
A Novel String Representation and Kernel
Function for the Comparison of I/O Access

Patterns

Raul Torres(0000-0001-6050-1227)?, Julian Kunkel(0000-0002-6915-1179),
Manuel F. Dolz(0000-0001-9466-3398), and Thomas Ludwig

Universität Hamburg, Scientific Computing Research Group, Hamburg, Germany
raul.torres@informatik.uni-hamburg.de

Abstract. Parallel I/O access patterns act as fingerprints of a parallel
program. In order to extract meaningful information from these patterns,
they have to be represented appropriately. Due to the fact that string
objects can be easily compared using Kernel Methods, a conversion to a
weighted string representation is proposed in this paper, together with
a novel string kernel function called Kast Spectrum Kernel. The simi-
larity matrices, obtained after applying the mentioned kernel over a set
of examples from a real application, were analyzed using Kernel Prin-
cipal Component Analysis (Kernel PCA) and Hierarchical Clustering.
The evaluation showed that 2 out of 4 I/O access pattern groups were
completely identified, while the other 2 conformed a single cluster due
to the intrinsic similarity of their members. The proposed strategy can
be promisingly applied to other similarity problems involving tree-like
structured data.

Keywords: Kernel functions, Kast spectrum kernel, I/O access pattern
comparison, Kernel PCA

1 Introduction

I/O access patterns act as fingerprints of an application. The identification and
analysis of these patterns is important in High Performance Computing because
it helps, not only to understand the impact factors on the underlying Parallel
File System, but also to design better ways of organizing I/O operations. In order
to understand the correlation of a collection of patterns, two requirements have
to be met: a) a proper representation able to abstract the relevant features of
each pattern and b) an appropriate strategy to find similarities or dissimilarities
between the data in this new representation. To tackle a) this paper proposes a
two-stage string conversion technique for access patterns. The first stage trans-
forms the data and reflects the containment relationships of the pattern in a
tree-like data structure. The second stage flattens the resulting tree and simpli-
fies the representation in a weighted string. In order to tackle b) these weighted

? raul.torres@informatik.uni-hamburg.de

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-62932-2_48
1/14



2 Raul Torres, Julian Kunkel, Manuel F. Dolz and Thomas Ludwig

strings are compared with a novel string kernel function called Kast Spectrum
Kernel.

2 Background

2.1 Parallel File Systems

Generalities Parallel File Systems [1] are minded for accessing files in a simul-
taneous, concurrent and efficient way. The contents of a file are usually scattered
among different I/O subsystems in order to take advantage of the highest local
performance of each subsystem. These systems should provide, among other ca-
pabilities, persistence, consistence, performance, and manageability. Other de-
sired features might include: scalability, fault-tolerance and availability. Different
approaches can be used to analyze the performance of a Parallel File System.
Checking the patterns of the I/O traces is among the most commonly used ones.

I/O Access Patterns I/O access patterns depict the behavior of disk access
over a period of time. They can be used to determine the overall performance
of an I/O system. It is possible to characterize them by the following proper-
ties: access granularity, randomness, concurrency, load balance, access type and
predictability. Liu et al. [2] mentioned three additional features seen on super-
computing I/O patterns: burstiness, periodicity and repeatability.

2.2 Kernel Methods for Similarity Search

As stated in [3], a typical machine learning systems consists of two subsystems:
the feature extraction and clustering/classifier subsystems. On the one hand,
the feature extraction subsystem performs the process of conversion of raw data
to a meaningful representation. On the other hand, the clustering/classifier sub-
system makes reference to the strategy used to distill information from the new
representation. There is group of algorithms, among the constellation of ma-
chine learning techniques, that have been successfully applied in structured data
problems: they are called Kernel Methods. Kernel Methods are well documented
in the book of Shawe-Taylor and Cristianini [4]. This group of algorithms are
strong enough to detect stable patterns robustly and efficiently from a finite data
sample; basically, the idea is to embed the original data into a space where linear
relations manifest as patterns. These methods have been successfully applied in
problems with structured data types like trees and strings [5]. Kernel methods
follow the mentioned two-stages strategy: first, a mapping is made by the Kernel
Function, which depends on the specific data type and domain knowledge. Sec-
ond, a general purpose and robust kernel learning algorithm is applied to find
the linear relationships in the induced feature space. The stage of construction
of the kernel function can be characterized as follows:

– Original data items are embedded into a vector space called feature space.

2/14



String Representation and Kernel Function for I/O Access Patterns 3

– The images of data in the feature space have linear relations.
– The learning algorithm does not need to know the coordinates of the feature

space data; the pairwise inner products are enough.
– These inner products can be calculated in an efficient way using a kernel

function.

The inner products between the training examples conform the kernel matrix.
The learning algorithms are independent from the kernel function and need
only the kernel matrix to extract meaningful information from the data. In this
work we used two algorithms: Hierarchical Clustering [6] and Kernel Principal
Component Analysis (Kernel PCA) [7].

String Kernels Usually, data is delivered as a collection of attribute-value tu-
ples; the widely used Polynomial and Gaussian Kernels Functions are ideal for
this kind of representation. But for the case of structured data like trees and
strings, the design of kernel functions becomes more complex. Despite this com-
plexity, some solutions have been proposed, for example, Convolution Kernels
[8–10]. Strings kernels are explained in a comprehensive way in [11]. They ba-
sically check for the number of shared substrings among a collection of strings.
These substrings must comply with certain weighting factors, which produces
different kernel functions; The bag-of-characters kernel only takes into account
single-character matching. The bag-of-words kernel searches for shared words
among strings. The k-spectrum kernel[12] only counts sub-strings of length k.
The k-blended spectrum kernel[4] only counts sub-strings which length are less
or equal to a given number k.

3 Methodology

3.1 Creating Strings from I/O Access Patterns

The I/O access pattern files are plain text files where each line corresponds to an
operation. Some of these operations are negligible and hence ignored (e.g. fileno,
nmap and fscanf). Some other operations keep information of the number
of bytes involved on it. The proposed string representation can either use or
ignore such byte information (ignoring is made by assuming all byte values are
zero), which means that two different type of strings can be generated from a
single I/O access pattern. Operations in the I/O access pattern are registered
chronologically; with several file handles acting at the same time it is not always
possible that all the operations belonging to the same file handle could have
been written contiguously. For that reason the patterns are first converted into
trees. Trees are ideal data structures for representing containment relationships
between objects.

From I/O Access Patterns to Trees The trees that we use in this paper
will have the following levels: The ROOT level, the HANDLE level, the BLOCK
level and the operation level (See Figure 1):

3/14



4 Raul Torres, Julian Kunkel, Manuel F. Dolz and Thomas Ludwig

– At the highest level, an imaginary root node groups all the operations of a
single I/O access pattern file. Such node is represented as ROOT.

– At the second level, imaginary nodes group all the operations belonging to
the same file handle. Such nodes are represented as HANDLE.

– At the third level, imaginary nodes group all the operations found between
an open operation and its corresponding close operation. Such nodes are
represented as BLOCK.

– At the deepest level, operations are given nodes, except for open and close,
because the BLOCK node already plays the role of a delimiter.

(a) Access pattern (b) Re-
sulting
tree

Fig. 1. Conversion of a plain text I/O access pattern into a tree

In order to save space, a set of consecutive operation nodes on the same block
can be expressed as a single node when they present some simple patterns. A
similar approach was applied by Kluge [13]. The resulting node will have an
additional field that stores of the number of repetitions. This compression step
is based on the following transformations, which are performed in the given
order:

– Consecutive operations with the same name and the same number of bytes
are simplified to a single operation with the same information. E.g. a read
operation inside a loop reading a file n bytes per iteration.

4/14






















