
Optimizing Memory Bandwidth Efficiency with
User-Preferred Kernel Merge

Nabeeh Jumah1 (�) and Julian Kunkel2

1 Universität Hamburg – Jumah@informatik.uni-hamburg.de
2 University of Reading – j.m.kunkel@reading.ac.uk

Abstract. Earth system modeling computations use stencils extensively
while running many kernels. Optimal coding of the stencils is essential
to efficiently use memory bandwidth of an underlying hardware. This is
important as stencil computations are memory bound.
Even when the code within one kernel is written to optimally use the
memory bandwidth, there are still opportunities for further optimiza-
tion at the inter-kernel level. Stencils naturally exhibit data locality,
and executing a sequence of stencils within separate kernels could waste
caching capabilities. Interprocedural optimizations such as merging of
kernels bears the potential to improve the use of the caches. However,
due to semantic restrictions, it is difficult to achieve on general purpose
languages.
Some tools were developed to automatically fuse loops instead of the
manual optimization. However, scientists still implement fusion in differ-
ent levels of loop nests manually to find optimal performance. To allow
scientists to still apply loop fusions equal to manual loop fusion, we de-
velop a technique to automatically analyze the code and allow scientists
to select their preferred fusions by providing automatic dependency anal-
ysis and code transformation; this also bears the potential for automatic
tools that make smart choices on behalf of the user. Our work is done us-
ing GGDML language extensions which enables performance portability
over different architectures using a single source code.

Keywords: HPC; Earth system modeling; Software development

1 Introduction

Earth system modeling codes consist of many kernels, in which stencil operations
are applied. Values of variables at spatially-neighboring points are read to eval-
uate some variable at some point in space. Neighborhoods give an opportunity
to use the locality of data through caches. On the other hand, the arithmetic
intensity of such computations is low, which makes them memory bound.

Efforts on optimizing operations within a kernel that applies a stencil opera-
tion is essential to optimize code performance, however, it is not sufficient. Taking
into account the relationships between the consecutive kernels, it is sometimes
possible to still improve performance. Reusing the data across stencil operations
while still in caches makes this possible.

2 Jumah & Kunkel

To exploit this inter-kernel possibilities, data dependencies should be applied
to guarantee computation correctness. After making sure that a loop fusion does
not impair the code in terms of computation correctness, the code should be
transformed to apply the fusion. Instead of doing such effort by a programmer,
tools have been developed to automatically apply such optimization.

Nested loops allow fusing loops in different combinations. Automatic loop
fusions do not allow testing a specific set of loop fusions, which scientists would
evaluate, may be to try other possible optimizations. We see such cases, e.g.
where an outer loop encloses a set of consecutive second level nest each of which
contains another inner loop, with many kernels fused in more complicated struc-
ture.

To allow scientists to still exploit loop fusion possibilities, while doing mini-
mal effort, we develop a technique to apply preferred loop fusions that operates
on the higher-level code abstraction of a domain-specific language. The main
contribution of this work is a technique to automatically identify possible loop
fusions with the necessary data dependency analysis, and apply the fusions which
the user prefers. To maximize the benefit of this effort, we also allow automatic
analysis for inter-module function inlining possibilities. This allows to fuse loops
among different files within the source code.

2 Related Work

In this section, we review some research efforts which applied loop fusion in
different ways and development contexts.

Data re-use and loop restructuring: An optimization alogorithm to reuse
data was presented in [16], where loop nests were transformed by interchange,
reversal, skewing, and tiling. Loop fusion and distribution to improve data lo-
cality was used in [9] besides to optimizing loop parallelism. A cost model that
computes the spatial and the temporal reuse of cache lines was used in [10] to
enable compiler optimizations using data locality. The authors used loop fusion
as one of the transformations besides to loop permutation, distribution, and
reversal.

Applicability of loop fusion: Fusion concept was used to serve optimiza-
tion in differnt fields where performance is a main concern. An algorithm was
presented in [5] in which loop fusion is used to reduce the use of temporary
arrays. This effort was used to reduce the access to memory in data dominated
applications like multimedia applications. Also, loop fusion was used for the pur-
pose of energy consumption optimization. Fusion was proposed also to reduce
the energy consumption [15] and improve the efficiency of power use on GPUs.

Compiler optimizations to exploit the efficiency of the GPUs computational
power for the data warehousing applications were proposed in [18]. The benefits
of the loop fission and fusion on relational algebra operators are also evaluated.
Again we see the code fissions and fusions in the same field in [17] where the split
and fused loops are dynamically scheduled on CUDA streams and dispatched to
the GPUs to improve the performance when running queries.

Optimizing Memory Bandwidth Efficiency 3

Automatic loop fusion tools: Manual loop fusion is time consuming. Au-
tomatic fusion was the alternative in many efforts. A source-to-source compiler
was presented in [4] to automatically apply fusion. Other efforts focused on the
identification of opportunities to apply loop fusion and to estimate its bene-
fits like [11]. This effort presented a dataflow-based framework that analyzes a
provided code to identify multi-kernel optimization opportunities and data man-
agement. The framework can then estimate the performance on GPUs without
running it.

Finite difference method was also subject to the automatic analysis for fusion
[13], where the space of possible kernel fusions is explored to find an optimal
kernel fusion. Projections of the performance are done to get to the optimal
kernel fusion. The authors again prposed a framework [14] to automatically
transform stencil codes written in CUDA to exploit the data locality among
multiple kernels. A compiler were also used in [3] to automatically fuse loops.
CUDA kernel fusion was done on BLAS-1 and BLAS-2 routines.

Loop fusion through DSLs: Other efforts, e.g. [1] used DSLs which were
designed to allow code generation of fused loops. Gridtools provides a DSL to
specify stencil operations in a way that allows the user to define a computation
in stages within the source code. The code generation process makes use of this
information to exploit the data locality.

Directives are used in HybridFortran [12] to control the granularity of code.
HybridFortran was developed to allow the user to port existing CPU code to
GPUs by annotating the code with directives. The HybridFortran directives
allow the tools to generate the code with the suitable granularity based on the
target machine.

In contrast, with our method, the user does not need to manually fuse
loops to apply the desired fusions. The tools handle the data dependency anal-
ysis, and the code transformation. Users choose from a list of automatically-
detected fusion opportunities. So, in comparison to automatic, our technique
enables scientists to have the flexibility to apply preferred fusions. But also, in
comparison to manual fusion, scientists need to do less effort.

3 Methodology

We implemented the inlining and loop fusion procedures in the tool that trans-
lates GGDML [8] code to general purpose code. The tool runs automatic de-
tection of inlining and fusion opportunities and shows a list to the user. When
the user chooses an optimization from this list, the tool transforms the code
automatically.

To evaluate the technique, we prepared a code that solves the shallow water
equations [2] using the finite difference method3. The source code is written in the
GGDML language extensions [8], which allows architecture-independent high-
level code. The GGDML source-to-source translation technique [6] was used to
generate and optimize the code for the different architectures and configurations.

3 refer to https://github.com/aimes-project/ShallowWaterEquations

https://github.com/aimes-project/ShallowWaterEquations

4 Jumah & Kunkel

3.1 GGDML and the Code Translation

GGDML is a set of language extensions that provides performance portability
for earth system modeling. Code is written with a high-level scientific abstrac-
tion of the problem as seen in Listing 1.1. A single source code can be translated
into different targets by applying user-specified code schemata for different ar-
chitectures. Typically, these schemata are developed by scientific programmers
that understand code domain and the machine architecture. The key benefit is
that these schemata and configuration files are used by many different kernels
while the translation needs to be specified only once.

Listing 1.1: Example mixed GGDML and C code

f l o a t EDGE 2D f U ;
f l o a t EDGE 2D f UT ;
. . .
f o r each e in g r id
{

f U [e]= f U [e]+f UT [e]∗ dt ;
}

This code updates the value of the X component of the velocity on the edges
of the grid. It reflects the mathematical equation without optimization details.

GGDML code is translated for a specific machine based on a configuration
description. Different optimization procedures, e.g memory layout transforma-
tions [7], are applied during the code translation process. Different configuration
file sections guide the translation tool to apply the optimization procedures.

3.2 Inlining and Loop Fusion

The tools parse the different code files into AST structures. Inlining possibilities
are checked by the tool by analysis of calls and function bodies. A call to a
function, the body of which is defined even in a different code file, could be
a candidiate for inlining. Close loops traversing same ranges are also analyzed
for loop fusion possibilities. This analysis includes all data dependencies within
loops, and possibilities to move code that resides between loops. If the loop
fusion analysis is found to keep consistency of code, the fusion is listed as a
candidate fusion. Inlining and fusion candidates are listed for the user to choose
what to apply. According to user choice, the tool automatically uses analysis
information to apply necessary transformations, including handling necessary
variables, moving code around, transforming loops etc.

3.3 Code Structure and Merging

The standard code is the baseline for which we compare the performance im-
provements. In this modularized code, every kernel includes the necessary math-
ematical operations and expressions to update exactly one field. This code is
easy to understand and maintain, and includes eight kernels updating: the two

Optimizing Memory Bandwidth Efficiency 5

components of the flux: (the kernels are) flux1 and flux2, the tendencies of the
two components of the velocity: compute u tendency and compute v tendency,
the tendency of the surface level: compute h tendency, the two components of
the velocity: update u and update v, and the surface level: update h.

To create the merged code, the mathematical operations were remapped into
three kernels such that the mathematical operations still keep the order to ensure
correct computation. The merged code includes three kernels: flux and tendencies,
velocities, and compute surface.

Performance-aware users typically perform such code merging manually in
the expense of readability. E.g., in a popular numerical weather prediction model,
there is a single function with 2,000 LoC.

3.4 Performance Assessment

C codes with OpenMP/OpenACC were generated from the DSL representation
to investigate behavior on multi-core processors, GPUs, and vector engines. The
experiments are designed to understand the use of the memory bandwidth and
exploiting caching/registers. To assess the performance, we derive behavioral
models from the code and validate the models using monitoring tools. ’Likwid’,
NVIDIA’s ’nvprof’, and NEC’s ’ftrace’ tools were used on multi-core CPUs,
GPUs, and vector engines respectively.

4 Evaluation

The test application solves the shallow water equations on a 2D regular grid
with cyclic boundary conditions4. The application uses an explicit time stepping
scheme in which all eight fields are updated once in each time step.

The multi-core processor experiments were run on dual socket Broadwell
nodes with Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz processor. We used
the Intel (ICC 17.0.5) C compiler. The GPU experiments are run on the Tesla
P100 with 16 GB memory and PCIe interconnect to the host. We used the
PGI (17.7.0) C compiler. The vector engine experiments were run on SX-Aurora
TSUBASA vector engine using the NCC (1.3.0) C compiler.

Various more experiments have been made on other generations of GPUs and
CPUs showing similar results – we selected the results conducted on the latest
generation of hardware that we had access to.

4.1 Multi-Core Processors

First, we evaluate the code generated for Broadwell with different grid widths.
The results before and after blocking (block size of 20000) are shown in Figure 1.

Merging the kernels results in the expected code optimization reducing the
necessary memory traffic over all grid widths. Without blocking, the results of the

4 refer to https://github.com/aimes-project/ShallowWaterEquations

https://github.com/aimes-project/ShallowWaterEquations

6 Jumah & Kunkel

Fig. 1: Variable grid width with/o blocking on Broadwell

measurements show that the performance decreased with wider grids since the
capacity of the caches is exhausted. Appropriate blocking eliminates performance
loss. Given that the data are stored as single precision floating point, and that
the maximum number of fields to access within a kernel is eight, the 20000 block
width means the cache holds 0.61 MB per grid row. The processor has 2.5 MB
L3 cache per core. Therefore, the 20000 blocking factor guarantees that more
than two grid rows, and hence all the elements of the stencil (both in X and Y
dimensions) are still in the L3 caches.

To better understand kernel merging and blocking relationship, we varied
the block sizes. We fixed the grid width to 100k cells in the X dimension. We
tested blocking with two categories of block sizes: powers of two ranging from
32 to 65536, and multiples of 1,000 from 1,000 to 10,000. Results are shown in
Figure 2. Kernel merge provided performance improvement over all the tested
blocking factors except very small/large factors.

(a) Power of 2 block sizes (b) Multiple of 1000 block sizes

Fig. 2: Different block sizes on Broadwell

Optimizing Memory Bandwidth Efficiency 7

Theoretical analysis: To understand the data movement between the cores and
the main memory we instrumented the code with ’Likwid’. The measured metrics
and values for the different kernels are shown in Table 1.

The kernels are bound by the memory bandwidth. Theoretical max. memory
bandwidth of the Broadwell processor is 76.8 GB/s5. The kernels are optimized to
read each variable only once from memory. For example the kernel flux1 accesses
the memory to read two fields –reused more than once– and update one field.
Multiplying the number of bytes accessed per grid cell by the grid dimensions
and the time steps, this kernel needs to access 1491 GB during an application
run. To compare with the measured values, if we multiply the kernel’s runtime
(26.86 s) by the measured memory bandwidth (61.22 GB/s), we find that the
kernel accessed 1605 GB which is close to the theoretical calculations.

The achieved memory throughput of the code is close to the optimum. As
long as we access the minimum amount of data in the memory with a high
percentage of max memory bandwidth, the only way to optimize the code further
is to decrease number of memory accesses for the application level.

In the standard code version, we need 33 accesses to the main memory
for each grid cell in each time step. The arithmetic intensity of the code is
0.45 FLOP/Byte. Given the peak processor performance (2.3 GHz · 18 cores ·
16 Single FP/core · 2) and the memory bandwidth (76.8 GB/s), the threshold
arithmetic intensity to achieve the peak performance is 17.25 FLOP/Byte. The
arithmetic intensity of the code is far from this threshold intensity, which ex-
plains why the achieved performance is far from the peak performance of the
processor. Optimizations must increase the arithmetic intensity to increase the
performance of the application.

What we gain in the merged code is reusing the values of some fields while
they are still in the caches or the processor registers instead of reading them
from the memory. This reduces the number of accesses to the main memory
from 33 accesses to 24 accesses for each grid cell in each time step. This way, we
can increase the intensity of the code to 0.63 FLOP/Byte. This is an increase by
about 37% which explains the performance gain we can observe in the diagrams.

4.2 GPUs

To understand data movement between the GPU threads and the device memory,
we prepared experiments for the P100 GPU. We record the performance mea-
surements for the application with different grid widths (see Figure 3). Without
blocking, the performance decreases over the tested grid widths with and with-
out merge. However, merged code performance degrades faster after the grid
width of 110k. Performance drops beyond the standard code around the grid
width of 140k. This is a result of the cache limitation on the GPU as a merged
kernel accesses more variables per grid cell. A kernel that accesses 8 fields on a

5 The streaming benchmark ’stream sp mem avx’ from the ’Likwid’ tools measured
67 GBytes/s on the processor.

8 Jumah & Kunkel

Kernel Time (s) GFLOPS
Memory

Bandwidth
(GB/s)

flux1 26.9 11.2 59.8
flux2 26.6 11.3 62.8
compute U tendency 41.3 41.2 62.3
update U 19.5 10.3 62.8
compute V tendency 46.4 36.7 61.8
update V 19.3 10.3 63.3
compute H tendency 26.6 11.3 62.9
update H 19.8 10.1 62.4

Standard code 226.3 23.8 62.2

flux and tendencies 96.9 41.3 59.5
velocities 39.6 10.1 61.3
compute surface 40.6 12.3 60.7

Merged code 177.0 31.0 60.2

Table 1: Likwid profiles on Broadwell for all kernels and both code versions

grid that is 140k wide, where each field needs 4 bytes per cell, needs 4.27 MB,
which exceeds the 4 MB L2 cache of the P100 GPU.

Fig. 3: Different grid widths on P100 GPU

The blocking version (20k block size) does not exhibit the sharp drop over
wider grids, and the merged code is better over the tested grid widths. This is a
result of fitting the kernel data within the caches (remember that the 20k row
in a block needs 0.61 MB for a kernel that accesses 8 fields).

To investigate further the impact of the kernel merging along with blocking,
we test different block sizes again (see Figure 4). In general, kernel merging
improves performance with all the tested block sizes. Optimal block sizes are
around 10k. Smaller (and larger) block sizes harm the performance for both
code versions.

Theoretical analysis: To gain a deeper understanding the ’nvprof’ tool is used to
collect different metrics. Table 2 shows the kernels measured memory throughput
and accessed data volumes. Execution times and GFLOPS are also shown.

Optimizing Memory Bandwidth Efficiency 9

(a) Power of 2 block sizes (b) Multiple of 1000 block sizes

Fig. 4: Different block sizes on P100 GPU

Kernel
Memory

Throughput
(GB/s)

Data Volume
(GB)

Kernel Time
(s)

GFLOPS

flux1 447 1,175 2.63 114
flux2 478 1,570 3.29 91
compute u tendency 358 3,338 9.33 225
update u 376 1,126 2.99 67
compute v tendency 374 4,195 11.22 196
update v 376 1,126 3.00 67
compute h tendency 333 1,588 4.77 105
update h 387 1,126 2.91 69

Standard code 380 15,244 40.13 149

flux and tendencies 396 5,970 15.08 325
velocities 360 2,268 6.31 63
compute surface 403 2,303 5.71 123

Merged code 389 10,542 27.11 221

Table 2: Kernels measurements in both code versions on P100 GPU

The measured data volumes that kernels access show data reuse at warp
level. For example, the flux1 kernel accesses the device memory to read two
fields – reused within the kernel – and updates one field. The memory access is
coalesced, thus, the theoretical estimation of the data volume that the threads
should access during the runtime of the kernel should be 12 bytes multiplied
by the grid size and by the count of the time steps, which gives 1117 GB. In
comparison, the computed value based on the ’nvprof’ measurements is 1175
GB as shown in the table which is close to our expectation.

All kernels are memory bound. The measured memory throughput of the
P100 on the test nodes was measured with a CUDA STREAM benchmark yield-
ing about 498 GB/s. The memory throughput that was measured for the kernels
shows high percentages (67%-96%) of the streaming memory throughput. Reduc-
ing device memory access leads to focus on the application-level optimization.

The data access is coalesced in all the kernels, before and after merging.
With data reuse (coalescing means data is in cache), the standard kernels access
the device memory 38 times · grid cells · time steps in total. However, the

10 Jumah & Kunkel

merged kernels reduce the accesses to 26. The numbers of the accesses look
different from those of the Broadwell because the scheduling of the work on
GPU threads is different, and hence the caching of the data is different. The
access reduction explains the performance improvement between the two code
versions (221 GFLOPS : 149 GFLOPS) as the arithmetic intensity is shifted
from 0.39 to 0.58 through merging.

4.3 Vector Engines

On Aurora vector engine, we vary the grid width from 10k to 100k and measure
the performance (see Figure 5). Merging improved performance over all the grid
widths. Performance is not dropping without blocking (at least at the chosen
grid widths).

Fig. 5: Different grid widths on NEC Aurora vector engine

To understand the performance NEC’s ’ftrace’ tool is used (see Table 3).
The theoretical memory bandwidth of the vector engine is 1.2 TB/s. Based on
the ’ftrace’ measurements, the computed values of the memory throughput show
that all the kernels run with a high percentage of the memory bandwidth (80%)
before and after the kernel merging.

The performance ratio before and after the kernel merging is 453 GFLOPS :
322 GFLOPS. This result is roughly the ratio of the arithmetic intensities which
we discussed in the multi-core processor results (0.63 : 0.45).

5 Summary

With manual fusion, a 2k LOC function represents a challenge for scientists to
find and test optimal fusions, while automatic fusion does not allow this flexi-
bility. In this work, we presented a technique to replace manual and automatic
loop fusion with a new genuine alternative. Code is automatically analyzed for
fusion opportunities, and function inlining is also detected across source files.
A list of possibilities is given to the user. Based on the user preferences, code
transformation is applied based on the inlining/fusion that the user chooses.

GGDML was used to develop high-level code that can be translated into
different architectures. This shallow water equations solver was then translated
and executed on multi-core processors, GPUs, and vector engines.

Optimizing Memory Bandwidth Efficiency 11

Kernel Time (s) GFLOPS
Memory

Throughput
(GB/s)

flux1 1.30 230 858
flux2 1.51 199 989
compute U tendency 5.29 359 986
update U 1.21 166 927
compute V tendency 5.22 384 1,001
update V 1.21 165 924
compute H tendency 1.52 330 984
update H 1.20 167 934

Standard code 18.63 322 961

flux and tendencies 8.40 500 911
velocities 2.43 165 922
compute surface 2.31 303 940

Merged code 13.25 453 911

Table 3: Kernel measurements of both code versions on the NEC Aurora

The results show the success of the technique to improve the efficiency of
the use of the memory bandwidth on the different architectures. Scientists can
apply the fusions (even across source files) and test any set of loop fusions as
they prefer. As a future work, we plan to explore exploiting temporal locality
between timesteps using the semantics of GGDML, and to explore using machine
learning to recommend fusion sequences.

6 Acknowledgements

This work was supported in part by the German Research Foundation (DFG)
through the Priority Programme 1648 Software for Exascale Computing SPPEXA
(GZ: LU 1353/11-1). We also thank the ’Regionales Rechenzentrum Erlangen’
(RRZE) at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), the Swiss
National Supercomputing Center (CSCS), and NEC Deutschland, who provided
access to their machines to run the experiments. We also thank Prof. John
Thuburn – University of Exeter, for his help to develop the code of the shallow
water equations.

References

1. CSCS GridTools. https://pasc17.pasc-conference.org/fileadmin/
user upload/pasc17/program/post144s2.pdf. Accessed: 2017-12-22.

2. Vincenzo Casulli. Semi-implicit finite difference methods for the two-dimensional
shallow water equations. Journal of Computational Physics, 86(1):56–74, 1990.

3. Jǐŕı Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. Optimizing cuda
code by kernel fusion: application on blas. The Journal of Supercomputing,
71(10):3934–3957, 2015.

4. Jan Fousek, Jǐri Filipovič, and Matuš Madzin. Automatic fusions of cuda-gpu
kernels for parallel map. ACM SIGARCH Computer Architecture News, 39(4):98–
99, 2011.

https://pasc17.pasc-conference.org/fileadmin/user_upload/pasc17/program/post144s2.pdf
https://pasc17.pasc-conference.org/fileadmin/user_upload/pasc17/program/post144s2.pdf

12 Jumah & Kunkel

5. Antoine Fraboulet, Karen Kodary, and Anne Mignotte. Loop fusion for memory
space optimization. In Proceedings of the 14th international symposium on Systems
synthesis, pages 95–100. ACM, 2001.

6. Nabeeh Jum’ah and Julian Kunkel. Performance portability of earth system models
with user-controlled ggdml code translation. In Rio Yokota, Michèle Weiland,
John Shalf, and Sadaf Alam, editors, High Performance Computing, pages 693–
710, Cham, 2018. Springer International Publishing.

7. Nabeeh Jumah and Julian Kunkel. Automatic vectorization of stencil codes with
the ggdml language extensions. In Proceedings of the 5th Workshop on Program-
ming Models for SIMD/Vector Processing, WPMVP’19, pages 2:1–2:7, New York,
NY, USA, 2019. ACM.

8. Nabeeh Jumah, Julian M Kunkel, Günther Zängl, Hisashi Yashiro, Thomas Dubos,
and Thomas Meurdesoif. Ggdml: icosahedral models language extensions. Journal
of Computer Science Technology Updates, 4(1):1–10, 2017.

9. Ken Kennedy and Kathryn S McKinley. Maximizing loop parallelism and improv-
ing data locality via loop fusion and distribution. In International Workshop on
Languages and Compilers for Parallel Computing, pages 301–320. Springer, 1993.

10. Kathryn S McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Transactions on Programming Languages and
Systems (TOPLAS), 18(4):424–453, 1996.

11. Jiayuan Meng, Vitali A Morozov, Venkatram Vishwanath, and Kalyan Kumaran.
Dataflow-driven gpu performance projection for multi-kernel transformations. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, page 82. IEEE Computer Society Press, 2012.

12. Michel Müller and Takayuki Aoki. Hybrid fortran: High productivity gpu port-
ing framework applied to japanese weather prediction model. arXiv preprint
arXiv:1710.08616, 2017.

13. Mohamed Wahib and Naoya Maruyama. Scalable kernel fusion for memory-bound
gpu applications. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 191–202. IEEE Press,
2014.

14. Mohamed Wahib and Naoya Maruyama. Automated gpu kernel transformations in
large-scale production stencil applications. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing, pages 259–
270. ACM, 2015.

15. Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: An effective method for
better power efficiency on multithreaded gpu. In Green Computing and Commu-
nications (GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference
on Cyber, Physical and Social Computing (CPSCom), pages 344–350. IEEE, 2010.

16. Michael E Wolf and Monica S Lam. A data locality optimizing algorithm. In ACM
Sigplan Notices, volume 26, pages 30–44. ACM, 1991.

17. Haicheng Wu, Srihari Cadambi, and Srimat T Chakradhar. Optimizing data ware-
housing applications for gpus using dynamic stream scheduling and dispatch of
fused and split kernels, March 24 2015. US Patent 8,990,827.

18. Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar Yalaman-
chili, and Srimat Chakradhar. Optimizing data warehousing applications for gpus
using kernel fusion/fission. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 2433–
2442. IEEE, 2012.

	Optimizing Memory Bandwidth Efficiency
	Introduction
	Related Work
	Methodology
	GGDML and the Code Translation
	Code Structure and Merging
	Understanding Performance Behavior

	Evaluation
	Multi-core processors
	GPUs
	Vector Engines

	Summary

