
Toward Decoupling the Selection of Compression
Algorithms from Quality Constraints

Julian Kunkel1, Anastasiia Novikova2, Eugen Betke1, and Armin Schaare2

1 Deutsches Klimarechenzentrum, kunkel@dkrz.de
2 Universität Hamburg

Abstract. Data intense scientific domains use data compression to re-
duce the storage space needed. Lossless data compression preserves the
original information accurately but on the domain of climate data usu-
ally yields a compression factor of only 2:1. Lossy data compression can
achieve much higher compression rates depending on the tolerable error/-
precision needed. Therefore, the field of lossy compression is still subject
to active research. From the perspective of a scientist, the compression
algorithm does not matter but the qualitative information about the
implied loss of precision of data is a concern.

With the Scientific Compression Library (SCIL), we are developing a
meta-compressor that allows users to set various quantities that define
the acceptable error and the expected performance behavior. The ongo-
ing work a preliminary stage for the design of an automatic compression
algorithm selector. The task of this missing key component is the con-
struction of appropriate chains of algorithms to yield the users require-
ments. This approach is a crucial step towards a scientifically safe use of
much-needed lossy data compression, because it disentangles the tasks of
determining scientific ground characteristics of tolerable noise, from the
task of determining an optimal compression strategy given target noise
levels and constraints. Future algorithms are used without change in the
application code, once they are integrated into SCIL.

In this paper, we describe the user interfaces and quantities, two com-
pression algorithms and evaluate SCIL’s ability for compressing climate
data. This will show that the novel algorithms are competitive with state-
of-the-art compressors ZFP and SZ and illustrate that the best algorithm
depends on user settings and data properties.

1 Introduction

Climate science is data intense. For this reason, the German Climate Computing
Center spends a higher percentage of money on storage compared to compute.
While providing a peak compute performance of 3.6 PFLOPs, a shared file sys-
tem of 54 Petabytes and an archive complex consisting of 70,000 tape slots is
provided. Compression offers a chance to increase the provided storage space
or to provide virtually the same storage space but with less costs. Analysis has
shown that with proper preconditioning and algorithm, a compression factor of

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-67630-2_1
1/12

roughly 2.5:1 can be achieved with lossless compression, i.e., without loss of in-
formation / precision [1]. However, the throughput of compressing data with the
best available option is rather low (2 MiB/s per core). By using the statistical
method in [2] to estimate the actual compression factor that can be achieved on
our system, we saw that LZ4fast yield a compression ratio3 of 0.68 but with a
throughput of more than 2 GiB/s on a single core. Therefore, on our system it
even outperforms algorithms for optimizing memory utilization such as BLOSC.

Lossy compression factors can yield a much lower ratio but at expense of
information accuracy and precision. Therefore, users have to carefully define
the acceptable loss of precision and properties of the remaining data properties.
There are several lossy algorithms around that target scientific applications.

However, their definition of the retained information differs: some allow users
to define a fixed ratio useful for bandwidth limited networks and visualization;
most offer an absolute tolerance and some even relative quantities. The charac-
teristics of the algorithm differs also on input data. For some data, one algorithm
yields a better compression ratio than another. Scientists struggle to define the
appropriate properties for these algorithms and must change their definition
depending on the algorithm decreasing code portability.

In the AIMES project we develop libraries and methods to utilize lossy com-
pression. The SCIL library4 provides a rich set of user quantities to define from,
e.g., HDF5. Once set, the library shall ensure that the defined data quality meets
all criteria. Its plugin architecture utilizes existing algorithms and aims to select
the best algorithm depending on the user qualities and the data properties.

Contributions of this paper are: 1) Introduction of user defined quantities
data precision and performance; 2) Description of two new lossy compression
algorithms; 3) The analysis of lossy compression for climate data.

This paper is structured as follows: We give a review over related work in
Section 2. The design is described in Section 3. An evaluation of the compression
ratios is given in Section 4. Finally, in Section 5 a summary is provided.

2 Related Work

The related work can be structured into: 1) algorithms for the lossless data com-
pression; 2) algorithms designed for scientific data and the HPC environment;
3) methods to identify necessary data precision and for large-scale evaluation.

Lossless algorithms: The LZ77 [3] algorithm is dictionary-based and uses a “slid-
ing window”. The concept behind this algorithm is simple: It scans uncompressed
data for two largest windows containing the same data and replaces the second
occurrence with a pointer to the first window. DEFLATE [4] is a variation of
LZ77 and uses Huffman coding [5]. GZIP [6] is a popular lossless algorithm based
on DEFLATE.

3 We define compression ratio as r =
size compressed

size original
; inverse is the compr. factor.

4 The current version of the library is publicly available under LGPL license:
https://github.com/JulianKunkel/scil

2/12

https://github.com/JulianKunkel/scil

Lossy algorithms for floating point data: FPZIP [7] was primarily designed for
lossless compression of floating point data. It also supports lossy compression and
allows the user to specify the bit precision. The error-bounded compression of
ZFP [7] for up to 3 dimensional data is accurate within machine epsilon in lossless
mode. The dimensionality is insufficient for the climate scientific data. SZ [8] is
a newer and effective HPC data compression method. Its compression ratio is at
least 2x better than the second-best solution of ZFP. In [1], compression results
for the analysis of typical climate data was presented. Within that work, the
lossless compression scheme MAFISC with preconditioners was introduced; its
compression ratio was compared to that of standard compression tools reducing
data 10% more than the second best algorithm. In [9], two lossy compression
algorithms (GRIB2, APAX) were evaluated regarding to loss of data precision,
compression ratio, and processing time on synthetic and climate dataset. These
two algorithms have equivalent compression ratios and depending on the dataset
APAX signal quality exceeds GRIB2 and vice versa.

Methods: Application of lossy techniques on scientific datasets was already dis-
cussed in [10–15]. The first efforts for determination of appropriate levels of
precision for lossy compression method were presented in [16]. By doing statis-
tics across ensembles of runs with full precision or compressed data, it could be
determined if the scientific conclusions drawn from these ensembles are similar.

In [2], a statistical method is introduced to predict characteristics (such as
proportions of file types and compression ratio) of stored data based on rep-
resentative samples. It allows file types to be estimated and, e.g., compression
ratio by scanning a fraction of the data, thus reducing costs. This method has
recently been converted to a tool5 that can be used to investigate large data
sets.

3 Design

The main goals of the compression library SCIL is to provide a framework to
compress structured and unstructured data using the best available (lossy) com-
pression algorithms. SCIL offers a user interface for defining the tolerable loss
of accuracy and expected performance as various quantities. It supports vari-
ous data types. In Figure 1, the data path is illustrated. An application can
either use the NetCDF4, HDF5 or the SCIL C interface, directly. SCIL acts as
a meta-compressor providing various backends such as the existing algorithms:
LZ4, ZFP, FPZIP, and SZ. Based on the defined quantities, their values and
the characteristics of the data to compress, the appropriate compression algo-
rithm is chosen 6. SCIL also comes with a pattern library to generate various
relevant synthetic test patterns. Further tools are provided to plot, add noise or

5 https://github.com/JulianKunkel/statistical-file-scanner
6 The implementation for the automatic algorithm selection is ongoing effort and not

the focus of this paper. SCIL will utilize a model for performance and compression
ratio for the different algorithms, data properties and user settings.

3/12

https://github.com/JulianKunkel/statistical-file-scanner

to compress CSV and NetCDF3 files. Internally, support functions simplify the
development of new algorithms and the testing.

SCIL Framework

Application

NetCDF4

+ Quantities support

HDF5

+ Quantities support

+ SCIL Filter

SCIL

C-API

SCIL Tools

HDF5-File

SZ

ZFP

...

1
quantities
and data

2
quantities
and data

3

quantities
and data

4
compressed

data
5

compressed
data

Fig. 1: SCIL compression path and components

3.1 Supported Quantities

The tolerable error on lossy compression and the expected performance behavior
can be defined. Quantities define the properties of the residual error (r = v− v̂):

– absolute tolerance: compressed value v̂ = v ± abstol
– relative tolerance: v̂ = v · (1± reltol), reltol < 1
– relative error finest tolerance: used together with rel tolerance; absolute

tolerable error for small v’s. If relfinest > |v·(1±reltol)|, then v̂ = v±relfinest
– significant digits: number of significant decimal digits
– significant bits: number of significant digits in bits

Additional, the performance behavior can be defined for both compression and
decompression (on the same system). The value can be defined according to: 1)
absolute throughput in MiB or GiB; or 2) relative to network or storage speed.
Thus, SCIL must estimate the compression rates for the data. The system’s
performance must be trained for each system using machine learning.
An example for using the low-level C-API:

1 #include <scil.h>
2 int main(){
3 double data [10][20]; // our raw data , we assume it contains sth. useful
4
5 // define the quantities as hints , all specified conditions will hold
6 scil_user_hints_t hints;
7 hints.relative_tolerance_percent = 10;

4/12

8 hints.absolute_tolerance = 0.5;
9 hints.significant_digits = 2;

10 // define permformance limit on decompression speed
11 hints.decomp_speed.unit = SCIL_PERFORMANCE_GIB;
12 hints.decomp_speed.multiplier = 3.5;
13 // ... add more limitations if desired
14 // create a compression context for a given datatype
15 scil_context_t* ctx;
16 scil_create_context (&ctx , SCIL_TYPE_DOUBLE , 0, NULL , &hints);
17
18 // the multi - dimensional size of the data , here 10 x20
19 scil_dims_t dims; scil_initialize_dims_2d (& dims , 10, 20);
20
21 // the user is responsible to allocate memory for the output/tmp buffers
22 size_t buffer_size = scil_get_compressed_data_size_limit (& dims ,

SCIL_TYPE_DOUBLE);
23 byte * compressed_data = malloc(buffer_size);
24
25 size c_size; // will hold the number of bytes of the compressed buffer
26 scil_compress(compressed_data , buffer_size , data , &dims , &c_size , ctx);
27 // now do something with the data in compressed_data

3.2 Algorithms

The development of the two algorithms sigbits and abstol has been guided by
the definition of the user quantities. Both algorithms aim to pack the number of
required bits as tightly as possible into the data buffer. We also consider these
algorithms useful baselines when comparing any other algorithm.

Abstol This algorithm guarantees the defined absolute tolerance. Pseudocode
for the Abstol algorithm:
1 compress(data , abstol , outData){
2 (min ,max) = computeMinMax(data)
3 // quantize the data converting it to integer , according to abstol
4 tmp[i] = round((data[i] - min) * abstol)
5 // compute numbers of mantissa bits needed to store the data
6 bits = ceil(log2 (1.0 + (max - min) / abstol))
7 // now pack the neccessary bits from the integers tightly
8 outData = packData(tmp , bits)
9 }

Sigbits This algorithm preserves the user-defined number of precision bits from
the floating point data. One precision bit means we preserve the floating point’s
exponent and sign bit as floating point implicitly adds one point of precision.
All other precision bits are taken from the mantissa of the floating point data.
Note that the sign bit must only be preserved, if it is not constant in the data.
Pseudocode for the Sigbits algorithm:
1 compress(data , precisionBits , outData){
2 // preserve the exponent always
3 (sign , min , max) = computeExponentMinMax(data)
4 // compute numbers of bits needed to preserve the data
5 bits = sign + bits for the exponent + precisionBits - 1
6 // convert preserved bits into an integer using bitshift operators
7 tmp[i] = sign | exponent range used | precisison Bits
8 // now pack the bits tightly
9 outData = packData(tmp , bits)

10 }

5/12

3.3 Compression chain

Internally, SCIL creates a process which can involve several compression algo-
rithms. Algorithms may be preconditioners to optimize data layout for subse-
quent compression algorithms, converters from one data format to another, or,
on the final stage, a lossless compressor. Floating point data can be first con-
verted into integer data and then into a byte stream. Intermediate steps can be
skipped. Based on the basic datatype that is supplied, the initial stage of the
chain is entered. Figure 2 illustrates the chain.

3.4 Tools

SCIL comes with tools useful for evaluation and analysis: 1) To create well-
defined multi-dimensional data patterns of any size; 2) To modify existing data
adding a random noise based on the hint set; 3) To compress existing CSV and
NetCDF data files.

4 Evaluation

In the evaluation, we utilize SCIL to compress the data with various algorithms.
In all cases, we manually select the algorithm. The test system is an Intel i7-6700
CPU (Skylake) with 4 cores @ 3.40GHz.

4.1 Test Data

A pool of (single precision floating point) data is created from several synthetic
patterns generated by SCIL’s pattern library such as constant, random, linear
steps, polynomial, sinusoidal or by the OpenSimplex [17] algorithm. An example
is given for the Simplex data in Figure 3; original data and the compressed data
for the Sigbits algorithm preserving 3 bits from the mantissa.

Additionally, utilize the output of the ECHAM atmospheric model [18] which
stored 123 different scientific variables for a single timestep as NetCDF. This
scientific data varies in terms of properties and in particular, the expected data
locality. Synthetic data are kept in CSV-files.

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compr.
data

process data process data

float float int any anydata

Fig. 2: SCIL compression chain. The choice of blocks and the resulting data path
depend on input data.

6/12

(a) Original data (b) Compressed sigbits 3bits (ratio 11.3:1)

Fig. 3: Example synthetic pattern: Simplex 206 in 2D

4.2 Experiments

For each of the test files, the following setups are run7:

– Lossy compression preserving T significant bits

• Tolerance: 3, 6, 9, 15, 20 bits
• Algorithms: zfp, sigbits, sigbits+lz48

– Lossy compression with a fixed absolute tolerance

• Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value 9

• Algorithms: zfp, sz, abstol, abstol+lz4

In each test, only one thread of the system is used for the compression/de-
compression. Each configuration is run 10 times measuring compression and
decompression time and compression ratio.

4.3 Compression Ratio Depending On Tolerance

Firstly, we investigate the compression factor depending on the tolerance level.
The graphs in Figure 4 show the mean compression factor for all scientific data
files varying the precision for the algorithms ZFP, SZ, Sigbits and Abstol. The
mean is computed on the pool of data, i.e., after compression, a factor of 50:1
means the compressed files occupy only 2% of the original size.

With 0.2% absolute tolerance, the compression ratio of abstol+lz4 is better
than our target of 10:1; on average 3.2 bits are needed to store a single float.
The SZ algorithm yields similar results than abstol+LZ4. The LZ4 stage boosts
the factor for Abstol and Sigbits significantly.

7 The versions used are SZ from Mar 5 2017 (git hash e1bf8b), zfp 0.5.0, LZ4 (May 1
2017, a8dd86).

8 This applies first the Sigbits algorithm and then the lossless LZ4 compression.
9 This is done to allow comparison across variables regardless of their min/max. In

practice, a scientist would set the reltol or define the abstol depending on the variable.

7/12

(a) Absolute tolerance (% of max value) (b) Relative tolerance

Fig. 4: Mean harmonic compression factor based on user settings

For the precision bits, when preserving three mantissa bits, roughly 9:1 could
be achieved with sigbits+LZ4. Note that in roughly half the cases, ZFP could
not hold the required precision, as it defines the number of bits for the output
and not in terms of guaranteed precision10.

4.4 Fixed Absolute Tolerance

To analyze throughput and compression ratio across variables, we selected an
absolute tolerance of 1% of the maximum value.

Mean values are shown in Table 1. Synthetic random patterns serve as base-
line to understand the benefit of the lossy compression; we provide the means
for 5 different random patterns. For abstol, a random pattern yields a ratio of
0.229 (factor of 4.4:1) and for climate data the ratio is slightly better. But when
comparing SZ and Abstol+LZ4, we can observe a decrease of the compression
ratio to 1/3rd of the random data. Compression speed is similar for random and
climate data but decompression improves as there is less memory to read.

The results for the individual climate variables are shown in Figure 5; the
graph is sorted on compression ratio to ease identification of patterns. The x-axis
represents the different data files, each point in the synthetic data represents one
pattern of the given class created with different parameters. It can be observed
that Abstol+LZ4 yields mostly the best compression ratio and the best com-
pression and decompression speeds. For some variables, SZ compresses better,
this is exactly the reason why SCIL should be able to automatically pick the
best fitting algorithm below a common interface.

4.5 Fixed Precision Bits

Similarly to our previous experiment, we now aim to preserve 9 precision bits for
the mantissa. The mean values are shown in Table 2. Figure 6 shows the ratio
and performance across climate variables. The synthetic random patterns yield
a compression factor of 2.6:1. It can be seen that Sigbits+LZ4 outperforms ZFP
mostly, although ZFP does typically not hold the defined tolerance.
10 Even when we added the number of bits necessary for encoding the mantissa to ZFP.

8/12

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

abstol 0.19 260 456
abstol,lz4 0.062 196 400
sz 0.078 81 169
zfp-abstol 0.239 185 301

(a) For ECHAM data files

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

abstol 0.194 265 482
abstol,lz4 0.151 226 456
sz 0.165 74 147
zfp-abstol 0.295 161 266

(b) For 5 different random patterns

Table 1: Harmonic mean compressing with an absolute tolerance of 1% max

Fig. 5: Compressing various climate data variables with abstol of 1% max

9/12

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

sigbits 0.448 462 615
sigbits,lz4 0.228 227 479
zfp-precision 0.299 155 252

(a) For ECHAM data files

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

sigbits 0.369 528 672
sigbits,lz4 0.304 466 599
zfp-precision 0.232 175 314

(b) For 5 different random patterns

Table 2: Harmonic mean compressing with 9 precision bits

Fig. 6: Compressing various climate data variables with 9 Bits precision

10/12

5 Summary

This paper introduces the concepts for the scientific compression library (SCIL)
and compares novel algorithms implemented with the state-of-the-art compres-
sors. It shows that these algorithms can compete with ZFP/SZ when setting the
absolute tolerance or precision bits. In cases with steady data, SZ compresses
better than abstol. Since SCIL aims to choose the best algorithm, it ultimately
should be able to take benefit of both algorithms. Ongoing work is the develop-
ment of a single algorithm honoring all quantities and the automatic chooser for
the best algorithm.

Acknowledgements

This work was supported in part by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA)
(GZ: LU 1353/11-1).

References

1. Hübbe, N., Kunkel, J.: Reducing the HPC-Datastorage Footprint with MAFISC –
Multidimensional Adaptive Filtering Improved Scientific data Compression. Com-
puter Science - Research and Development (05 2013) 231–239

2. Kunkel, J.: Analyzing Data Properties using Statistical Sampling Techniques
– Illustrated on Scientific File Formats and Compression Features. In Taufer,
M., Mohr, B., Kunkel, J., eds.: High Performance Computing: ISC High Perfor-
mance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IX-
PUG, IWOPH, P3MA, VHPC, WOPSSS. Number 9945 2016 in Lecture Notes in
Computer Science, Springer (06 2016) 130–141

3. LZ77. https://cs.stanford.edu/people/eroberts/courses/soco/projects/
data-compression/lossless/lz77/example.htm [Online; accessed 04-10-2016].

4. DEFLATE algorithm. https://en.wikipedia.org/wiki/DEFLATE [Online; ac-
cessed 04-10-2016].

5. : Huffman coding. AMethodfortheConstructionofMinimum-RedundancyCodes [On-
line; accessed 04-10-2016].

6. GZIP algorithm. http://www.gzip.org/algorithm.txt [Online; accessed 04-10-
2016].

7. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point
data. IEEE Transactions on Visualization and Computer Graphics, 12(5):1245-
1250 (2006)

8. Di, S., Cappello, F.: Fast error-bounded lossy hpc data compression with sz. (2015)
9. Hübbe, N., Wegener, A., Kunkel, J., Ling, Y., Ludwig, T.: Evaluating Lossy Com-

pression on Climate Data. In Kunkel, J.M., Ludwig, T., Meuer, H.W., eds.: Su-
percomputing. Number 7905 in Lecture Notes in Computer Science, Berlin, Hei-
delberg, Springer (06 2013) 343–356

10. Bicer, T., Agrawal, G.: A Compression Framework for Multidimensional Scientific
Datasets. Parallel and Distributed Processing Symposium Workshops and PhD
Forum (IPDPSW), 2013 IEEE 27th International (05 2013) 2250–2253

11/12

https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/lz77/example.htm
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/lz77/example.htm
https://en.wikipedia.org/wiki/DEFLATE
A Method for the Construction of Minimum-Redundancy Codes
http://www.gzip.org/algorithm.txt

11. Laney, D., Langer, S., Weber, C., Lindstrom, P., Wegener, A.: Assessing the Effects
of Data Compression in Simulations Using Physically Motivated Metrics. Super
Computing (04 2013)

12. Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R.,
Samatova, N.: Compressing the Incompressible with ISABELA: In-situ Reduc-
tion of Spatio-Temporal Data. European Conference on Parallel and Distributed
Computing (Euro-Par), Bordeaux, France (08 2011)

13. Iverson, J., Kamath, C., Karypis, G. In: Fast and effective lossy compression
algorithms for scientific datasets. Volume 7484 LNCS of Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). (2012) 843–856

14. Gomez, L.A.B., Cappello, F.: Improving floating point compression through binary
masks. 2013 IEEE International Conference on Big Data (10 2013)

15. Lindstrom, P.: Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions
on Visualization and Computer Graphics 2012 (08 2014)

16. et al., A.H.B.: Evaluating lossy data compression on climate simulation data within
a large ensemble. Geosci. Model Dev., 9 (07 2016) 4381–4403

17. OpenSimplex Noise in Java. https://gist.github.com/KdotJPG/
b1270127455a94ac5d19 [Online; accessed 05-02-2017].

18. Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M.,
Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., et al.: The atmospheric
general circulation model ECHAM 5. PART I: Model description. (2003)

12/12

https://gist.github.com/KdotJPG/b1270127455a94ac5d19
https://gist.github.com/KdotJPG/b1270127455a94ac5d19

