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Abstract. HPC applications with suboptimal I/O behavior interfere
with well-behaving applications and lead to increased application run-
time. In some cases, this may even lead to unresponsive systems and
unfinished jobs. HPC monitoring systems can aid users and support staff
to identify problematic behavior and support optimization of problem-
atic applications. The key issue is how to identify relevant applications?
A profile of an application doesn’t allow identifying problematic phases
during the execution but tracing of each individual I/O is too invasive.

In this work, we split the execution into segments, i.e., windows of fixed
size and analyze profiles of them. We develop three I/O metrics to iden-
tify three relevant classes of inefficient I/O behaviors, and evaluate them
on raw data of 1,000,000 jobs on the supercomputer Mistral. The advan-
tages of our method is that temporal information about I/O activities
during job runtime is preserved to some extent and can be used to iden-
tify phases of inefficient I/O.

The main contribution of this work is the segmentation of time se-
ries and computation of metrics (Job-I/O-Utilization, Job-I/O-Problem-
Time, and Job-I/O-Balance) that are effective to identify problematic
I/O phases and jobs.

1 Introduction

Modern HPC systems are processing many thousands of jobs every day. Some of
them can misbehave for some reasons (e.g., due to poor programming practices,
I/O intensive tasks, or bugs) and can slow down the whole system performance
and affect other jobs that are running on the same system in parallel. This bad
behavior must be identified and brought under control. Before we can think
about what to do with these jobs, we need to find a way to detect them.

It is important to detect inefficient I/O patterns. Monitoring systems are
employed to solve this problem. However, the amount of time needed by humans
to identify inefficient usage grows with the system size and the runtime of jobs.
To overcome this, the monitoring system must provide tools aiding the analysis.
It needs to produce more compact representation of data providing meaningful
metrics and allow for deeper analysis.



There are a variety of data-intensive parallel applications that run on HPC-
systems solving different tasks, for example, climate applications. Depending
on the application, we can observe different data and metadata characteristics
such as parallel/serial I/O, check-pointing behavior, or I/O bursts in write/read
phases. Efficient patterns are critical for I/O performance of file systems and
application runtime. Checking every application manually is not possible for the
support. We believe that focusing on relevant jobs is important, hence we need
meaningful metrics tailored to parallel jobs and are sensitive to specific I/O
behaviors.

After the related work section, the theoretical part follows. Then, we evaluate
the approach on a real HPC system.

2 Related Work

There are many tracing and profiling tools that are able to record I/O informa-
tion [6]; we will discuss a selection of them in more detail in the following. The
issue of performance profiles is that they remove the temporal dimension and
make it difficult to identify relevant I/O phases. As the purpose of interesting
applications is the computation and I/O is just a byproduct, applications often
spend less than 10% time with I/O. Tracing tools, however, produce too much
information that must be reduced further.

The Ellexus tools3 include Breeze, a user-friendly offline I/O profiling soft-
ware, an automatic I/O report generator Healthcheck, and command line
tool Mistral4 which purpose is to report on and resolve I/O performance is-
sues when running complex Linux applications on high performance compute
clusters. Mistral is a small program that allows you to monitor application I/O
patterns in real time, and log undesirable behaviour using rules defined in a con-
figuration file called a contract. Ellexus tools support POSIX and MPI (MPICH,
MVAPICH, OpenMPI) I/O interfaces.

Darshan [2, 3] is an open source I/O characterization tool for post-mortem
analysis of HPC applications’ I/O behavior. Its primary objective is to cap-
ture concise but useful information with minimal overhead. Darshan accom-
plishes this by eschewing end-to-end tracing in favor of compact statistics such
as elapsed time, access sizes, access patterns, and file names for each file opened
by an application. These statistics are captured in a bounded amount of mem-
ory per process as the application executes. When the application shuts down,
it is reduced, compressed, and stored in a unified log file. Utilities included with
Darshan can then be used to analyze, visualize, and summarize the Darshan log
information. Because of Darshan’s low overhead, it is suitable for system-wide
deployment on large-scale systems. In this deployment model, Darshan can be
used not just to investigate the I/O behavior of individual applications but also
to capture a broad view of system workloads for use by facility operators and
I/O researchers. Darshan is compatible with a wide range of HPC systems.

3 https://www.ellexus.com/products/
4 Not to confuse with the DKRZ supercomputer Mistral!

https://www.ellexus.com/products/


Darshan supports several types of instrumentation via software modules.
Each module provides its own statistical counters and function wrappers while
sharing a common infrastructure for reduction, compression, and storage. The
most full-featured modules provide instrumentation for POSIX, MPI-I/O and
standard I/O library function calls, while additional modules provide limited
PNetCDF and HDF5 instrumentation. Other modules collect system informa-
tion, such as Blue Gene runtime system parameters or Lustre file system striping
parameters. The Darshan eXtended Tracing (DXT) module can be enabled at
runtime to increase fidelity by recording a complete trace of all MPI-I/O and
POSIX I/O operations.

Darshan uses LD PRELOAD to intercept I/O calls at runtime in dynami-
cally linked executables and link-time wrappers to intercept I/O calls at compile
time in statically linked executables. For example, to override POSIX I/O calls,
the GNU C Library is overloaded so that Darshan can intercept all the read,
write and metadata operations. In order to measure MPI I/O, the MPI libraries
must be similarly overridden. This technique allows an application to be traced
without modification and with reasonably low overhead.

LASSi tool [7] was developed for detecting, the so called, victim and aggressor
applications. An aggressor can steal I/O resources from the victim and negatively
affect its runtime. To identify such applications, LASSi calculates metrics from
Lustre job-stats and information from the job scheduler. One metric category
shows file system load and another category describes applications I/O behavior.
The correlation of these metrics can help to identify applications that cause the
file system to slow down. In the LASSi workflow this is a manual step, where a
support team is involved in the identification of applications during file system
slow down. Manual steps are disadvantageous when processing large amounts of
data and must be avoided in unsupervised I/O behavior identification. LASSi’s
indicates that the main target group are system maintainers. Understanding
LASSi reports may be challenging for ordinary HPC users, who do not have
knowledge about the underlying storage system.

The Ellexus tool set includes, Breeze, an offline I/O profiling software,
an automatic I/O report generator Healthcheck, and command line tool
Mistral, which purpose is to report on and resolve I/O performance issues
when running complex Linux applications on high performance compute clus-
ters. Mistral is a small download that allows you to monitor application I/O
patterns in real time, and log undesirable behaviour using rules defined in a
configuration file called a contract. Another powerful feature of Mistral is the
ability to control I/O for application individually. Ellexus tools currently support
POSIX and MPI (MPICH, MVAPICH, OpenMPI) I/O interfaces.

Another branch of research goes towards I/O prediction. Some methods work
with performance data from storage systems, application side and hybrids. Appli-
cation runtime prediction, efficient scheduling, I/O performance improvement.
The methods work in a dynamically changing environment. They didn’t tell
much about the application.



The discussed limitations are well known, and many projects investigate new
solutions for I/O assessment of behaviour.

In [5], the authors utilized probes to detect file system slow-down. A probing
tool measures file system response times by periodically sending metadata and
read/write requests. An increase of response times correlates to the overloading
of the file system. This approach allows the calculation of a slow-down factor
identification of the slow-down time period.

In [4], the authors run HPC applications in monitored containers. Depending
on metric values captured during application runtime, the I/O management
can increase or decrease the number of containers, or even take them offline, if
insufficient resources are available.

In [8], a performance prediction model is developed by developers that aims
to improve job runtime estimation for better job scheduling. The authors use the
property of static iterative scientific code to produce near constant I/O burst,
when considered over a longer period of time.

3 Methodology

The methodology of this work relies on (1) the segmentation of I/O traces for
jobs, i.e., the generation of performance profiles for fixed length time windows.
This operation results in a set of segments over job runtime that (2) are analyzed
individually and aggregated on node level or job level. (3) Finally, the develop-
ment of metrics for scoring the segments, i.e., the mapping from segment data to
meaningful scores. The thresholds for those metrics can be semi-automatically
determined and learned. In this section, we introduce the methodology in a
generic manner, without giving any numbers or using metrics. We apply and
evaluate the approach on a real HPC system in Section 5.

3.1 Segmentation and timeline aggregation

Let us assume the following as a starting situation. A data collector runs on all
compute nodes, captures periodically metrics, and sends them to a centralized
database. Database stores each metric as a time series together with information
like node name, file system, job ID.

As the resolution of the sampling is too fine-grained (the default sampling in-
terval is 5 seconds), we split the timeline obtained on a client node into segments
of equal length.

To illustrate the approach, consider the fictive example: a job runs on 4 nodes
and a monitoring system collects data for 4 different metrics at time points tX ,
with 0 ≤ X < 9. By grouping 3 samples of each metric into one segment, we
obtain 3 segments.

Node and job segments are collections of metric segments that aggregate this
information for each node or for each job. The example is illustrated in Figure 1.
A segment can be related to an individual metric (green), a node (red), or the
job data (blue).



Fig. 1: Monitoring data structure and segmentation. In the example, 4 metrics
are captured on 4 client nodes at time points ti. Three sequential samples are
aggregated to metric segments (green box). Node and job segments are collections
of metric segments (red and blue boxes).

3.2 Training

The training step produces statistics, which describe the overall I/O performance
of the HPC system. Ideally, the analyzed dataset should contain peak perfor-
mance values, achievable on an HPC, for all metrics. Similar performance values
form categories (e.g., low, medium, and high performance).

There are several alternative ways to form categories: by manual selection,
by using statistics like quantiles, and by using machine learning algorithms. We
tried all the three mentioned methods, but quantiles worked robustly for our
purpose. Furthermore, it allows to determine the percentage of jobs that the
support team can investigate. For example, for the one million jobs investigated
in this study (covering a period of 3 month), DKRZ could inspect 1000 - 10k
jobs closer, hence looking at the 0.1% of jobs that are most I/O demanding.

We want to take a closer look at the computation of quantiles. Table 1 illus-
trates the idea. First of all, we define two quantiles qX and qY, and use them to
determine the limits for each metric individually (in our case X=99 and Y=99.9).
For simplification, we use the same quantiles for all metrics. After definition of
the limit, the metric segments can be categorized and we count the number of
segments that falls into each category in the following way:

LowIO smaller than qX c0,X = count(value(metricX) ≤ limit0,X)
HighIO between qX and qY c1,X = count(limit0,X > value(metricX) ≤ limit1,X)
CriticalIO larger than qY c2,X = count(value(metricX) > limit1,X)

3.3 Scores

Our categories are labeled manually. The scoring strategy is based on the fol-
lowing considerations:



Metric Limits Number of occurrences

name qY qX LowIO HighIO CriticalIO

metric0 limit0,0 limit1,0 c0,0 c1,0 c2,0
metric1 limit0,1 limit1,1 c0,1 c1,1 c2,1
. . .
metricN limit0,N limit1,N c0,N c1,N c2,N

Table 1: Generic limits and category statistics.

Since, LowIO represents low I/O utilization, it gets a score of 0. This category
will be mostly ignored in derived metrics. HighIO contains no outliers but may
generate a mixed workload or be inefficient and needs to be taken into account.
Therefore, it gets a score of 1. CriticalIO is a weight factor, larger than
HighIO. We suggest to compute CriticalIO/HighIO, and to take the smallest
value for Z (this is summarized in Table 2a).

Category name MScore

LowIO 0
HighIO 1
CriticalIO Z

(a) Category scores

Score name Definition

MScore = category scores
NScore

∑
MScore

JScore
∑

NScore

(b) Segment scores

Table 2: Summary of the scoring

Based on the individual metrics scores, further scores are derived. The node
score is the sum of all individual metrics scores for a segment, i.e., it indicates
if there is an I/O issue at all in this segment and on this node. The job level
aggregation is the sum of the node score (see Table 2b).

3.4 Job assessment

Once the system is trained and a configuration file with the statistics generated,
a single job can be analyzed and assessed automatically. To understand the be-
havior of the job I/O, we exploit the knowledge about the timeline and analyze
the temporal and spatial I/O behavior of the segments in coarse-grained fashion.
This is achieved by introducing new metrics that reduce the complexity into rel-
evant scores that show potential for optimization: the Job-I/O-Problem-Time,
Job-I/O-Utilization, and Job-I/O-Balance. These values must be considered to-
gether.

Job-I/O-Problem-Time This metric is the fraction of job runtime that is I/O-
intensive; it is approximated by the fractions of segments that are considered



problematic (JScore > 1). I/O problem time is the amount of problematic, I/O-
intensive job segments (IOJS) divided by the total number of job segments (JS)
(see Equation (1)).

Job-I/O-Problem-Time =
count (IOJS)

count (JS)
(1)

Job-I/O-Utilization While most phases may not do any I/O, these might have
extraordinary I/O activity during such phases. Large jobs with a large number of
I/O accesses can induce slow down on the file system for other jobs. To identify
such jobs, we compute a metric that shows the average load during I/O-relevant
phases.

The first step identifies I/O-intensive job segments (IOJS), i.e., JScore > 1,
and counts occurrences N = count(IOFS). Assume, the max score() function
returns the highest metric score of all metrics in a job segment.
Then, the quotient of the max score()’s sum and N is I/O utilization for one
particular file system. For handling several file systems, we compute a sum of
the resulting values and obtain Job-I/O-Utilization (see Equation (2)).

Job-I/O-Utilization =
∑
FS

∑
j∈IOJS max score(j)

N
(2)

Since, Job-I/O-Utilization considers only I/O intensive job segments, the
condition max score() ≥ 1 is always true. Thus, Job-I/O-Utilization is defined
for a job iff the job has at least some relevant I/O activity. Job-I/O-Utilization
values are always ≥ 1.

For a conventional mean-score computation, we would probably apply the
mean score() function to a job segment, instead of max score(), to obtain
a mean value of all metric scores in a job segment. This would provide a con-
ventional mean value, as we would expect it. Although such a value might be
more intuitive, the following considerations show that it is not robust enough
for our purpose. Monitoring data (in particular historical data) may be incom-
plete or incompatible, e.g., when some metrics are not captured due a collector
malfunction or when monitoring system changes after . As a consequence, con-
ventional mean values for complete and incomplete job data may diverge quite
substantially from one another, even for jobs with similar I/O performance. For
illustration, consider a job segment with only one active metric segment, e.g.,
with score = 4, and others with scores = 0. The mean value would be smaller, if
data for all 13 metrics are available as if only 8 metrics are present. This would
adversely affect the result, assigning higher values to incomplete data. In this
context of this work, this would be interpreted as higher I/O load. To prevent
such a miss-calculation, we compute mean value of job segment max values. This
method is independent of the number of metrics and fulfills our requirements.
Even if one metric segment works with high performance, the whole job segment
can be considered as loaded. This works as a perfect complement for the balance
metrics.



Job-I/O-Balance The balance metric indicates how I/O load is distributed be-
tween nodes during job runtime. Here again, we consider only I/O-intensive job
segments (IOJS), i.e., JScore > 1 but divide them with the maximum score
obtained on any single node. A perfect balance is 1.0 and a balance where 25%
of nodes participate in I/O is 0.25.

For each job segment j, with j ∈ IOJS, we compute:

1. NScore for each node segment
2. Mean and max values of NScores
3. Job-I/O-Balance(j) for a job segment, i.e., the quotient of mean and max

values

The overall Job-I/O-Balance is the mean value of all Job-I/O-Balance(j) values,
with j ∈ IOJS (see Equation (3)).

Job-I/O-Balance = mean

({
mean score (j)

max score (j)

}
j∈IOJS

)
(3)

3.5 Example

Assume a 4-node job with two I/O intensive job segments sj0 and sj5 . Further-
more, assume, the job assesses two file systems fs1 and fs2. We compute Job-
I/O-Utilization, Job-I/O-Problem-Time and Job-I/O-Balance metrics in Equa-
tions (4) to (6) for generic data illustrated in Figure 2.

Fig. 2: Segment timeline. sj0 , sj5 ∈ IOJS are I/O-intensive job segments.

max0 = max score(sj0 ) = 4

max1 = max score(sj5 ) = 1

Ufs1 = mean({max0,max1}) = 2.5

Ufs2 = mean({max0,max1}) = 2.5

Job-I/O-Utilization = Ufs1 + Ufs2 = 5 (4)

NIOJS = 2

NJS = 6

Job-I/O-Problem-Time =
NIOJS

NJS

≈ 0.33 (5)

b0 = balance(sj0 ) = 0.25

b1 = balance(sj5 ) = 1

Job-I/O-Balance = mean({b0, b1}) = 0, 625 (6)



4 Data exploration

DKRZ uses Slurm workload manager for scheduling jobs on Mistral on shared
and non-shared partitions. The monitoring system of DKRZ [1] does not capture
data on shared Slurm partitions, because it can not assign this data unambigu-
ously to jobs. The problem hides in the (in-house) data collector, more precise,
in the usage of proc files as its main data source. The point is that shared parti-
tions can run two or more jobs on a compute node. Job activities can change the
I/O counters in the proc files, but the changes can not be traced back to jobs.
This kind of monitoring makes observation of individual jobs not feasible. In
contrast, a non-shared partition, where only one job is allowed to run, does not
suffer from this problem. Monitoring system assumes that all changes in proc
files are a result of activities done by a currently running job.

This section deals with job data statistics of 1,000,000 job data downloaded
from DKRZ’s monitoring system. These data cover a time period of 99 days
(from 2019–05–16 until 2019–08–23).

4.1 Job data

In our experiments, the monitoring system periodically collects various metrics
(according to a capture interval) including I/O metrics. The resulting time series
is collected for each client node and then assigned to a parallel (SLURM) job.
Ultimately, the job data has a 3-dimensional structure: Metric×Node×Time.
Metrics used in our investigation are listed in Tables 3a and 3b.

To reduce the overhead of the data acquisition and storage space, metadata
and I/O metrics are selected in the following way: Similar metadata operations
are combined into three different counters: read, modification and other accesses.
Then, create and unlink counters are captured separately as these operations are
performance critical. The exact group compositions and metric names are listed
in Table 3a.

For I/O, we capture a set of counters: The read * and write * counters
provide the basic information about file system access performed by the applica-
tion. We also include the osc read *, osc write * that represent the actual
data transfer between the node (Lustre client) and each server5. The metrics are
listed in Table 3b.

4.2 Analysis tool

The analysis tool is a product of our continuous research on monitoring data
analysis. It requires an initial training, based on a relatively small job dataset,
before it can be used for automatic job assessment. Therefore, in the first step, it

5 The Lustre client transforms the original file system accesses — made by the appli-
cation — to Lustre specific accesses, for instance by utilizing the kernel cache. This
can have a significant impact on I/O performance, when many small I/O accesses
are created but coalesced.



md_read = getattr + getxattr + readdir + statfs + listxattr + open + close

md_mod = setattr + setxattr + mkdir + link + rename + symlink + rmdir

md_file_create = create

md_file_delete = unlink

md_other = truncate + mmap + ioctl + fsync + mknod

(a) Metadata metrics: data collector form groups of related metadata proc counters,
compute sums, and assign the sums to corresponding metadata metrics.

read_bytes

read_calls

write_bytes

write_calls

Application’s I/O requests.

osc_read_bytes

osc_read_calls

osc_write_bytes

osc_write_calls

Lustre client I/O requests.

(b) Data metrics: data collectors assign selected data related proc counter values directly
to corresponding data metrics (proc counter names are omitted).

Table 3: Data collectors run on all compute node and capture periodically
thirteen I/O metrics (emphasized by bold font) and send them to a centralized
database. These I/O metrics are computed from around thirty constantly grow-
ing proc counters in /proc/fs/lustre/llite/lustre*-*/stats. (Note: Lustre can reset
counters at any time point.)

downloads job data from a system-wide monitoring database and creates statis-
tics about I/O performance on the HPC system. In the second step, these statis-
tics are used for assessing individual jobs. The workflow is illustrated in Figure 3.

4.3 Data statistics

About 5.3% of data is empty. For these jobs neither data, nor metadata exist.
We suppose these jobs are canceled, before Slurm is able to allocate nodes. After
this filtering, 947445 job data are available.

All nodes have access to two file systems; as both deliver similar performance
values, a differentiation is not necessary. Therefore, in the course of the paper, we
will summarize both partitions to one big partition, called “compute”. The nodes
of these partitions are reserved exclusively for a job. The monitoring system
relies on the assumption that all I/O activities registered on these nodes refers
to the running job. Conversely, other partitions can be shared by several jobs.
Since the monitoring system captures node related data, monitoring data from
these partitions can not be assigned unambiguously to a job. Thus, data from
“shared”, “prepost”, and other small partitions is filtered out. A further filtering
criteria is exit state of jobs. We analyze data only from successfully completed
jobs. Statistics for completed jobs for Mistral’s large partitions are shown in
Figure 4a. After filtering, 338,681 job data remain for analysis.
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Fig. 3: Analysis tool workflow

(a) Percetage of Slurm usage (b) Missed data

Fig. 4: Statistics about Slurm jobs analysed.

Fig. 5: Ordered job runtime (blue line) and 10 minutes threshold (red line).

The next statistic describes the runtime of the successfully completed jobs.
Below the red line are about 45% of jobs that are shorter than 10 minutes. As
these jobs consume only 1.5% of available node hours, we do not expect to find
significant I/O loads in there. Figure 5 illustrates the runtime of the remaining
jobs, including the 10 minutes threshold (red line).

During our experiments, we encounter a problem with incomplete data.
Sometimes, individual metrics, and occasionally, data from complete nodes are
missing. The statistics are shown in Figure 4b. The reasons can be, that some
counters are not available during collector initialization, collectors can crash, or
the database is overloaded and is not able to record data. For 4.5% of the jobs
less than 90% of data is available, in 10.4% data is complete from 90% to 100%,
and in the remaining 85.1% all data is available. It is not harmful for the train-
ing to lack some data as metric scores can be computed on partially available



data. We believe the approach is sufficiently robust to process such data, but
for assessment of individual jobs the results won’t be perfectly accurate if they
omitted some I/O phases.

5 Evaluation

This section uses our methodology to identify I/O-intensive applications on the
Mistral supercomputer by doing a step-by-step evaluation of real data. There-
with, we validate that the strategy and metrics will allow us to identify I/O
critical jobs and I/O segments within. The segment size used in the experiments
is 10 minutes.

5.1 Limits

There is no perfect recipe for finding the best quantiles that meets everyone’s
needs, because file system usage and goals may be different. In our case, iden-
tification of outlier jobs requires quantiles in the upper range. We can see this
in the example of read calls segments in Figure 6. The most blue dots are
located close to 0 Op/s, which means that there is low or no I/O activity in
most segments. We separated them by the 99-quantile (lower red line). The re-
maining high activity segments are significant for identification of high I/O load.
The more of them are located in a job, the higher is the probability that this
job causes a high I/O load. Additionally, the 99.9-quantile (the upper red line)
separates high and critical activity segments. This separation defines segments
with an exceptionally high I/O load. Generally speaking, the quantiles choice
in this work is based on observations of file system usage on Mistral and rough
ideas of what we want to achieve. We suspect it is transferable to other HPC
systems, but this point was not investigated and requires a further study.

For limit calculation we use a 30 days training set consisting of 72,000 jobs.
Their segmentation results in around 152,000,000 metrics segments. The result-
ing limits are listed in Table 5.

Fig. 6: Training data (subset) for read bytes metric, and q99%- and q99.9%-
quantiles (red lines).



5.2 Categorization

In the next step, the limits are used for categorization of all job data (about 660
million metric segments). The result of categorization is shown in Table 5.

Category name MScore Justification for Mscore value

LowIO 0 Ignore this category in mathematical expressions
HighIO 1 Consider this category in mathematical expressions
CriticalIO 4 CriticalIO is at least four times higher than HighIO

Table 4: Category scores for Mitral evaluation.

The first observation is, that there are less osc read * and osc write *
metrics reported than for other metrics. The reason for that is the file system
changed from Lustre 2.7.14 to Lustre 2.11.0. Unfortunately, since Lustre 2.8, the
proc files do not offer the osc read * and osc write * metrics anymore. We
did not know that and captured incomplete data. (Fortunately, other sources
provide this information and we can fix that in the future.) This trifle makes no
difference for this concept, as long as data represents typical file system usage.
We assume that 17M metric segments form a representative training set and
take this opportunity to show the robustness of the approach.

The second observation is that modification of metadata, deleting and cre-
ation of files are rare operations. For delete and modify operations, the 99%-
quantile is zero, i.e., any segment that has one delete/modify operation, it is
considered to be in the category HighIO.

5.3 Aggregation

The conversion of metrics value to the score allows the aggregation of job data
on job, node, and metric levels and of incompatible metrics, like md delete
and read bytes. This is useful as it allows us to reduce the data for large jobs.
Due to inability to aggregate, conventional dashboards contain many plots with
detailed information, which, in turn, is hard to grasp and inconvenient to use.
With uniform scoring aggregation it becomes an easy task. This is illustrated in
Figure 7. Data is aggregated from detailed view in Figure 7a to reduced view in
Figure 7b, and finally to one single chart in Figure 7c.

5.4 Metrics calculation

Metrics calculation is the next logical step in our work. They describe specific
I/O behavior by a meaningful number.

5.5 Job-I/O-Utilization (U)

The mean score metric filters non-I/O-intensive jobs out of the dataset. 41%
jobs (151,777) have a Job-I/O-Utilization = 0. These jobs are of little interest



Metric Limits Number of occurrences

Name Unit q99 q99.9 LowIO HighIO CriticalIO

md file create Op/s 0.17 1.34 65,829K 622K 156K
md file delete Op/s 0.00 0.41 65,824K 545K 172K
md mod Op/s 0.00 0.67 65,752K 642K 146K
md other Op/s 20.87 79.31 65,559K 763K 212K
md read Op/s 371.17 7084.16 65,281K 1,028K 225K

osc read bytes MiB/s 1.98 93.58 17,317K 188K 30K
osc read calls Op/s 5.65 32.23 17,215K 287K 33K
osc write bytes MiB/s 8.17 64.64 16,935K 159K 26K
osc write calls Op/s 2.77 17.37 16,926K 167K 27K

read bytes MiB/s 28.69 276.09 66,661K 865K 233K
read calls Op/s 348.91 1573.45 67,014K 360K 385K
write bytes MiB/s 9.84 80.10 61,938K 619K 155K
write calls Op/s 198.56 6149.64 61,860K 662K 174K

Table 5: Category statistics for training with segments size of 600 seconds.

to us, since they do not produce any noticeable load for our file system. The
remaining 59% jobs (218,776) are selected for further investigations.

The distribution of Job-I/O-Utilization is shown in Figure 8a. The utilization
for one file system may be U = 4, if the file system is used to 100%. We can
observe that for many jobs U > 4, which means these jobs are using two file
systems at the same time. This may be a copy job that moves data from one file
system to another.

5.6 Job-I/O-Balance (B)

Jobs that are running on 1 node are always balanced. There are about 66,049
(30%) jobs of this kind. Job-I/O-Balance for the remaining 152,727 (70%) jobs
are visualized in Figure 8b. The picture shows that a vast amount of jobs are
not using parallel I/O or doing it insufficiently. 17,323 of the jobs are balanced
to 50% or more. 4,122 of them are highly optimized and are running with almost
100% optimization.

We have to keep in mind that during categorization, all negligible I/O (i.e., if
JScore = 0) is filtered out. That means, the balance metric focuses on significant
I/O sizes.

List of jobs ordered by Job-I/O-Balance in increased order gives an overview
of jobs with the lowest I/O balance. A closer look at the first entries reveals that
Jobs with a fixed number of I/O nodes have also a small I/O balance value, but
they are far behind in the list.

5.7 Job-I/O-Problem-Time (PT)

Surprisingly, we found that 142,329 (65%) jobs are pure I/O jobs, i.e., with
Job-I/O-Problem-Time = 1. The other 76,447 (35%) jobs have a Job-I/O-Problem-Time <
1. The peaks in Figure 8c at positions 1, 1/2, 1/3, 1/4, . . . are mostly artifacts
from short jobs. After filtering out jobs shorter than 2 hours, they disappear,
but peak at position 1 is still there.



(a) Metric/Node view (b) Node view

(c) Job view

Fig. 7: Segments visualization at different level of details.

6 Job assessment

Job assessment is a semi-automated process. In the first step, penalty functions
sort jobs according to user-defined requirements. Typically, a function is con-
structed such that each sub-optimal parameter increases its value. A job list can
be sorted automatically by that value. The manual tasks in the second steps are
visualization of top ranked jobs and actual assessment.

Based on our initial goals, we define two functions: (1) Problem-Score: for
detection of potential inefficient file system usage and I/O-Intensity: for detection
of high I/O loads. Both are defined and visualized in Figure 9. The computation
includes B, U, and PT metrics from the previous section and further parameters
for computing a single value.

6.1 Problem-Score

The Problem-Score is a product of all metrics, as defined by the penalty function
in the Figure 9a. For illustration, a 70-node job with Problem-Score ≈ 2.9 is
visualized on node-level in Figure 10. It represents a classic case of unoptimized
single node I/O. In the picture, we see a short phase of metadata operations,
and a 360 minutes long write phase. The node view (omitted, due to space
restrictions) reveals also, that the short phase is fully balanced, and the long



(a) Job-I/O-Utilization (b) Job-I/O-Balance (c) Job-I/O-Problem-Time

Fig. 8: Metric statistics

(a) Problem-Score = (1 − B) · PT ·U (b) I/O-Intensity = B ·PT ·U · total nodes
Fig. 9: Penalty functions and the Top 20 jobs with a runtime > 30 minutes.
The color represents a unique job name.

phase runs on a single node. The phases can be clearly identified by naked eye
in the timeline.

When considering further jobs, we found other recurring and inefficient I/O
patterns, e.g., partially or improperly balanced I/O. In all cases, different phases
can be easily read from timelines, even if they are connected to each other or
running in parallel.

6.2 I/O-Intensity

To identify applications that generate high I/O loads, we have also to consider
the number of nodes. Here again, we use the same logic as before, i.e., when I/O
load increases, I/O-Intensity must also increase. Now, high balance is a sign for
load generation, and can be used directly in the function. All that is reflected in
the penalty function in Figure 9b.

A particularly interesting case is illustrated on job level in Figure 11. This
picture reveals that the job does I/O in two phases. Looking at the metric/node
level (omitted, due to space restrictions), we see that the job (1) operates on both
file systems, (2) reads data in the first phase and creates files in the second phase,
and (3) both phases are fully balanced. The file creation phase takes longer than



Fig. 10: Problem-Score ≈ 2.9: Nodes: 70; B: 0.05; PT:0.8; U: 7.5. First I/O
phase: highly parallel metadata access; Second I/O phase: single node writes.

Fig. 11: I/O-Intensity ≈ 29.9; Nodes: 13; B: 1.0; PT: 0.6; U: 3.9.; First I/O
phase: fully balanced metadata operations and reads on both file systems; Second
I/O phase: fully balanced file create operations on both file systems.

240 minutes (> 50% of job runtime). This extreme behavior can degrade the
performance of Lustre metadata servers, affect the runtime of parallel running
jobs, and slow down metadata operations for other users. We suppose that users
and developers of this application are not aware of that, and store information
in different files for reasons of convenience.

This job could be discovered even if all osc * are missing. Obviously, the
design of the approach is robust enough to handle missing data.

7 Conclusion

In this work, we developed and evaluated an approach for characterization of I/O
phases utilizing monitoring infrastructure widely available and compute derived
metrics for phases of application execution. In our experiments, these metrics
support the detection of I/O-intensive and problematic jobs.

In the pre-processing part, we split monitoring data into fixed size time win-
dows (segments). Then, data of several thousands of jobs are used for computing
statistics representing typical file system usage. Based on statistics and average
segment performance, we are able to assign a score value for each segment. These
segment scores are the basis for the next processing.

Working with categories and scores significantly simplifies mapping of com-
mon I/O behavior to meaningful metrics. We derived the metrics Job-I/O-
Balance, Job-I/O-Problem-Time, and Job-I/O-Utilization. These metrics can
be used in any mathematical calculation, or in direct comparison of jobs, or for
deriving new metrics.



Visualization of the derived metrics is easier to understand than visualization
of raw data, e.g., because raw data can have a different semantics, an arbitrary
value with high peaks. For the ordinary users, it is not always obvious, if the
performance of such values is good or bad. The categorization hides all the details
from users.

In our experiments, we could identify applications with high potential to
degrade file system performance and applications with inefficient file system
usage profile. By investigating raw data, we could verify that the presented
approach supports the analysis. In our opinion, this approach is suitable for most
current state-of-the-art cluster environments that are able to monitor suitable
file system usage counters.

Ultimately, we work toward automatic analysis and reporting tools. Our next
step is the data reduction, e.g., the grouping of similar profiles.
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