
Potential of I/O Aware Workflows in Climate and Weather

Julian M. Kunkel1 , Luciana R. Pedro1

© The Authors 2020. This paper is published with open access at SuperFri.org

The efficient, convenient, and robust execution of data-driven workflows and enhanced data

management are essential for productivity in scientific computing. In HPC, the concerns of storage

and computing are traditionally separated and optimised independently from each other and the

needs of the end-to-end user. However, in complex workflows, this is becoming problematic. These

problems are particularly acute in climate and weather workflows, which as well as becoming

increasingly complex and exploiting deep storage hierarchies, can involve multiple data centres.

The key contributions of this paper are: 1) A sketch of a vision for an integrated data-driven

approach, with a discussion of the associated challenges and implications, and 2) An architecture

and roadmap consistent with this vision that would allow a seamless integration into current

climate and weather workflows as it utilises versions of existing tools (ESDM, Cylc, XIOS, and

DDN’s IME).

The vision proposed here is built on the belief that workflows composed of data, comput-

ing, and communication-intensive tasks should drive interfaces and hardware configurations to

better support the programming models. When delivered, this work will increase the opportu-

nity for smarter scheduling of computing by considering storage in heterogeneous storage systems.

We illustrate the performance-impact on an example workload using a model built on measured

performance data using ESDM at DKRZ.

Keywords: workflow, heterogeneous storage, data-driven, climate/weather.

Introduction

High-Performance Computing (HPC) harnesses the fastest available hardware components

to enable the execution of tightly coupled applications from science and industry. Typical use-

cases include numerical simulation of physical systems and analysis of large-scale observational

data. In the domain of climate and weather, there is a considerable demand for the orchestration

of ensembles of simulation models and the generation of data products. A service such as the

operational weather forecast workflow in Met Office writes around 200 TB and reads around

600 TB every day. In total, at the Met Office, on average 1.5 PB and 14 PB are written and

read per day, respectively, for all climate and weather forecasts across all HPC clusters.

Based on the needs of climate and weather researchers, the HPC community has developed

a software ecosystem that supports scientists to execute their large-scale workflows. While the

current advances correspond to a big leap forward, many processes still require experts. For

example, porting a workflow from one system to another requires adjusting runtime parameters

of applications and deciding on how data is managed.

Since performance is of crucial importance to large-scale workflows, careful attention must

be paid to exploit the system characteristics of the target computing centre. For instance, a data-

driven workflow may benefit from the explicit and simultaneous use of a locally heterogeneous

set of computing and storage technologies. This aspect means that substantial changes may be

required to a workflow to tailor it to a particular supercomputer environment in order to obtain

the best performance.

Knowing the capabilities, interfaces, and performance characteristics of individual compo-

nents are mandatory to make the best use of them. As the complexity of systems expands and

alternative storage and computing technologies provide unique characteristics, it becomes in-

1University of Reading, Reading, United Kingdom

DOI: 10.14529/jsfi200203

2020, Vol. 7, No. 2 35

https://orcid.org/0000-0002-6915-1179
https://orcid.org/0000-0001-8365-6264


creasingly difficult, even for experts, to manually optimise the usage of resources in workflows.

In many cases, modifications are not performed because: 1) They are labour intense: any change

to the workflow requires careful validation which may not pay off for small scale runs; 2) It is

a one-time explorative workflow and; 3) Users are not aware of the potential of the complex

system.

In this paper, we illustrate how knowing the Input/Output (I/O) characteristics of workflow

tasks and overall experimental design helps to optimise the execution of climate and weather

workflows. Exploiting this information automatically may increase the performance, throughput

and cost-efficiency of the systems, providing an incentive to users and data-centres that cannot

be neglected any longer. Our approach intends to reduce the burden on researchers and, at the

same time, optimise the decisions about jobs running on HPC systems.

This paper is structured as follows. First, we describe the software stack involved in exe-

cuting workflows in climate and weather in Section 1. Related work in heterogeneous storage

environments and solutions for workflow processing is presented in Section 2. Next, the vision

for including knowledge about data requirements and characteristics is sketched in Section 3

outlining the potential benefit the automatic exploitation might bring. Our design, based on

existing components in climate and weather, is described in Section 4. An example use case

demonstrates the impact on running a workload at the Mistral supercomputer in Section 5. The

paper is concluded in Section 5.

1. Workflows in Climate/Weather

In this section, we describe how workflows are executed in a conventional software stack

and the typical hardware and software environment involved in running a climate and weather

application.

1.1. Cylc

Cylc [19] is a general-purpose workflow engine in charge of executing and monitoring cyclic

workflows in which each step is submitted to the batch scheduler of a data centre. With Cylc,

tasks from multiple cycles may be able to run concurrently without violating dependencies and

preventing the issue of delays that cause one cycle to run into another. Cylc was written in

Python and built around a new scheduling algorithm that can manage infinite workflows of

cycling tasks without a sequential cycle loop. At any point during workflow execution, only the

dependence between the individual tasks matters, regardless of their particular cycle points. The

information Cylc uses to control a given workflow is the task dependency. In a script file, the

developers define, for each task, the parallelism settings and where data is to be stored.

Consider the Cylc workflow for a toy monthly cycling workflow in Fig. 1. In this workflow,

an atmospheric model (labelled as model in the figure) simulates the physics from a current state

to predict the future, for example, a month later. In climate research, this process is repeated in

the model to simulate years into the future. Once the simulation of any month is computed, data

for this month becomes available and can now be analysed. In this workflow, the task model

is followed by tasks postprocessing (post), forecast verification (ver), and product generation

(prod), all specified as a workflow in a Cylc configuration file (flow.cylc).

Potential of I/O Aware Workflows in Climate and Weather

36 Supercomputing Frontiers and Innovations



Figure 1. Example of a Cylc workflow with its configuration file [19]

1.2. Workflow Execution

While Cylc is directing the execution of workflows, several components are presented in the

implementation. The software stack involved in a general workflow is depicted in Fig. 2. Next,

each stage of the execution is further described.

JobCylc Workload
Manager

ApplicationWorkflow Script

Define

Start

Config File

Figure 2. Software stack and stages of execution

1. Scientist specifies the workflow and provides a command or a script for each task. As part

of the Cylc configuration, the command(s) to be run, any environment variables used by

these application(s), and any workload manager directives. After that, the user enacts Cylc

to start the workflow.

2. Cylc parses the workflow configuration file (flow.cylc), generates tasks dependencies,

defines a schedule for the execution, and monitors the progress of the workflow. Once a task

can be executed (dependencies are fulfilled), the workflow engine submits a job script for

the workload manager with the required metadata that will run the Cylc task script.

3. Workload Manager such as Slurm [10] is responsible for allocating compute resources

to a batch job and performing the job scheduling. The selected tool queues the job that

represents the Cylc task and plans its execution, considering the scheduling policy of the

data centre. Once the job is scheduled to be dispatched, i.e., resources are available, and

the job priority is the highest, it is started on the supercomputer.

4. Job provides the environment with the resources and runs the user-provided program or

script on one of the nodes allocated for it. Local variables containing information about the

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 37



environment of the batch job, e.g., the compute nodes allocated, enact the Cylc provided

script on the node.

5. Script starts the commands sequentially (a command can be a parallel application). During

the creation of the script, Cylc has included variables that describe the task in the workflow.

The information is typically fed into the application(s) representing the task and defining

the storage location. The script uses commands to generate filenames considering the cycle

and may store data in a workflow-specific shared directory. Either these commands are set

in the Cylc workflow and then injected as environment variables or directly utilised as a

part of the user-provided script.

6. Application is executed taking the filenames set by the script.

1.3. I/O Stack of a Parallel Application

Climate applications may have complex I/O stacks, as can be seen in Fig. 3a. In this case, we

assume the application uses XIOS [17], which is providing domain-specific semantics to climate

and weather. It may gather data from individual fields distributed across the machine (exploiting

MPI for parallelism) and then uses NetCDF [4] to store data as a file. Under the hood, NetCDF

uses the HDF5 API with its file format. Internally, HDF5 uses MPI and its data types to specify

the nature of data stored. Finally, data is stored on a parallel file system like Lustre which, on

the server-side, stores data in a local file system on block devices such as SSDs and HDDs.

Different applications involved in a workflow may use different I/O stacks to store their

outputs. Naturally, the application which uses previously generated data as its inputs must use

a compatible API to read the specific data format. In Fig. 3a, for example, XIOS may perform

parallel I/O via the NetCDF API, allowing subsequent processes to read data directly using

NetCDF. Within the ESiWACE project2, we are developing the Earth System Data Middleware

(ESDM) [14] to allow applications with this kind of software stack to exploit heterogeneous

storage resources in data centres. The goal of ESDM is to provide parallel I/O for parallel

applications with advanced features to optimise subsequent read accesses. Implemented as a

standalone API, it also provides NetCDF integration allowing its usage in existing applications.

Hence, in Fig. 3a, the HDF5 layer can be replaced with ESDM.

Application

XIOS

MPI-IO

Parallel File System

File system

Block device

HDF5

NetCDF

D
ata m

odel
T
ypes

B
yte array

D
o

m
ain

 

(a) I/O path for an MPI application

HDD

Node

Memory

Node

Memory

NVM

Memory HDD

S3

Cloud

EC2
HDDSSD HDDTape

...

SSD

HDDBurst 
Buffer

Data Center
Local Facility

(b) Example of an heterogeneous HPC landscape

Figure 3. Typical hardware and software environment for applications

2https://www.esiwace.eu/

Potential of I/O Aware Workflows in Climate and Weather

38 Supercomputing Frontiers and Innovations

https://www.esiwace.eu/


1.4. Data Centre Infrastructure

At present-day, data centres provide an infrastructure consisting of computing and storage

devices with different characteristics, making them more efficient for specific tasks and satisfying

the needs of different workflows. Take, for example, the supercomputer Mistral at DKRZ, that

consists of 3,321 nodes3 and offers two types of compute nodes equipped with different CPUs

and GPU nodes. Each node has an SSD for local storage, and DKRZ has additionally two shared

Lustre file systems with different performance characteristics. Individual users and projects are

mapped to one file system explicitly, and users can access it with work or scratch semantics.

While data is kept on the work file system indefinitely, available space is limited by a quota.

The scratch file system allows storing additional data, but data is automatically purged after

some time.

Future centres are expected to have even more heterogeneity. A variety of accelerators

(GPU, TPU, FPGAs), active storage, in-memory, and in-network computing technologies will

provide further storage and processing capabilities. Fig. 3b shows such a system with a focus on

computation and storage. Some of these technologies might be locally (specific compute nodes)

or globally available. Depending on the need, the storage characteristics range from predictable

low-latency (in-memory storage, NVMe) to online storage (SSD, HDD), and also cheap storage

for long-term archival (tape). The tasks within any given workflow could benefit from utilising

different combinations of storage and computing infrastructure.

1.5. Data Management

Usually, the scripts representing tasks define how data is placed on the available storage

system. What happens in many current workflows is that they ignore the benefits of using

multiple file systems concurrently and data locality between tasks to colocating them. On top of

that, in the current state-of-the-art scientists optimise the available storage resources intuitively

and compile the information about this decision-making process manually.

If a user knows the workflow and the system characteristics, data placement decisions can

be optimised. Consider, for instance, the situation where each computing node has access to

three file systems: a fast scratch file system on which data may reside only for a week, a slower

work file system, and a local file system. Most current workflows utilise work and scratch

systems. When a task is set to run, the corresponding dataset would be moved from work to

scratch, processed, and the resulting dataset would be transferred back to work. If the scratch

file system reaches its capacity, the dataset would be moved back to work, and the task would

continue running until it is finished, which might be inefficient. In this situation, there are many

straightforward opportunities to utilise data migration to optimise performance, and also other

criteria (e.g., costs). However, with a multitude of file systems that differ at each data centre,

such optimisations would be difficult to achieve manually by users. Policy-driven systems and

burst buffers perform such optimisations automatically to some extent. However, as they lack

information about the workflow, they cannot optimise workflows altogether.

3https://www.dkrz.de/up/systems/mistral

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 39

https://www.dkrz.de/up/systems/mistral


2. State-of-the-Art

Related work to the proposed approach can be categorised into: 1) Technology that exploits

heterogeneous storage environments and supports user-directed policies and 2) Solutions for

workflow processing.

Technology. Manual tiering requires the user or application to control data placement, i.e.,

storing data typically in the form of files on a particular storage system and, usually, moving

data between storage by scripts. One limitation of such an approach is that decisions about how

data are mapped and packaged into files are made by the producing application, and cannot be

changed without manual intervention by a downstream application.

Burst buffer solutions provide a tiered storage system that aims to exploit a storage hierar-

chy. They can be integrated into hardware capabilities such as DDN’s Infinite Memory Engine

(IME) [2] or simple software solutions. A policy system, e.g., deployed on a burst buffer [22],

aims to simplify data movement for the user, but typically migrates objects in the coarse gran-

ularity of files. File systems and data management software such as IBM Spectrum Scale [23],

HPSS [26], BeeGFS [5], and Lustre [3] (e.g., using the progressive file layouts feature) provide

hierarchical storage management allowing to store data on different storage technology accord-

ing to administrator-provided policies. However, the semantic information that can be used by

this type of system to make decisions is limited, e.g., data location, file extension, file age, etc.

The storage community had also adjusted various higher-level software to support storage

tiering on top of several storage systems. For instance, ADIOS provides in-memory staging that

had been exploited by a variety of applications [24]. Hermes [12] introduces a multi-tiered I/O

buffering system with pre-fetcher that provides several data placement policies. iRODS [21] is a

rule-oriented data system that allows scientists to organise data into shareable collections and

provides several patterns for workflows considering data locality and data migration/replication.

Finally, there have also been extensions to batch schedulers to perform data staging for utilising

node-local storage, for example, NORNS [18] as an extension to Slurm.

Workflows. A good overview of the flavours of Scientific Workflow Management Systems

(SWfMS) and their application to data-intensive workflows is given in [15]. The article states that

SWfMS should enable the parallel execution of data-intensive scientific workflows and exploit

vast amounts of distributed resources. Existing solutions recognise challenges in data variety

(formats of the input data), opportunities to optimise the schedule by moving code to data,

specification of the data dependencies for tasks, and they even may consider the capacity of the

available data storage. The execution engine Dryad [9], for example, allows transferring data

between tasks via files or directly using TCP connections and attempts to schedule tasks on the

same nodes or racks. In [16], an approach was presented to monitor and analyse I/O behaviour of

HPC workflows. Swift/T [27], a scripting language for describing dataflow processing enabling

the execution of ensembles of applications, is now openly used as a prototype platform [20].

Recent improvements aim to migrate data to a local cache allowing to exploit locality. For

instance, in [6], information about locality is proposed to be stored in extended attributes.

Several early research in grid workflows and, lately, cloud workflows, use cases of interest

to maximise data locality. Economic factors (including storage costs) for workflow execution

are discussed in [1]. In [7], the authors discuss the role of Machine Learning (ML) for workflow

execution and elaborate a general potential for resource provisionings such as optimisation of

Potential of I/O Aware Workflows in Climate and Weather

40 Supercomputing Frontiers and Innovations



runtime parameters, data movements, and hierarchical storage. In [25], an ML model that stages

data for in-situ analysis by exploiting the access patterns is introduced.

Workflow systems can also be specifically utilised to reproduce scientific results, i.e., recom-

pute the results. Those scalable workflow solutions typically utilise a container solution to allow

execution in an arbitrary software environment. Popper [11], Snakemake [13], and Nextflow [8]

provide a language to specify workflows and to execute them. Snakemake is interesting as it

supports definition and inference of input and output filenames.

While various aspects of our vision have been addressed individually by related work for

different domains, the high level of abstraction that we aim for and the potential it unleashes

goes beyond the capabilities of existing approaches.

3. Vision for I/O-Aware Workflows

Nowadays, in order to run a job in an HPC environment efficiently, researchers have to de-

velop profound knowledge, not only about their workflow, which is expected, but also about deci-

sions regarding storage, communication, computing, and considerations regarding cost-efficiency

of those operations. However, applied scientists should not spend much time understanding hard-

ware characteristics and operational knowledge of running a data centre, but using their expertise

to develop their work and just collect and analyse the results of their experiments.

We aim for achieving an automatic and dynamic mapping of I/O resources to workflows.

Once we have an automated decision about where the job will run and how the storage will be

managed, scientists can then reuse their workflow specification on any system without further

modification and even without previous knowledge about the system architecture.

There are several approaches to implement the technology for the vision proposed in this

work, and changes are needed in the software components to realise it. In Section 4, we will

discuss a specific design for our transitional roadmap considering climate and weather workflows

and tools scientists from this field already use in their routine research.

Our vision for I/O-aware workflows requires two additional pieces of information. Firstly,

the user must augment the workflow description with information about I/O specifications and

explicitly annotate dependencies to datasets. Secondly, details about the storage architecture

must be available.

3.1. System Information

While many optimisations are possible once an abstraction is in place, the improvements

we discuss here are related to the life cycle and placement of datasets into specific storage

according to system performance characteristics and workflow specification. To achieve that,

the system information shall comprise of all available storage systems, the system topology, and

details of each available component. Simplified and complex models of the components can be

included to approximate expected performance for specific I/O patterns. It is expected that the

data centre (or expert user) can create such a configuration file, e.g., by using vendor-provided

information or by executing benchmarks. With this information, a scheduler can make the initial

data placement, transformation, and migration decisions for individual datasets during their life

cycle. This separation of concerns allows us to abstract from the workflow what is essential and

what a system should optimise to ensure smart usage of the available resources.

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 41



3.2. Extended Workflow Description

In general, climate and weather workflows allow specifying tasks and dependencies among

them. We aim to enhance the current information with characteristics for input and output, i.e.,

the datasets. An example workflow with N cycles containing input datasets and (intermediate)

products is illustrated in Fig. 4. Round nodes represent tasks, squared nodes represent data,

and arrows indicate dependencies. In the example, Task 1 needs two datasets to perform its

work, it produces Product 1, and directly communicates with Task 2. For each new cycle, the

checkpoint from the previous cycle (Product 1) is used as input to starting the next cycle. Most

of the workflow can run automatically, except for the manual quality control of the products

and the final data usage of Product 3. This last step represents the typical uncertainty of data

reuse, i.e., it is unclear how Product 3 will be used further. In the approach proposed in this

work, each task is annotated with the required input datasets and the generated products must

include metadata such as data life cycle, the value of data, and how long it should be kept.

The idea here is to embrace the concept that tasks dependencies are really imposed by datasets

dependencies.

Task 1

Dataset 1 Dataset 2

Task 2

Product 2

Manual 
QC check

Product 1

Task 3

[OK]

Product 3

Cycle 1

Manual 
usage

Task 1

Dataset 1

Task 2

Product 2

Manual 
QC check

Task 3

[OK]

Product 3

Cycle 2

Manual 
usage

Task 1

Dataset 1

Task 2

Product 2

Manual 
QC check

Task 3

[OK]

Product 3

Cycle N

Manual 
usage

Checkpoint
Product 1
Checkpoint

Product 1
Checkpoint

. . .

Figure 4. Example of a high-level workflow with tasks and data dependencies

3.3. Smarter I/O Scheduling

The abstraction and automation of the I/O inside a workflow allow a runtime system to

improve data placement and apply data reduction on heterogeneous storage systems. Taking

into consideration the architecture and workflow information, a smarter schedule can now be

realised by exploiting the additional information. Value and priority can influence fault-tolerance

strategies and imply the quality of service for performance and availability. Aspects like data

reproducibility (can it be recomputed easily), type of the experiment (test, production), and

runtime constraints for the overall and potential workflow could allow reducing costs and, hence,

increase scientific output. Next, we outline two core strategies and the potential the proposed

vision can bring to the improvement of current workflows. In the design proposed in this work

(Section 4), we will focus on the data placement strategy.

Strategy: Data Placement Data placement encompasses all data movement-related activ-

ities such as transfer, staging, replication, space allocation and de-allocation, registering and

unregistering metadata, locating and retrieving data4. The general idea is to host a dataset on

the storage system that is most favourable in terms of performance, cost-effectiveness, and avail-

ability for the access pattern observed in the workflow. Here we are considering the optimisation

of data locality, where locality is twofold, spatial and temporal, on a variety of characteristics.

For optimising data placement, we introduce four approaches: data allocation, data migration,

data replication and direct-coupling.

4https://www.igi-global.com/dictionary/data-aware-distributed-batch-scheduling/6782

Potential of I/O Aware Workflows in Climate and Weather

42 Supercomputing Frontiers and Innovations

https://www.igi-global.com/dictionary/data-aware-distributed-batch-scheduling/6782


Data Allocation is the assignment of a specific area of an available storage system to partic-

ular data. In current workflows, the user usually has a script for each task defining the

filenames with a prefix that places datasets generated by the same task into a specific

storage5. Because there is one script responsible for generating the configuration, the de-

cision in which directory the dataset will be stored is somewhat fixed. Such configuration

is done manually and with restricted information about the system architecture. It would

be interesting to explore storage options for the datasets and, e.g., to have datasets from

different cycles placed at different storage systems. For instance, in Fig. 4, alternating the

storage location for Product 2 into two scratch file systems is something that would be

a simple job for an I/O-aware scheduler. However, currently, it implies providing scripts

for that task and all tasks depending on it with information about the different storage

placement.

Data Migration is the process of transferring data from one storage system to another. Typ-

ically, it involves to delete data, but this decision can be delayed to provide read access to

multiple storage systems. Data movement involves a significant overhead, both in terms of

latency and energy-efficient computing, as data must be read on one storage and written to

another. Hence, it needs to be considered carefully. Figure 5 introduces three possible life

cycles for a specific dataset and explains how migrations can be done to improve datasets

accessibility. In Fig. 5a, the dataset could be first stored on the local storage to avoid

congestion on the work file system, then it is migrated to work file system where subse-

quent tasks of the workflow may read it multiple times. In the end, this dataset may be

an intermediate product that can then be deleted. In Fig. 5b, the dataset is stored on the

scratch file system immediately and accessed there. However, the last read access must

happen before files on scratch are automatically removed. Alternatively, Fig. 5c presents

the case where the dataset is created on work and it is copied to a local node. This local

node allows reading accesses of subsequent tasks which might be beneficial for small ran-

dom accesses. For the last two scenarios, subsequent tasks would have to be placed on the

same node where previous data was stored.

Data Replication in computing involves sharing information to ensure consistency between

redundant resources, such as software or hardware components, to improve reliability,

fault-tolerance, or accessibility.

Data might be replicated by enabling the system to rerun parts of the workflow in case of

a data loss. In addition, the system may combine the replication of data by transforming

data into a different representation allowing to achieve better performance considering a

variety of access patterns.

Scratch

Work

Local
t

A

M R R R

D

D

(a) Local and work file systems

t

R R DRAScratch

Work

Local

(b) Scratch file system only

t

D

M R R D

A

Scratch

Work

Local R

(c) Local and work file systems

Figure 5. Alternative life cycles for mapping a dataset to storage and the operations: Allocation,

Migration, Reading, and Deleting

5Complicated scripts would have allowed changing the storage type depending on the cycle. Still, it is a significant

burden to the user.

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 43



Direct-Coupling replaces I/O by communicating data between subsequent steps of a workflow

directly without storing intermediate data products on persistent storage. As an example,

in Fig. 4, the outcome of Task 1 may be used directly by Task 2. Data may also be kept

in memory and cached to achieve a certain level of independence between producer and

consumer.

Strategy: Data Reduction Data reduction decreases the amount of data stored. We discuss

here two potential optimisations: data compression and data recomputation.

Data Compression is the process of encoding information using fewer bits than the original

representation. Knowing the characteristics of data production and usage allows scientists

to annotate the required precision of data in those workflows. The storage system can

exploit such information by reducing the precision of data and automatically picking an

appropriate compression algorithm.

Data Recomputation Climate/weather scientists are trading recomputation with space us-

age manually. By knowing how to rerun the workflow behind the data creation, a smarter

storage system can automatically trade data availability for potential recomputation op-

portunities to optimise the cost-efficiency of the system. Intermediate states could be rerun

by utilising virtualisation and container technologies. Consider Fig. 4 again and that, at

every K cycles of the workflow, the generated Product 3 (from Cycle 1 to Cycle K) are

used in a validation task, called here check. From the workflow, we know that P3C1
6 will

be used to construct P3C2 and then check. This dataset would probably be stored some-

where, and it will not be used until the workflow reaches the K-th cycle. One alternative

is to delete it after it was first used and then recompute it when time is right. The cost

of doing that is storing checkpoint and then use it to reconstruct P3C1. If, for instance,

P3C1 is a large dataset, checkpoint is small, and computing time is short, it is easy to see

that deleting and recomputing it may improve the costs of running the workflow. That is

just an example, and, currently, scientists perform those optimisations manually.

3.4. Benefit

The benefits of the proposed vision are:

Abstraction Providing the abstraction that enables a separation of concerns. Once the I/O

characteristics of a workflow are defined, the user does not have to know the architecture

of the target system on which the workflow will run. Thus, this level of abstraction can

remove the specialist from the decision-making process of individual workflows.

Optimisation The workflow will be optimised specifically for the available system infrastruc-

ture and information about data. In particular, by exposing the heterogeneous architecture,

potential runtime characteristics can be considered. By using information about the value

of data, policies for data management (storage resilience, recomputation, replication, etc.)

can be decided.

Performance-portability With both abstraction and optimisation, the user can specify the

I/O requirements only once for the tasks of a specific workflow, and the I/O-aware workflow

6The PiCj notation represents the Product i generated in the Cycle j.

Potential of I/O Aware Workflows in Climate and Weather

44 Supercomputing Frontiers and Innovations



can now run with optimised data storage on any system without user intervention. Even

more, if the system characteristics change, e.g., it gets upgraded, an additional storage

tier becomes available, or if storage degrades, the I/O-aware workflow could automatically

adapt and make use of this new environment.

4. Design

This section describes our first approach to incrementally extend workflows for climate and

weather that realises parts of our vision. While individual components such as ESDM and Cylc

exist, we have not implemented the described scheduler, yet. To automatically make scheduling

decisions, the software stack needs to:

1. deliver information about dataset life cycle together with the workflow, and

2. adapt the resulting workflow, individual scripts, and application executions to consider the

potential for data placement strategies.

4.1. System Information

The system information of the design is realized using already available capabilities in the

ESDM middleware. We assume ESDM is used as the I/O middleware in the parallel application

(with NetCDF or directly) and orchestrates the I/O according to a simplified ESDM configura-

tion file (esdm.conf). This file contains information about the available technology in the data

centre, its I/O characteristics, and will be used to make decisions about how to prioritise I/O

targets. In the example presented in Fig. 6, we have three storage targets: two global accessible

file systems (lustre01 and lustre02), and one local file system in /tmp that can be accessed via

the POSIX backend. Each of them comes with a lightweight performance model and the maxi-

mum size of data fragments. The metadata section (Line 24) utilises here a POSIX interface to

store the information about ESDM objects. Internally, ESDM creates so-called containers and

dataset objects to manage data fragments.

ESDM manages a pool of threads that should be created per compute node to achieve better

performance and delegates the assignment of optimal block sizes to the storage backend. Since

ESDM supports several (non-POSIX) storage backends, an application can utilise all available

storage systems without any modifications to the code. The configuration file is inquired by

the application utilising ESDM and steers the distribution of data during I/O. To elucidate the

system’s behaviour, ESDM distributes a single dataset across multiple storage devices depending

on their characteristics. While the current system information and performance model are based

on latency and throughput only, ESDM shows that automatic decision making can be made on

behalf of the user.

4.2. Extended Workflow Description

The user now has to provide information about the datasets required as input and the

generated output for each workflow task in a file called I/O-workflow configuration file (io.cylc).

An example of an io.cylc file is shown in Fig. 7. In this file, information about Task 1 is given as

an example, and we expect the extra information about all tasks in the same file. This file could

define a cycle flexibly to be a month or a year according to the file flow.cylc. The notation

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 45



1 "backends": [

2 {"type": "POSIX", "id": "work1", "target": "/work/lustre01/projectX/",

3 "performance-model" : {"latency" : 0.00001, "throughput" : 500000.0},

4 "max-threads-per-node" : 8,

5 "max-fragment-size" : 104857600,

6 "max-global-threads" : 200,

7 "accessibility" : "global"

8 },

9 {"type": "POSIX", "id": "work2", "target": "/work/lustre02/projectX/",

10 "performance-model" : {"latency" : 0.00001, "throughput" : 200000.0},

11 "max-threads-per-node" : 8,

12 "max-fragment-size" : 104857600,

13 "max-global-threads" : 200,

14 "accessibility" : "global"

15 },

16 {"type": "POSIX", "id": "tmp", "target": "/tmp/esdm/",

17 "performance-model" : {"latency" : 0.00001, "throughput" : 200.0},

18 "max-threads-per-node" : 0,

19 "max-fragment-size" : 10485760,

20 "max-global-threads" : 0,

21 "accessibility" : "local"

22 }

23 ],

24 "metadata": {"type": "POSIX",

25 "id" : "md",

26 "target" : "./metadata",

27 "accessibility" : "global"

28 }

Figure 6. Example of an ESDM configuration file (esdm.conf)

is similar to the specification of Cylc workflows using a nested INI format and, ultimately, files

io.cylc and flow.cylc can be merged.

For each task, inputs and outputs are defined. In the input section, each entry specifies the

virtual name that is used by ESDM as a filename inside NetCDF. Line 5, for example, it defines

that the filename topography is mapped to a specific input file and that this dataset does not

depend on any previous step of the workflow. The next line specifies that the input filename

checkpoint should be mapped to the output of Task 1 checkpoint dataset from the previous

cycle (e.g., the checkpoint generated after completing the last year’s production). For the initial

cycle, the checkpoint file will be empty, and the application will load init data. In the output

section, the datasets are annotated with their characteristics more precisely. For each variable,

a pattern defining how frequently data is output according to the workflow must be provided.

Most data is input and output in the periodicity of the cycle. Still, we can have variables with

different patterns, such as varA, which is output per day regardless of the cycle.

Next, we formally define the expected annotations in all the fields envisioned in the I/O-

workflow configuration file:

Name A primary name for the field/data generated. It is extended by a pattern defined in a

variable (Lines: 11, 19, 26).

Pattern The frequency of data output (Lines: 12, 20).

Lifetime How long data must be retained on storage (if at all) (Lines: 13, 21).

Type The class type of data, i.e., checkpoint, diagnostics, temporary (Lines: 14, 22, 27).

Datatype The data type of data (Lines: 15, 23, 28).

Size An estimate of data size7 (Lines: 16, 29).

7This field can be inferred if dimension and data type are provided.

Potential of I/O Aware Workflows in Climate and Weather

46 Supercomputing Frontiers and Innovations



1 [Task 1]

2

3 [[inputs]]

4

5 topography = "/pool/input/app/config/topography.dat"

6 checkpoint = "[Task 1].checkpoint$(CYCLE - 1)"

7 init = "/pool/input/app/config/init.dat"

8

9 [[outputs]]

10

11 [[[varA]]] # This is the name of the variable

12 pattern = 1 day

13 lifetime = 5 years

14 type = product

15 datatype = float

16 size = 100 GB

17 precision.absolute_tolerance = 0.1

18

19 [[[checkpoint]]]

20 pattern = $(CYCLE)
21 lifetime = 7 days

22 type = checkpoint

23 datatype = float

24 dimension = (100,100,100,50)

25

26 [[[log]]]

27 type = logfile

28 datatype = text

29 size = small

Figure 7. External Cylc I/O-workflow configuration file (io.cylc)

Dimension The data dimension (Line: 24).

Accuracy Characteristics quantifying the required level of data precision (Line: 17).

Note that the user may not be able to provide all required information which can be handled

by assuming a default safe behaviour. For instance, in the case of missing data precision, data

should be retained in the original form. Knowing the dimension or size a priori might be difficult

for scientists, e.g., the log file size is unclear. In this case, the user may insert relevant information

like small or big, indicating that any information is better than no information at all. In future,

we will explore ways to infer the output volume from the input automatically. For instance,

by running the workflow without I/O specification and monitoring I/O accesses for one cycle,

we can propose an I/O description to the user to simplify the specification and generate an

experimental I/O configuration file.

4.3. Smarter I/O Scheduling

From the list of opportunities, we realise data placement and migration in a heterogeneous

(multi-storage) environment. These goals will be achieved via the proposed I/O-aware sched-

uler, called here EIOS (ESDM I/O Scheduler). EIOS will make the schedule considering Cylc

workflow and ESDM provided system characteristics. We are working together with Cylc Team

in developing how EIOS interfaces with Cylc. While Cylc schedules the workflow, EIOS can

provide hints about colocating tasks which generate the opportunity for keeping data in local

storage. Our design imposes only minor changes to Cylc as normal functionalities cover the core

requirements:

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 47



The ability to dynamically set the job (Slurm) directives for a task

This will be achieved by calling an external command (run on the Cylc scheduler host)

which adds additional directives to be used by the job. This command, provided by

EIOS, will determine attributes of previous tasks through simple SQL queries to the Cylc

database. We plan on using the Cylc broadcast functionality to change the instructions

used by a task by running an external program before any task where we may want to

alter the directives.

The ability to dynamically set storage locations

This will be achieved by defining environment variables in the job script which are set

to the output of another external command (run on the job host). This command, also

provided by EIOS, will have access to all the standard Cylc environment variables with

details about the current task.

We plan on utilising DDN’s IME API to pin data in IME and trigger migrations between IME

and a storage backend explicitly. Decisions about data locality will not be made for a whole (and

potentially big) workflow. Instead, the system will make decisions by looking ahead to several

steps of the workflow, allowing reacting to the observed dynamics of the execution. Ultimately,

when a user-script runs, the information about the intended I/O schedule is communicated

from EIOS through a modified filename, which is then used by the ESDM-aware application to

determine the data placement.

4.4. Modified Workflow Execution

The steps to execute a workflow enriched with I/O information and perform smarter schedul-

ing are depicted in Fig. 8. Components of EIOS are involved in different steps of the workflow

and the I/O path. The suggested alterations can be seen in boxes pointed by red arrows, and

the remaining components are the current state-of-the-art for workflows in climate and weather

from Fig. 2. In the following, we describe the modifications we propose in this vision paper for

each component involved in the software stack.

JobCylc Slurm

ApplicationWorkflow Script

Define

Start

EIOS
ESDM via

 E
SDM

Config File
I/O

Config File

Config File

Figure 8. Software stack and stages of execution with the I/O-aware scheduler (EIOS). The red

arrows and boxes indicate additions to the workflow compared to Fig. 2

1. Scientist The user now has to provide an additional file that covers the I/O information

for each task and slight changes have to be made to the current scripts.

2. Cylc EIOS is invoked by Cylc to identify potential optimisations in the schedule before

generating the Slurm script.

Potential of I/O Aware Workflows in Climate and Weather

48 Supercomputing Frontiers and Innovations



3. EIOS The ESDM I/O Scheduler reads the information about the workflow (flow.cylc and

io.cylc configuration files) and acts depending on the stage of the execution. EIOS consists

of several subcomponents:

• The high-level scheduler that interfaces with Cylc.

• A tool to generate pseudo filenames used by the ESDM-aware applications.

• A data management service (not shown in the figure) that migrate and purge data at

the end of the life cycle.

EIOS components use knowledge about the system by parsing the esdm.conf file. EIOS

may decide that subsequent jobs shall be placed on the same node, reorder the execution of

some jobs, and provide information for conducting data migration.

4. Slurm Cylc may now have added an optimisation identified by EIOS which is promptly

handled by a modified Slurm. Also, if migrations have to be performed, Slurm will administer

them according to the specification in the job script.

5. Job A job might run on the same node as a previous job to utilise local storage.

6. Script Filenames are now generated by a replacement command that calls EIOS to create

a pseudo filename. This filename will encode additional information for ESDM about how

to prioritise data placement according to data access.

7. Application The application may either use XIOS, NetCDF with ESDM support or ESDM

directly to access datasets. ESDM loads the file esdm.conf that contains the information

about the available storage backends and their characteristics. ESDM extracts the long-

term schedule information from the generated pseudo filenames and employs them during

the I/O scheduling to optimise the storage considering data locality among tasks. Basically,

ESDM can now change the priorities for data placement in the different storage locations

that would typically be encoded in Cylc’s configuration file.

5. Potential Benefit

In this section, we discuss the potential performance benefit that our vision for I/O-aware

workflows may have considering DKRZ Mistral supercomputer, ESDM current version and a

hypothetical workload related to the workflow in Fig. 1. In our scenario, we compare the usage

of the node-local file system8 with a globally shared Lustre file system to store intermediate

data. We focus on the model execution and subsequent verification and postprocessing steps.

Firstly, checkpoints of a long model execution chain could be stored locally and restart from

there. When the subsequent jobs require the whole data to generate a product, they can be run

on the same nodes.

Figure 9 shows the read/write performance when using ESDM to store a time series of

10 steps of a variable with 200 k × 200 k dimension (about 1 km global resolution of the model,

equivalent to 3 TB of data in total). Note that, while we only consider the volume data for one

variable with one level and ten timesteps, this value could be multiplied by a sensible number of

levels and timesteps of the model. Data is stored on either Lustre02 or both Lustre file systems –

ESDM splits data of a single variable internally and distributes them across the file systems.

While the mapping is not yet optimal, the figure shows that the write performance benefits

from this approach. In our observations, performance will not improve beyond 500 nodes, which

8We assume the availability and fault-tolerance of the nodes is non-uncritical for the particular workload – typically

nodes can be repaired and returned to the pool within days.

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 49



Figure 9. Lustre performance for 100, 200, and 500 nodes

might be due to the fact that each Lustre file system has 128 Object Storage Targets (256 in

total).

Another improvement can be achieved by using local storage. Each local SSD of Mistral

is a Micron M600 MTFD9 (256 GB), which has a nominal sequential read/write performance

slightly above 500 MB/s. Hence, with 500 nodes, we could achieve 250 GB/s, which surpasses

the Lustre performance observed in Fig. 9. Even more, our 3 TB of data would be about 6 GB

per node, which could be cached in memory and overlap with the computation phases. An

additional benefit of using local storage is that the interference with I/O activities of other

jobs would be minimised. Actually, for all reasonable sizes of the experimental data with 500+

nodes, the observed performance of node-local storage would be higher, and thus, improving the

workflow execution time. Since DKRZ has more than 3,000 nodes, using the local SSD would

sum up to 1.5 TB/s speeding up the IO phase by 7x. For model runs with 1 km resolution,

such configurations would be reasonable. It might also be suitable to couple the model with a

parallel analysis process directly using an in-memory file system such as tmpfs. In this case, the

performance per node can be assumed to be 3 GiB/s, making it a viable option for smaller runs.

Users can always use the node-local storage manually and create specific run-scripts to

reproduce similar behaviours utilising the local storage. However, this would be tedious and

error-prone. The purpose of our proposal is to establish an abstraction layer to allow for semi-

automatic decision making and reduce, or even remove manual intervention.

Conclusions

In the domain of climate and weather, organising data placement on storage tiers is per-

formed by the users or via policies, often leading to suboptimal decisions. Additionally, manual

optimisation and hard-coding of storage locations are non-portable and an error-prone task.

We believe users must be able to express their workflows abstractly. By increasing the abstrac-

tion level for scientists, not only tedious manual optimisation could be automatised, but also

strategies for data placement and data reduction can be harnessed. With knowledge about the

data pattern, the runtime system could generate optimised execution plans and monitor their

execution. In this work, we describe the overall vision and a specific design for the software

stack in the domain of climate and weather that we work on in the ESiWACE project. The

proposed changes increase the opportunity for smarter scheduling of storage in heterogeneous

storage environments by considering the characteristics of data and system architecture in the

workflow.

9https://www.anandtech.com/show/8528/micron-m600-128gb-256gb-1tb-ssd-review-nda-placeholder

Potential of I/O Aware Workflows in Climate and Weather

50 Supercomputing Frontiers and Innovations

https://www.anandtech.com/show/8528/micron-m600-128gb-256gb-1tb-ssd-review-nda-placeholder


Acknowledgements

This project is funded by the European Union’s Horizon 2020 research and innovation programme

under grant agreement No. 823988. We thank our collaborators Bryan Lawrence, Glenn Greed, David

Matthews, and Hua Huang for their input to this paper, and the NGI initiative for contributions to the

vision.

This paper is distributed under the terms of the Creative Commons Attribution-Non Commercial

3.0 License which permits non-commercial use, reproduction and distribution of the work without further

permission provided the original work is properly cited.

References

1. Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M.: Cost optimization approaches for scientific

workflow scheduling in cloud and grid computing: a review, classifications, and open issues. Journal

of Systems and Software 113, 1–26 (2016), DOI: 10.1016/j.jss.2015.11.023

2. Betke, E., Kunkel, J.: Benefit of DDN’s IME-Fuse and IME-Lustre file systems for I/O intensive HPC

applications. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) High Performance Computing:

ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, 28 June, 2018,

Revised Selected Papers. Lecture Notes in Computer Science, vol. 11203, pp. 131–144. ISC Team,

Springer (2019), DOI: 10.1007/978-3-030-02465-9 9

3. Braam, P.: The Lustre storage architecture. CoRR abs/1903.01955 (2019), http://arxiv.org/abs/

1903.01955

4. Center, U.P.: Network Common Data Form (NetCDF), DOI: 10.5065/D6H70CW6

5. Chowdhury, F., Zhu, Y., Heer, T., Paredes, S., Moody, A.T., Goldstone, R., Mohror, K.M., Yu, W.:

The parallel I/O architecture of the high-performance storage system (HPSS). In: Proceedings of the

48th International Conference on Parallel Processing, August 2019, Kyoto, Japan. pp. 1–10 (2019),

DOI: 10.1145/3337821.3337902

6. Dai, D., Ross, R., Khaldi, D., Yan, Y., Dorier, M., Tavakoli, N., Chen, Y.: A cross-layer solution

in scientific workflow system for tackling data movement challenge. CoRR abs/1805.061675 (2018),

https://arxiv.org/abs/1805.06167

7. Deelman, E., Mandal, A., Jiang, M., Sakellariou, R.: The role of machine learning in scientific

workflows. The International Journal of High Performance Computing Applications 33(6), 1128–1139

(2019), DOI: 10.1177/1094342019852127

8. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P., Palumbo, E., Notredame, C.:

Nextflow enables reproducible computational workflows. Nature Biotechnology 35, 316–319 (2017),

DOI: 10.1038/nbt.3820

9. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel programs from

sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference

on Computer Systems 2007, March 2007, Lisbon, Portugal. p. 59–72. Association for Computing

Machinery, New York, NY, USA (2007), DOI: 10.1145/1272996.1273005

10. Jette, M.A., Yoo, A.B., Grondona, M.: SLURM: Simple Linux Utility for Resource Management.

In: Proceedings of Job Scheduling Strategies for Parallel Processing, 24 June, Seattle, WA, USA.

Lecture Notes in Computer Science, vol. 2862, pp. 44–60. Springer, Berlin, Heidelberg (2002),

DOI: 10.1007/10968987 3

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 51

http://dx.doi.org/10.1016/j.jss.2015.11.023
http://dx.doi.org/10.1007/978-3-030-02465-9_9
http://arxiv.org/abs/1903.01955
http://arxiv.org/abs/1903.01955
http://dx.doi.org/10.5065/D6H70CW6
http://dx.doi.org/10.1145/3337821.3337902
https://arxiv.org/abs/1805.06167
http://dx.doi.org/10.1177/1094342019852127
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1007/10968987_3


11. Jimenez, I., Sevilla, M., Watkins, N., Maltzahn, C., Lofstead, J., Mohror, K., Arpaci-Dusseau, A.,

Arpaci-Dusseau, R.: The popper convention: making reproducible systems evaluation practical. In:

2017 IEEE International Parallel and Distributed Processing Symposium Workshops, 29 May-2 June

2017, Lake Buena Vista, FL, USA. pp. 1561–1570. IEEE (2017), DOI: 10.1109/IPDPSW.2017.157

12. Kougkas, A., Devarajan, H., Sun, X.H.: I/O acceleration via multi-tiered data buffering and prefetch-

ing. Journal of Computer Science and Technology 35(1), 92–120 (2020), DOI: 10.1007/s11390-020-

9781-1

13. Köster, J., Rahmann, S.: Snakemake: a scalable bioinformatics workflow engine. Bioinformatics

28(19), 2520–2522 (2012), DOI: 10.1093/bioinformatics/bts480

14. Lawrence, B.N., Kunkel, J.M., Churchill, J., Massey, N., Kershaw, P., Pritchard, M.: Beating data

bottlenecks in weather and climate science. In: Extreme Data Workshop – Forschungszentrum Jülich,

Proceedings, IAS series. vol. 40, pp. 31–36 (2018)

15. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow man-

agement. Journal of Grid Computing 13(4), 457–493 (2015), DOI: 10.1007/s10723-015-9329-8

16. Lüttgau, J., Snyder, S., Carns, P., Wozniak, J.M., Kunkel, J., Ludwig, T.: Toward understanding I/O

behavior in HPC workflows. In: IEEE/ACM 3rd International Workshop on Parallel Data Storage &

Data Intensive Scalable Computing Systems, 12 Nov. 2018, Dallas, Texas. pp. 64–75. IEEE Computer

Society, Washington, DC, USA (2019), DOI: 10.1109/PDSW-DISCS.2018.00012

17. Meurdesoif, Y., Caubel, A., Lacroix, R., D’erouillat, J., Nguyen, M.H.: XIOS Tutorial (2016), http:

//forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf

18. Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending Slurm to sup-

port data-driven workflows through asynchronous data staging. In: 2019 IEEE International Con-

ference on Cluster Computing, 23-26 Sept. 2019, Albuquerque, NM, USA. pp. 1–12. IEEE (2019),

DOI: 10.1109/CLUSTER.2019.8891014

19. Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A., Fitzpatrick, B., van

Haren, R., Hut, R., Drost, N.: Workflow automation for cycling systems: the Cylc workflow engine.

Computing in Science Engineering 21(4), 7–21 (2019), DOI: 10.1109/MCSE.2019.2906593

20. Ozik, J., Collier, N.T., Wozniak, J.M., Spagnuolo, C.: From desktop to large-scale model exploration

with Swift/T. In: 2016 Winter Simulation Conference, 11-14 Dec. 2016, Washington, DC, USA. pp.

206–220. IEEE (2016), DOI: 10.1109/WSC.2016.7822090

21. Rajasekar, A., Moore, R., Hou, C.y., Lee, C.A., et al.: iRODS primer: integrated rule-oriented data

system. Synthesis Lectures on Information Concepts, Retrieval, and Services 2(1), 1–143 (2010),

DOI: 10.2200/S00233ED1V01Y200912ICR012

22. Romanus, M., Ross, R.B., Parashar, M.: Challenges and considerations for utilizing burst buffers in

high-performance computing. CoRR abs/1509.05492 (2015), http://arxiv.org/abs/1509.05492

23. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In: Proceed-

ings of the 1st USENIX Conference on File and Storage Technologies, Monterey, CA. pp. 231–244.

USENIX Association, USA (2002), DOI: 10.5555/1083323.1083349

24. Slawinska, M., Clark, M., Wolf, M., Bode, T., Zou, H., Laguna, P., Logan, J., Kinsey, M., Klasky,

S.: A Maya use case: adaptable scientific workflows with ADIOS for general relativistic astrophysics.

In: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment:

Gateway to Discovery, July 2013, San Diego, California, USA. pp. 1–8. Association for Computing

Machinery, New York, NY, USA (2013), DOI: 10.1145/2484762.2484795

Potential of I/O Aware Workflows in Climate and Weather

52 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.1007/s11390-020-9781-1
http://dx.doi.org/10.1007/s11390-020-9781-1
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1007/s10723-015-9329-8
http://dx.doi.org/10.1109/PDSW-DISCS.2018.00012
http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf
http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf
http://dx.doi.org/10.1109/CLUSTER.2019.8891014
http://dx.doi.org/10.1109/MCSE.2019.2906593
http://dx.doi.org/10.1109/WSC.2016.7822090
http://dx.doi.org/10.2200/S00233ED1V01Y200912ICR012
http://arxiv.org/abs/1509.05492
http://dx.doi.org/10.5555/1083323.1083349
http://dx.doi.org/10.1145/2484762.2484795


25. Subedi, P., Davis, P.E., Parashar, M.: Leveraging machine learning for anticipatory data delivery in

extreme scale in-situ workflows. In: 2019 IEEE International Conference on Cluster Computing, 23-26

Sept. 2019, Albuquerque, NM, USA. pp. 1–11. IEEE (2019), DOI: 10.1109/CLUSTER.2019.8891003

26. Watson, R.W., Coyne, R.A.: The parallel I/O architecture of the high-performance storage system,

11-14 Sept. 1995, Monterey, CA, USA. In: Proceedings of IEEE 14th Symposium on Mass Storage

Systems. pp. 27–44. IEEE (1995), DOI: 10.1109/MASS.1995.528214

27. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.: Swift/T: Large-Scale

Application Composition via Distributed-Memory Dataflow Processing. In: 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing, 13-16 May 2013, Delft, Nether-

lands. pp. 95–102. IEEE (2013), DOI: 10.1109/CCGrid.2013.99

J.M. Kunkel, L.R. Pedro

2020, Vol. 7, No. 2 53

http://dx.doi.org/10.1109/CLUSTER.2019.8891003
http://dx.doi.org/10.1109/MASS.1995.528214
http://dx.doi.org/10.1109/CCGrid.2013.99

	J.M. Kunkel, L.R. Pedro

