
Intelligent Selection of Compiler Options to
Optimize Compile Time and Performance

Anja Gerbes1, Julian Kunkel2, Nabeeh Jumah3

1 Center for Scientific Computing (CSC) 2 Deutsches Klimarechenzentrum (DKRZ) 3 Universität Hamburg

INTRODUCTION
• Efficiency of the optimization process during

compilation is crucial for the later execution
behavior of the code.

• Achieved performance depends on hardware
architecture and compiler’s capabilities to ex-
tract this performance.

• Optimization influences the debuggability of
the resulting binary; for example, by storing
data in registers.

• During development
– Code optimization can be a CPU- and

memory-intensive process which – for large
codes – can lead to high compilation times.

– Compile files individually with appropriate
flags enable debugging and provide high
performance during the testing but with
moderate compile times.

This example shows the dependency of compile
time vs. optimization level. Between -O0 and
-O3 is a compile time 2x.:

Fig. 1: Compile time for our proxy application

APPROACH
Create a tool to identify code regions that are
candidates for higher optimization levels. We
follow two different approaches to identify the
most efficient code optimization:

• compiling different files with different options
by brute force

• using profilers and code instrumentation to
identify the relevant code regions that should
be optimized

After using these approaches:

• The relevant files are evaluated with different
compiler flags to determine a good compro-
mise of the flags.

• Once the appropriate flags are determined,
this information could be shared between
users.

APPLICATION DOMAIN
• Climate and atmospheric sciences.

• Grid-bound variables.

• Codes carrying out stencil operations.

EXPERIMENTS ENVIRONMENT
Proxy Application

A simple climate application is used:

• Time-stepped application.

• Three operators in each time step.

• Stencil operations to update grid-bound
variables in each operator.

• Different code structures developed.

• Different Memory Layouts
for grid-bound variable storage

– 3D Euclidean space

– 1D transformation of 3D Euclidean space

– 3D Hilbert filling curve

– HEVI 2D Hilbert filling curve with
vertical dimension

• Support for different data types
float double int

Testing machine

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

ANALYSIS TOOLSUITE
Main task of the analysis toolsuite is to identify the relevant codes and the optimization flags.

Brute force strategy:
1. Compile each C file into an object file using -O0 and -O3.

2. Iterate over all files, link one file at a time with -O3, all others
with -O0, or otherwise.

3. Run the application, measure and record performance.

4. Compare performance and compilation time for the different
variants to identify relevant files.

5. Test variants of even better compilation options for the relevant
files.

One problem of this strategy is, that codes need a number of iterations
== # files to identify relevant the relevant files.
Profiler are able to identify time consuming regions/files & to allow
repeatedly refine the selection.

C/C++ file*
n

C/C++ file*
.

C/C++ file*
.

C/C++ file*
1

Compiler
-O0

-O3

Object file

select
1 file for -O3
(rest with -O0)

Linker

run executable

start measurement

record performance

1 file all other

Fig. 2: brute force strategy

The profiler-guided selection of files replaces Step 1 and 2 by running the application to identify the
relevant functions and, thus, the files that make up most of the execution time. Consider those files to
be relevant in Step 5. This process can be repeated until no more relevant files can be identified.

We consider to explore the usage of LIKWID and Oprofile for this task:

1. Instrument the functions using LIKWID marker API for annotating the file name. The problem
in using the LIKWID profiler could be the high overhead of instrumentation for short functions.

2. Using Oprofile or perf allows to explore performance without instrumenting the source code but
requires parsing.

When using a profiler that requires code instrumentation such as LIKWID, source-to-source code
transformation can be used.

Yes

No

select further select

values

Results

visualize

execute

command

?

Measurements

function

start

Measurement

finish

Analysis

finish
Measurement

start

Analysis

measured

Profiler

select

Option
Compiler

oprofile

code

instrumentation

likwid

select
profiler

perf

no

instrumentation

Performance Analysis Evaluation

Configuration Transformation Compiling

Fig. 3: profiler strategy

RESULTS
The results show that more time (2×) is spent for compiling code using higher optimization levels in
general, through gcc takes a little less time in general than clang.

O3 compiler pgo comp. GFLOPs for gridsize
time mean 32 64 128 256

all gcc - 0.548 2.450 2.70 2.95 2.09 2.06
all gcc steps 0.426 2.420 2.58 2.80 2.18 2.12
all gcc profile 0.492 2.430 2.54 2.89 2.16 2.13
all clang - 0.594 2.517 2.76 3.05 2.08 2.18
all clang steps 0.490 2.157 2.48 2.57 1.77 1.81
div/grad/step gcc - 0.414 2.879 2.86 3.25 2.74 2.66
div/grad/step gcc steps 0.325 3.222 2.81 3.95 3.09 3.04
div/grad/step gcc profile 0.346 2.939 2.86 3.23 2.71 2.95
div/grad/step clang - 0.507 3.473 3.37 4.36 3.04 3.13
div/grad/step clang steps 0.387 3.040 3.26 3.57 2.67 2.67

Fig. 4: Performance (for 4 threads, double
precision, different grid sizes)

Fig. 5: Compile time when compiling/linking files
with different optimization levels

Figures show compiling files individually, also show when all files are compiled with either -O0
or -O3 -march. Compiling a single file with -O3 -march is not so expensive, subset (div/
grad/step) is still faster. Optimizing this subset of files yields nearly the optimal performance.

LLVM CLANG
• LLVM’s CLang is not only compilers language

• CLang exposes an internal data structure for
analyzing code

• CLang provides mechanisms for traversing
the Abstract Syntax Tree (AST) nodes

• Analysis Toolsuite scans a set of source files
looking for types of functions, via AST

• AST Matcher API provides a Domain Specific
Language (DSL) for matching predicates on
Clang’s AST.

• CLang’s LibTooling transforms applications
code to add the LIKWID Marker API start-
stop-directives

• Code instrumentation on function level is a
preparation of the profiling step

EXPLORED CONFIGURATIONS
• We explored compilation and performance

while varying different settings.

• Compilation process and performance are
tested under different

– code structures

– memory layouts

– grid sizes

– numbers of threads to run code

– data types

– compilers

* GCC version 6.3.0

* CLang version 3.9.1

– Variety of compiler/linking options:

* -O0 - -O3

* -march

* PGO options

• Generated combinations had been run and
performance results analyzed.

SUMMARY
• An application is developed to experiment

compilation improvement while preserving
performance.

• A tool is built to produce a set of optimization
options during compilation process for the set
of files comprising the code repository.

• Iterative process of applying high optimizing
compiler options to a file at a time is done to
find the set of files critical for application per-
formance.

• Brute force search within different application
configurations is undertaken to drive further
compilations.

• PGO capabilities of compilers are exploited in
experiments.

• The results show success to achieve compara-
ble performance of applications compared to
compilations done with high compiler options
for all code components.

FUTURE WORK
• Further enhancements will be done.

• Analysis Toolsuite does not remember good
optimization choices. Transfer of information
learned in a compilation to serve subsequent
compilations is subject to future work.

• Compilation time reduction and code updates
are considerations to take into account for
inter-compilation learning.

• Further code structure details will be studied
to analyse impact of code structure on this
compilation approach.

ACKNOWLEDGEMENTS
This work was supported in part by the German
Research Foundation (DFG) through the Priority
Programme 1648 “Software for Exascale Com-
puting” (SPPEXA) (GZ: LU 1353/11-1).


