers are executed with the
rights of the user, which can be extended with an setuid. A
common container technology on HPC systems is Singularity
[13].

In contrast to the presented related work, we present a
blueprint for end-to-end processing of sensitive data on a
shared, untrusted HPC system and discuss all security impli-
cations in detail.

III. GENERAL USAGE OF HPC SYSTEMS

A. Architecture of HPC systems

Generally, HPC systems are composed of different node
types. They serve different purposes and have, therefore,

1https://github.com/cea-hpc/pcocc

different security policies applied to them. In the following,
an overview of typical node types is provided and their
interactions are explained. This will further serve as the basis
for the nodes which are deemed as secure, even in the case of
a privilege escalation of a user.

The general architecture of an HPC system is illustrated in
Figure 1. HPC systems are commonly guarded by a perimeter
firewall, requiring users to connect via VPN or a jump host.
Afterwards they can login via a Secure Shell (ssh) on a
frontend node. Frontend nodes are shared by all users and are
used to build software, move data, or submit compute jobs to
the batch system. Access to computing resources is granted
by a resource manager, like Slurm [14], which schedules
user jobs in such a way, that the general utilization of the
system is maximized. The batch system dispatches jobs to
the compute nodes. Although an interactive compute job is
generally possible, the majority of the available compute time
is consumed by non-interactive jobs, i.e. they run completely
without any user interaction. The frontend as well as the
compute nodes share at least one parallel file system, like
Lustre [15] or BeeGFS [16].

The management nodes are comprised of several different
nodes that are solely reserved for the admins. Hence, they
share the basic requirement, that they need to be protected
from any user access. Typically, there is a specific admin node,
which is used just for login. Very important for our secure
workflow is the so-called image server, i.e., the node which is
used to provision the golden images to all the nodes, including
the frontend and the compute nodes. If an attacker would gain
access to this server, the images could be compromised and
distributed to the nodes. In order to increase the security of
this node, it is placed in the Level 2 security zone, where
access is only possible from the admin node and requires
further activation and authorization, like an additional 2 factor
authentication.

Another important node is the one, that the resource man-
ager is running on. This server is responsible to enforce
the correct assignment and access of the jobs and users to
the compute nodes. The last pieces of infrastructure are the
networks that connect the different nodes.

The provisioning of software is usually done via an envi-
ronment module system, like Lmod [17] or Spack [18], and
is cluster wide available, which allows replicating the desired
working environment by loading the appropriate modules on
any node of the cluster.

B. Typical User Workflow

The typical workflow to execute a job on an HPC system
is depicted in fig. 2. A user logs in and can write or submit a
batch script. This is typically similar to a shell script, where
the desired resources and the commands to be executed are
specified. The resource manager checks, whether or not the
specified resources are eligible for the uid the request is
coming from, i.e. if the user is authorized to use the specified
resources. If the request is permissible, the resource manager



Fig. 1. A schematic sketch of an HPC system. As shown, HPC systems are typically protected by a perimeter firewall and can only be accessed via a VPN
or a jump host. The system consists of frontend, compute, and management nodes, as well as a network and a parallel file system. User access should be
restricted to the frontend and the compute nodes, which are shown in blue. The management nodes, shown in red, must be inaccessible for users and from
nodes with user access.

Fig. 2. A schematic sketch of the typical workflow for users on an HPC system. As shown, usually users submit a batch script to the resource manager. The
access permission of a user to a certain node is hereby solely based on the uid. Since data is stored unencrypted on a shared file system and the integrity of
the software stack does not have to be guaranteed, the job can start without any further overhead. This workflow is only secured by the user isolation of the
utilized host operating system, e.g. the Linux kernel.

schedules the job in an appropriate time slot for execution with
the overarching goal to maximize overall system utilization.

Needed input and output data on the parallel file system
can be accessed from all nodes. The necessary communication
between the storage nodes and the compute nodes or, in the
case of multi-node jobs which are communicating via MPI,
takes place via a high performance interconnects like Omni-
Path [19] or Infiniband [20].

C. Possible Attack Scenarios

From this general architecture of HPC systems as well
as the resulting workflow for users which is geared towards
performance, certain security risks are present or are being
introduced. Since the nodes and storage systems users have
direct access to are solely protected by the permission system
of the Linux kernel, the trusted code base is very large and
has therefore a large attack surface which presumably yields
unknown vulnerabilities [21]. therefore, it is assumed that a
privilege escalation, i.e. a user gains root privileges, can hap-

pen on any system accessible to users, which are the frontend
and the compute nodes. For the following security analysis, it
is therefore assumed, that an attacker has successfully gained
root access on one of these nodes.

1) Data Stored on a Shared File System: Starting from the
node the attacker gained root privileges, root can get access to
any file stored on one of these nodes or is located on a shared
file system mounted on this node. This direct access can be
made a little bit more uncomfortable by a root-squash for an
attacker since now the uid needs to be changed, but all data
has to be considered compromised.

2) Data Stored on a Compute Node: Additionally, after
the job has started, the user is also able to log in on these
nodes, for instance via ssh. The access is hereby granted by
the resource manager solely based on the uid. Thus, a root
user has immediate access to all nodes allocated to users and
therefore access to the local data and processes. Furthermore, a
root user can submit jobs to the batch system with an arbitrary
uid, thus gaining access to compute nodes reserved by the



resource manager for a specific user group.
3) Manipulation of the Provided Software: A malicious

root user can also tamper with the provided software stack
or with the individual system image of the node the attacker
is currently on. Such a compromised system can then contin-
uously leak data.

4) Network Manipulations: In order to provide maximal
bandwidth at a minimal latency, high-speed interconnects like
OPA or Infiniband, which are switched networks, are used
in HPC systems. These switches rely on a subnet manager
for configuration, including the creation of the used routing
tables. An attacker can try to imitate these subnet manager
on hijacked nodes and bombard the switches with malicious
configurations. In addition, an attacker could try to spoof
its source node and ingest packages in order to maliciously
manipulate the execution of the job on the secure node.

IV. GENERAL DESIGN OF THE SECURE WORKFLOW

As motivated before, all systems to which users have direct
access could be considered to be compromised and insecure as
(unknowingly malicious) software running by a user may have
gained administrator permissions. Also, an administrator (Unix
root user) should not be considered completely trustworthy
and permissions should be limited as much as possible. In
order to design the secure workflow, data and software need
to be protected on such an exposed system and a mechanism
is necessary to trust selected nodes, on which the actual
computations can be securely done. Based on the discussed
security problems identified in section III-C a secure workflow
was designed which mitigates these problems. This secure
workflow is presented in the following.

A. Assumption

In order to provide trust in an otherwise untrusted system,
this trust needs to be derived from a secure source system.
Therefore, it will be assumed that i) the image server of
the HPC system as well as ii) the local system of the user,
for instance, the respective workstation or laptop, is secure.
These assumptions are reasonable because on the one hand
the image server, as shown in fig. 1, is located within the 2nd
security level of a cybersecurity onion of the already highly
guarded admin nodes, which deploy only limited services and
orchestrate the cluster. On the other hand, the local system of
the user is the system where the data resides unencrypted at the
beginning of the workflow. Therefore, it has to be secure since
otherwise the data would be leaked without any involvement
of the secure workflow.

B. Overview

As discussed in section III-C there are different attack
scenarios that a secure workflow has to protect against. These
scenarios can be divided into the protection of the data in
transit, at rest, and during compute. In order to secure data
during transit and at rest, encryption is typically used. To
secure data during compute, one needs an ideally air-gaped,
but at least an isolated system or node. Based on these two

simple ideas a generic secure workflow was developed as
depicted in fig. 3.

Unlike in the case of the typical workflow, presented in
fig. 2, it is not possible to upload data, containers, and
batch scripts directly into the shared file system, since this
would leave the workflow vulnerable to attacks depicted in
section III-C, except if it is encrypted using state-of-the-art
encryption. therefore, the first step is to encrypt the data as well
as the container on the local system of the user. Afterward,
in step 2) the encrypted data is then uploaded onto the
shared storage of the HPC system. The key is uploaded onto
a key management system. This communication channel is
completely independent of the HPC system and can therefore
be considered out-of-band. Analogously should be proceeded
with the containers.

In order to be able to retrieve the keys from the key man-
agement system, a valid access token needs to be provided in
the batch script. To prevent this token from being leaked to an
attacker on the frontend, the batch script needs to be encrypted
as well. This can happen completely independent of the used
resource manager by implementing this mechanism on the
secure node, the job should run on. For this, a public-private
key pair is created on the system image of the secure node. The
public key is then distributed to the users and can be used to
encrypt the batch script while the private key has to be highly
guarded. Since it is only available on the secure node and on
the image server, this mechanism depends on the safety of
the latter. This encrypted batch script can be submitted to the
resource manager just like any other unencrypted script. For
this, a corresponding decrypt and execute command needs to
be implemented on the secure node, which takes as input the
encrypted shell script.

The resource allocation made by the resource manager in
step 4) is only dependent on the used uid of the user on the
HPC system. As discussed in section III-C this is not secure
enough, therefore the authenticity of the batch script needs to
be checked. In this proposed reference workflow, this problem
is solved by the user signing the batch script after it was
encrypted with a private key. Here, the corresponding public
key has to be made available to the secure node before a job
can be submitted.

During steps 5) and 6) the counterpart of the previously
described step 1) is done. This means, that first the signature
of the batch script is checked to verify that this batch script was
legitimately submitted. Here, the stored public key of the user
the request was made from is used to match the signature. If
that verification was successful, the batch script is decrypted,
yielding a shell script that can be executed.

Within this script, an access token for the key management
is provided. This token is used in step 7) to retrieve the keys
needed to decrypt the data and container. Since by design every
legitimate job has to successfully retrieve keys in order to be
executed, the success is monitored and the job is killed upon
failure.

Within the last shown step 8) the keys are used to decrypt
the data and container from the shared file system on the secure



Fig. 3. A schematic sketch of the secure workflow on an HPC system, which is divided into 8 distinct steps. As shown, the sensitive data along with the
container and the batch script are encrypted on the local machine of the user. Additionally, the batch script is also signed by the user. After encrypting, the
components are safe to be uploaded into the shared file system of the HPC system. Although the batch script is signed and encrypted, it can be normally
submitted in the third step. As usual, the resource manager will allocate the required resources and start the job in step 4). In the fifth step, the authenticity
of the user request is verified and in the 6th step, the batch script is decrypted. Using the provided token for the key management system (KMS) the keys are
retrieved in step 7 and used to decrypt the data and container on the isolated, secure node in step 8.

node. Now, the intended job of the user can be executed within
the container. Using a container at this stage probably is the
easiest way to maintain a heterogeneous software stack that is
required to support the diverse processing steps. As mentioned,
the additional advantage here is, that the container image itself
can be encrypted and thus the integrity can be ensured, since
tampering is only possible if the key is known. Furthermore,
mounting all unsafe file systems per default read-only into
the container prevents an accidental data leak, for instance by
files that are temporarily written by the program without the
knowledge of the user.

C. Isolating Compute Nodes

In order to be able to provide secure compute capacity, an
isolated node or subcluster is exclusively available to an indi-
vidual or group for an arbitrary amount of time. These nodes
have restrictive firewall settings, the running administrative
services are slimmed down, for instance, the usual monitoring
is deactivated, and no login capability, e.g. via ssh, is available.
Furthermore, the nodes need to reliably boot a trustworthy
operating system and must enforce that only authorized users
can access the node. This is done in two steps: i) Users can
only submit jobs that are running in a non-interactive mode,
therefore they are required to submit a batch script to the
resource manager, and ii) this batch script needs to be signed
with a secret on the local system of the user, as described
before. Since this secret will never be uploaded to the HPC
system, an attacker can’t get access to it and can’t submit jobs
to a secure node from a false uid.

Software that is usually provided via environment modules
needs to be installed in the system image of the secure node,
since using these shared modules would mean importing an
untrusted codebase into the secure node.

D. Key Management System

The usage of the key management system should also follow
certain best practices. Although the depicted security measures
should be sufficient, it is favorable to use a one-time token
mechanism to retrieve the keys from the key management
system. If an attacker got their hands on a token, with which
the keys can be retrieved, the legitimate request from the
user will fail, because the token was already used. Thus, it is
immediately obvious that a security incident took place. The
token should be short-lived as well, to limit the availability of
the keys in the case that a job crashes before the token could
be used.

Additionally, a reverse proxy can be placed in front of the
key management system. Here, the received API calls can be
filtered based on the source IP address. The goal is to allow an
upload of keys from anywhere, however, limit the legitimate
get requests only from the secure nodes.

V. IMPLEMENTATION OF THE SECURE WORKFLOW

The design as well as this actual implementation were
done with a minimal amount of assumptions so that it can
be considered as a blueprint for other systems with different
requirements as well. Based on the general design presented
in Section IV, an implementation was done on an HPC system
at GWDG.

A. Key Management System

Vault2 is used for the key management system. It allows for
the distribution of personal tokens to individual users. With
those, users can generate tokens with limited permissions and
a short, configurable lifetime. A response wrapping is used
on these tokens in order to enable single-use tokens to access

2https://www.vaultproject.io/



the deposited keys. In addition, the root token can be reliably
deactivated, preventing the root user from spying on the user
keys.
In front of Vault NGINX3 with the ngx http geo module is
deployed as a reverse proxy. It performs IP-address filtering
based on the http-verb in order to allow an upload of a key
from external systems but restricts the response for the key
retrieval to be only sent to a secure node.

B. Data and Software Management

Since most HPC applications expect a POSIX-IO compat-
ible file system, Linux Unified Key Setup (LUKS) was used
to encrypt the data. These LUKS containers can be mounted,
if the decryption key is available, thus providing the expected
interface while transparently encrypting everything written to
that mount.

In order to use encrypted containers, Singularity is used.
Similar to the native LUKS data containers, these encrypted
Singularity images are decrypted in kernel space as well. This
means they reside decrypted in the RAM of the host, thus
swapping needs to be deactivated on these secure nodes, to
prevent that sensitive data is written unencrypted onto a non-
volatile storage medium, like a local SSD. By bind mounting
only the LUKS data containers into the Singularity container,
it is ensured that only encrypted write access is possible from
the container onto the file system.

C. Isolating a Secure Node

In order to isolate a secure node, the system image is
adapted. To prevent an attacker from login into that node, a
restrictive firewall configuration is used. In addition, suitable
services for accessing these nodes, like ssh, are turned off. For
all services which need to be listening on a specific port, like
the slurmd, only the IP address of the known counterpart, like
the node where the slurmctld is running on, is reachable. In
order to ensure these settings, a node needs to directly boot
into these restrictive configurations and the image server, as
well as the network which is used for the PXE boot, need to
be trusted. Therefore it is mandatory, that an attacker can not
reach the management nodes, and particularly not the level
2 layer of the employed security onion, which was outlined
within the made assumptions.

In order to allow for secure inter node communication via
our Omni-Path Fabric, a secure vFabric (virtual Fabric) has
to be configured. It is important to disallow the ingestion of
management packages from any HFI port that is not connected
to the dedicated fabric managers. These fabric managers also
have to be located within the security onion of the admin
nodes. Additionally, the fabric manager needs to be configured
to quarantine nodes if they try to spoof their identities, for
instance in order to reach into a secure vFabric.

3https://www.nginx.com

D. Submitting a Batch Job

In order to use encryption for the batch script, a 4096-bit
RSA [22] key pair is created in the system image, and the pub-
lic key is shared with the user. Since also a signature from the
user on the batch script is required to prove the authenticity of
the submit, an S/MIME certificate is used. Using S/MIME has
the advantage that the existing infrastructure for authentication
of the user and the distribution of the certificate can be reused.
This workflow is usually in place at compute centers to allow
for signed or encrypted E-Mails.

After the batch script is decrypted, the provided token is
used to get the keys from Vault. These are then only shortly
stored in a tmpfs to mount the LUKS data containers and
to execute the Singularity container. Since any legit job will
require at least two keys, one for the Singularity container and
one for the LUKS data container, the successful retrieval of
the keys is also monitored and mandatory.

Since only the LUKS data containers have a writable bind
mount within the Singularity containers, results can only be
stored there, thus enforcing compliance with data security
regulations per design. After the job has finished or was
killed by the resource manager Slurm, all mounted LUKS data
containers are unmounted and the stored keys are deleted from
the tmpfs. This behavior can be enforced within the Slurm
Epilog. At the end, the user can download the LUKS data
container, where the results are stored for further inspection.

VI. SECURITY ANALYSIS

Based on the general design, presented in sec. IV, and
the actual implementation, presented in sec. V, a concluding
assessment of possible attack scenarios along with their re-
spective mitigation strategies presented before, is done in this
section.

A. Man-in-the-Middle attack

A man-in-the-middle attack can happen in this secure work-
flow during the execution of step 2), as shown in fig. 3.
One can see, that on the one side, a man-in-the-middle
attack can happen during the communication with Vault. This
communication is done via the provided Rest API and is
secured via TLS.On the other side, an interception of packages
can also happen during the upload of data to the HPC system.
Here, data is secure since it was encrypted on the client-side
and the communication itself is guarded via ssh.

In both cases, the attacker would end up with state-of-the-art
encrypted data, which can’t be used without the corresponding
decryption key. As presented, these are highly guarded and
only retrievable for authorized users. Thus, access to the net-
work infrastructure outside of the HPC system can’t diminish
the security of this workflow.

B. Privilege Escalation

A user only uploads encrypted data and encrypted Singular-
ity containers, thus the attacker can neither gain access to the
decrypted data nor can the software environment that accesses
the data directly be compromised. The same argument holds



for the submitted batch scripts. These are encrypted as well
and thus ensure the confidentiality of the token of the key
management system.

As discussed, a root user can submit jobs from the uid
of a legitimate user. This can neither be prevented by the
kernel nor by the resource manager relying on the kernel.
The obvious mitigation would be a multi-factor authentication
which is prompted upon the submission of a batch script
by a trusted management server. This, however, needs to be
supported by the individual resource management software
in use. A resource manager independent way was presented
before, where the batch script needs to be signed by an
S/MIME certificate.

To summarize, a root user can neither get access to the
decrypted data, tamper with the software or system image,
and can not impersonate a user on the system.

C. IP-Spoofing

In order to prevent that an attacker can retrieve the keys
stored in Vault with a stolen token, Nginx was used as a
reverse proxy in front of Vault, in order to filter out GET
requests from an IP address, which is not a secure node. This
is configured on the key management system and to change
that, access to this system is required, including access to
the administrative network where the ssh port is available.
An attacker can, however, use a false source IP address and
mimic that the request was done from a secure node. Then,
Vault would send the requested keys but would do so to the
specified secure node. Thus an attacker would still need to get
access to such a node, which is highly secured as depicted
before.

D. User Operating Errors

Since the presented secure workflow has quite some steps
which a user has to execute correctly to ensure the integrity
of the processing, mistakes can happen and potentially impair
the security measures. In order to simplify the application
for a user, wrapper scripts are provided, which, for instance,
automatically create and mount LUKS containers on the
local system of a user while using strong random passwords.
Furthermore, it is ensured, that the created keys are only
uploaded to our Vault instance, and not accidentally on an
untrusted system. Lastly, once a user has written locally a
batch script that is ready for submission, a script can be used
locally, to encrypt, sign, upload, and submit the batch script.

E. Network Manipulations

Depending on the used high-speed interconnect, which is
typically used in HPC systems, like Omni-Path or Infiniband,
there are additional threats associated. In section V-C it was
discussed that a Omni-Path fabric can be securely locked down
to ensure reliable operation even in the case of a privilege
escalation on the connected, user-accessible nodes.

VII. PERFORMANCE ANALYSIS

In order to determine the performance costs when switching
from the unsecured workflow depicted in section III-B to
the secure workflow presented in section IV and section V,
different benchmarks have been done. These benchmarks can
be roughly divided into two distinct groups. One type of
benchmark is designed to quantify the static overhead associ-
ated with the secure workflow, while the other measures the
dynamic cost of the used encryption. Since the secure nodes
are otherwise isolated, there are no additional costs during
compute.

A. Measuring Encryption Costs

Encryption and decryption take place during write and read
operations to a storage device, like a parallel file system. In
order to simulate different I/O patterns to get a better under-
standing of the potential performance decrease, the IO500 [23]
benchmark was used. The encryption was always done with
AES512 [24].

1) Performance Comparison on the Parallel File System:
As discussed in section IV, the typical use case for the
secure workflow is assumed to be that users upload their
encrypted data onto the shared parallel file system and only
decrypt them on the secure nodes. In order to measure the
performance costs, two different scenarios are benchmarked.
In the first case, an unsecured workflow is used, where an
unencrypted Singularity container executes the before men-
tioned IO500 benchmark on a native bind mount on the
parallel file system. In the second case an encrypted LUKS
container, using cryptsetup, is mounted locally on the node
with a loopback device. The latter case represents the secure
workflow, therefore also an encrypted Singularity container is
used to perform the IO500 benchmark. Both container images
in these two benchmarks were created using the same Recipe-
file.

The benchmarks were done on a dedicated node of the
Scientific Compute Cluster hosted by GWDG. It features
an Intel Xeon Platinum 9242 CPU with 376G of DDR4
memory operating at 2934 MT/s and runs on an 3.10.0-
1160.36.2.el7.x86 64 Linux Kernel. The used filesystem runs
BeeGFS and has 4 metadata servers and 14 storage servers.
The node is connected to the BeegFS storage via a 100 Gb/s
OPA fabric.

Before the benchmarks has been started, 343G of the
376G available memory has been filled up and the swap was
deactivated. The LUKS container was opened via cryptsetup
2.3.3 and was mounted as an ext4 file system.

The results of the performed benchmarks are presented
in table I. The first observation here is, that the ior-easy-
write, which is sensible to streaming performance, reaches
in the encrypted case only ≈ 23% of the bandwidth of the
unencrypted case. Similarly, the encrypted mdtest-easy-write
also only reaches ≈ 60% of the unencrypted performance. The
significantly higher performance, which was achieved in the
following *-hard tests can be explained by the fact that due to



Operation (unit) Performance
Encrypted Unencrypted

ior-easy-write [GiB/s] 0.6 2.8
mdtest-easy-write [kIOPS] 15.2 24.4

ior-hard-write [GiB/s] 0.06 0.01
mdtest-hard-write [kIOPS] 15.9 6.2

find [kIOPS] 270.8 211.8
ior-easy-read [GiB/s] 0.6 2.2

mdtest-easy-stat [kIOPS] 194.0 121.1
ior-hard-read [GiB/s] 0.3 0.4

mdtest-hard-stat [kIOPS] 69.6 44.4
mdtest-easy-delete [kIOPS] 22.6 33.4
mdtest-hard-read [kIOPS] 0.7 2.1

mdtest-hard-delete [kIOPS] 17.8 3.5
TABLE I

IO500 RESULTS ON BeeGFS

the limited overall IO performance a larger percentage could
be cached in the remaining 33G of RAM.

In summary, one can observe a non-negligible performance
degradation, particularly during streaming IO, when compared
to the unencrypted measurement. This can be seen in the
operations containing an easy.

2) Analysis of Cryptsetup: A recent analysis of the dm-
crypt implementation found that the different work queues
used to enable asynchronous processing of I/O requests can
actually drastically slow done performance. To circumvent this
problem, dm-crypt can be instructed to avoid a queuing of IO
requests and execute them synchronously. This feature was
merged into the Linux Kernel in version 5.94.

In order to further analyze the origin of the previously
observed performance difference between the encrypted and
the unencrypted use case, the kernel of the used node was
updated to the most recent version 5.16.3, and cryptsetup 2.4.3
was compiled from source. Since the clients for the parallel
file systems of the Scientific Compute Cluster do not support
newer kernel versions, the performance difference could only
be measured on the node. For this, a tmpfs was used, which
has the additional advantage of offering the lowest latency and
highest bandwidth. This means, that any additional overhead
can not be hidden by bottlenecks located on the storage device.
The file for the loopback device had a size of 340G of the
available 376G. In order to support the vader BTL of OpenMPI
[25] additional 10G was provided in a tmpfs.

The results of these measurements can be seen in table II.
One important observation is that it could be confirmed
that using encrypted Singularity containers does not have
any measurable performance impact at runtime. The second
observation is, that in this particular case one profits from
an asynchronous execution of the encrypted IO operations
during parallelized execution with 10 processes. This can
clearly be seen in the highlighted cells containing the results
from the streaming intensive ior-easy-write and ior-easy-read
operations as well as in the ior-hard-read test. The reason for
this could be the use of loopback devices and device mappers,
which causes differences in the execution of the IO requests at

4https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit
/?id=39d42fa96ba1b7d2544db3f8ed5da8fb0d5cb877

the block device level, when compared to a natively encrypted
block device, like a hard drive or an SSD.

In order to estimate the actual encryption cost, a baseline
for an unencrypted scenario was measured, wherein the ex-
act similar setup of the same file was mounted as an ext4
file system with an loopback device without the usage of
cryptsetup. The results are shown in table III. By comparing
the performance increase when scaling from 1 process to 10,
there is still very limited scalability exhibited. The source for
this issue is assumed to lie within the usage of a loopback
device. Comparing the results of the ior-easy-write, where by
far the most data is being written and therefore is mostly hit
by the cryptographic overhead one can see that by comparing
to the asynchronous test in table II ≈ 80% performance was
achieved. The achieved value of ≈ 2.1 GiB/s is very close
to the value of ≈ 2, 3 GiB/s one obtains when running the
provided benchmark suite of cryptsetup.

In summary, one can clearly see a performance advantage of
newer Linux kernels, however, it was not possible to replicate
the advantage of synchronous cryptographic IO execution on
this system.

B. Measuring the Static Overhead

In order to determine the static overhead of this secure
workflow, a node was booted into the secure image and
the workflow was executed 1000 times. The static overhead
contains the verification of the signature and the consecutive
decryption of the batch script, the retrieval of the keys from
Vault, the mounting, umounting of the LUKS containers, de-
crypting and starting the Singularity container, and the deletion
of the keys residing in memory. The reference job is a sleep
10, was executed bare metal for the reference measurements
and within an encrypted singularity container for the secure
workflow measurements, and the complete wall clock time was
measured with time. This job was submitted 1000 times with
the normal workflow discussed in section III-B and 1000 times
with the secure workflow as implemented in section V. For
each job, 3 keys had to be retrieved, one for the Singularity
container, one for the LUKS container with the input data,
and another one to store the output data in. Both LUKS
containers have a size of 20 GB. The batch script, which needs
to be decrypted, has a size of 544 bytes unencryptedly. The
result of the benchmark is obtained by subtracting the average
amount of the 1000 normal submissions from the individual
wallclock time spent in the secure submission. The resulting
distribution is shown in fig. 4. One can see that it follows a
normal distribution with an expectation value at 6.63 s and a 3
sigma limit of ± 0.04 s. This overhead is completely negligible
compared to a typical runtime of multiple hours for HPC jobs.

VIII. DISCUSSION & FUTURE WORK

In conclusion, a secure workflow for HPC systems is
presented which enables the processing of sensitive data on
an existing, untrusted system. This presented workflow can
serve as a blueprint for other systems. An in-depth security



Operation [unit] Synchronous Asynchronous
10 Processes 1 Process 10 Processes 1 Process

Encrypted Unencrypted Encrypted Unencrypted Encrypted Unencrypted Encrypted Unencrypted
ior-easy-write [GiB/s] 1.2 1.2 1.1 1.0 1.6 1.7 1.0 1.0

mdtest-easy-write [kIOPS] 111.7 123.3 70.0 70.6 111.4 111.5 69.0 69.0
ior-hard-write [GiB/s] 0.6 0.6 1.1 1.1 0.7 0.7 1.1 1.0

mdtest-hard-write [kIOPS] 18.8 19.8 31.6 33.9 15.5 15.3 31.1 35.6
find [kIOPS] 3821.4 3858.6 1493.4 1460.7 7093.1 5847.2 1456.0 1490.6

ior-easy-read [GiB/s] 1.0 1.1 1.0 1.0 2.1 1.8 1.3 1.3
mdtest-easy-stat [kIOPS] 558.9 537.9 183.5 180.0 566.7 567.1 179.1 181.6

ior-hard-read [GiB/s] 1.3 1.3 1.4 1.5 1.9 1.9 1.5 1.5
mdtest-hard-stat [kIOPS] 391.7 422.5 186.4 186.7 448.3 403.7 184.8 187.6

mdtest-easy-delete [kIOPS] 78.3 74.2 102.6 103.3 81.4 82.2 103.5 102.4
mdtest-hard-read [kIOPS] 188.0 180.7 48.5 49.2 213.8 209.3 45.7 46.2

mdtest-hard-delete [kIOPS] 64.9 62.4 75.3 79.4 63.2 60.7 78.6 73.7
TABLE II

RESULTS OF THE IO500 BENCHMARK ON AN ENCRYPTED LUKS CONTAINER RESIDING IN A tmpfs. THE SPECIFICATION ENCRYPTED AND UNENCRYPTED
REFERS TO THE SINGULARITY CONTAINER

Operation (unit) Performance
1 Process 10 Processes

ior-easy-write [GiB/s] 0.9 2.1
mdtest-easy-write [kIOPS] 68.9 131.0

ior-hard-write [GiB/s] 0.8 0.8
mdtest-hard-write [kIOPS] 32.4 30.8

find [kIOPS] 1391.2 5832.1
ior-easy-read [GiB/s] 2.1 2.6

mdtest-easy-stat [kIOPS] 180.3 584.3
ior-hard-read [GiB/s] 2.6 2.0

mdtest-hard-stat [kIOPS] 173.8 380.4
mdtest-easy-delete [kIOPS] 98.7 72.4
mdtest-hard-read [kIOPS] 72.8 206.9

mdtest-hard-delete [kIOPS] 77.5 61.4
TABLE III

IO500 RESULTS ON AN ext4 MOUNTED LOOPBACK DEVICE RESIDING IN AN
tmpfs

Fig. 4. Distribution of the individual static overhead measurements of the
secure workflow when compared to the same job processed insecurely.

analysis is discussed based on our actual implementation at
GWDG.

In future work, we want to look closer at the discussed

TEE. The current solutions require a reboot and dedicated
public/private keys for each individual group working with
sensitive data. Although a privilege escalation is still possible
by a member of these groups, this person can only gain
access to data already available to him/her. Using TEEs would
additionally shield independent processes from each other and
could potentially allow to share a node between groups.

Moreover, this paper has a focus on single-node jobs. In the
future, we want to extend this to multi-node jobs and develop
automated management tools to manage the secure vFabric
and images.

On the other side, one needs to closely evaluate the cryp-
tographic costs caused by the need for encryption. As soon
as all required file system clients are available for newer
kernels, the impact on the BeeGFS performance will be tested.
Additionally, the performance costs of loopback devices should
be further analyzed.

REFERENCES

[1] M. Uecker, F. Ong, J. I. Tamir, D. Bahri, P. Virtue, J. Y. Cheng, T. Zhang,
and M. Lustig, “Berkeley advanced reconstruction toolbox,” in Proc. Intl.
Soc. Mag. Reson. Med, vol. 23, no. 2486, 2015.

[2] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson,
T. Pock, and F. Knoll, “Learning a variational network for reconstruction
of accelerated mri data,” Magnetic resonance in medicine, vol. 79, no. 6,
pp. 3055–3071, 2018.

[3] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Black-
smith: Scalable rowhammering in the frequency domain.”

[4] J. Christopher, G. Jung, and C. Doane, “Making it more secure: The
technical and social challenges of expanding the functionality of an
existing hpc cluster to meet university and federal data security require-
ments,” in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), 2019, pp. 1–5.

[5] D. Coman Schmid, K. Crameri, S. Oesterle, B. Rinn, T. Sengstag, and
H. Stockinger, “Sphn–the biomedit network: A secure it platform for
research with sensitive human data,” Digital Personalized Health and
Medicine, vol. 270, pp. 1170–1174, 2020.

[6] M. Scheerman, N. Zarrabi, M. Kruiten, M. Mogé, L. Voort,
A. Langedijk, R. Schoonhoven, and T. Emery, “Secure platform for
processing sensitive data on shared hpc systems,” arXiv preprint
arXiv:2103.14679, 2021.

[7] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave,” in Pro-
ceedings of the Hardware and Architectural Support for Security and
Privacy 2016, 2016, pp. 1–9.



[8] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Key-
stone: An open framework for architecting trusted execution envi-
ronments,” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1–16.

[9] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
{OS} for unmodified applications on {SGX},” in 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 645–
658.

[10] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al.,
“{SCONE}: Secure linux containers with intel {SGX},” in 12th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16), 2016, pp. 689–703.

[11] A. Smith, J. Riley, M. Syed, M. Kupcevic, P. Edmon, and S. Yockel, “Ex-
ploring untrusted distributed storage for high performance computing,”
in Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (learning), 2019, pp. 1–6.

[12] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[13] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5, p.
e0177459, 2017.

[14] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on job scheduling strategies for
parallel processing. Springer, 2003, pp. 44–60.

[15] P. Braam, “The lustre storage architecture,” arXiv preprint
arXiv:1903.01955, 2019.

[16] F. Herold, S. Breuner, and J. Heichler, “An introduction to beegfs,” 2014.
[17] R. McLay, K. W. Schulz, W. L. Barth, and T. Minyard, “Best practices

for the deployment and management of production hpc clusters,” in
SC’11: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2011, pp.
1–11.

[18] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
De Supinski, and S. Futral, “The spack package manager: bringing order
to hpc software chaos,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2015, pp. 1–12.

[19] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett,
T. Rimmer, K. D. Underwood, and R. C. Zak, “Intel® omni-path
architecture: Enabling scalable, high performance fabrics,” in 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. IEEE,
2015, pp. 1–9.

[20] G. F. Pfister, “An introduction to the infiniband architecture,” High
performance mass storage and parallel I/O, vol. 42, no. 617-632, p. 10,
2001.

[21] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proceedings of the Second Asia-Pacific Workshop
on Systems, 2011, pp. 1–5.

[22] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[23] J. Kunkel, J. Bent, J. Lofstead, and G. S. Markomanolis, “Establishing
the io-500 benchmark,” White Paper, 2016.

[24] A. Moh’d, Y. Jararweh, and L. Tawalbeh, “Aes-512: 512-bit advanced
encryption standard algorithm design and evaluation,” in 2011 7th
International Conference on Information Assurance and Security (IAS).
IEEE, 2011, pp. 292–297.

[25] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al., “Open
mpi: Goals, concept, and design of a next generation mpi implementa-
tion,” in European Parallel Virtual Machine/Message Passing Interface
Users’ Group Meeting. Springer, 2004, pp. 97–104.


