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Abstract. Data sieving in ROMIO promises to optimize individual non-
contiguous I/O. However, making the right choice and parameterizing its
buffer size accordingly are non-trivial tasks, since predicting the resulting
performance is difficult. Since many performance factors are not taken
into account by data sieving, extracting the optimal performance for a
given access pattern and system is often not possible. Additionally, in
Lustre, settings such as the stripe size and number of servers are tunable,
yet again, identifying rules for the data-centre proves challenging indeed.
In this paper, we 1) discuss limitations of data sieving, 2) apply machine
learning techniques to build a performance predictor, and 3) learn and
extract best practices for the settings from the data. We used decision
trees as these models can capture non-linear behavior, are easy to un-
derstand and allow for extraction of the rules used. Even though this
initial research is based on decision trees, with sparse training data, the
algorithm can predict many cases sufficiently. Compared to a standard
setting, the decision trees created are able to improve performance sig-
nificantly and we can derive expert knowledge by extracting rules from
the learned tree. Applying the scheme to a set of experimental data im-
proved the average throughput by 25-50% of the best parametrization’s
gain. Additionally, we demonstrate the versatility of this approach by
applying it to the porting system of DKRZ’s next generation supercom-
puter and discuss achievable performance gains.
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1 Introduction

With MPI 2, an I/O interface has been standardized which promises to improve
performance for parallel applications. Among the supported features, it explic-
itly supports non-contiguous I/O – one API call accesses multiple file regions,
and, with collective I/O, multiple processes can coordinate their file accesses. The
standard explicitly allows an implementation to exploit its knowledge about con-
current operations; for example, by scheduling the I/O calls intelligently. Since
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there are many factors influencing performance in a supercomputer, extracting
the best performance is anything but trivial. The available optimizations offer a
selection of parameters to be adapted to target machine and specific workload,
and through a wrong choice, performance may be degraded.

It is very difficult for users to estimate how an I/O pattern will perform
under a given set of optimization parameters; they therefore typically try various
parameters, which resembles a limited brute force approach. While there are
some rules of thumb and expert knowledge, e.g. “data sieving helps for small
data accesses”, they need to be adjusted for each system. DKRZ will install the
first phase of its next generation supercomputer HLRE3 this year, providing
more than 2 Petaflop/s and 30 Petabyte storage capacity. However, we struggle
in the data center to determine good defaults for certain Lustre parameters such
as number of servers and stripe size, as they are very specific to system and
application. Even the knowledge of specialists often merely helps to direct the
exploration of the complex parameter space for data sieving and stripe size.
It would be helpful if expert knowledge could be automatically inferred from
observations. To alleviate this, in the long run, our research strives to provide a
tool that will be aware of system capabilities as well as its performance history,
using all to suggest the best parameter set for the task at hand.

Our main contributions are: 1) The evaluation of decision trees to capture and
predict non-contiguous performance behavior. 2) The semi-automatic extraction
of expert knowledge from the measurements.

This paper is structured as follows: Related work regarding I/O research and
machine learning is discussed in Section 2. Section 3 presents performance results
of experiments with several relevant parameters that are currently missing in
data sieving. The overall machine learning approach is introduced in Section 4. In
Section 5, the accuracy of the predictor is investigated and interesting results are
shown. We apply the approach to the porting system for DKRZ’s next generation
system in Section 6, to evaluate whether we can extract best practices for this
test system; this would permit use of the strategy on the full system as well.
Section 7 concludes the paper and discusses future steps.

2 Related Work

Widely used concepts to improve I/O performance are non-blocking I/O, data
pre-fetching and write-behind. ROMIO [1], a common MPI-IO implementation,
offers collective I/O and data sieving with the promise to speed up performance.
Data sieving optimizes independent sparse non-contiguous I/O; by accessing
larger file regions and discarding unwanted data, it avoids seeks on hard disk
drives and improves performance, especially for very small accesses. While holes
in the access pattern can just be read and discarded for reads, it is not as easy
for writes because they require reading the whole region, modifying changed
data and writing it back. Traditional file systems that offer POSIX semantics
require locking to avoid conflicts with concurrent writes to an overlapping region.
Ching et al.[2] implemented ListIO for PVFS in MPI which supports access to
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multiple file regions in one request and, thus, does not need such a read-modify-
write cycle. Over the last years, there has not been much research into further
optimizing non-contiguous I/O.

Optimizing collective I/O has been investigated more deeply. The basic idea
of coordinated I/O is that the processes exchange information about accessed
file regions; then they compute a schedule assigning responsibility for specific
file regions and defining the access order; finally, data is exchanged amongst
those processes that ultimately perform the I/O. There are many variations to
this basic process: The Two-Phase protocol as discussed by Thakur et.al [1] iter-
ates over communication and I/O phases – in each phase, a maximum amount
of data is accessed. Multiphase-I/O [3,4] iteratively increases locality, and Or-
thrus [5] offers several strategies to optimize either for file or process locality.
One difficulty with these approaches is that they require careful analysis and
tuning of parameters.

Monitoring and analysis of system state and performance data is important
to optimize HPC systems; tools include Vampir [6] and Darshan [7]. While they
help in the analysis, they cannot set parameters.

There are several research projects which try to integrate machine learn-
ing into the analysis and optimization cycle. One of the first is the work of
Madhyastha and Reed [8], comparing classification of I/O access patterns by
feed-forward neural networks and by hidden Markov models. Higher level appli-
cation I/O patterns are inferred and looked up in a table to determine the file
system policy to set for the next accesses. The table, however, has to be supplied
by an administrator implementing his heuristics. Magpie, a system by Barham
et al. [9], traces events under Windows, merging them according to pre-defined
schemas specifying event relationships. Their causal chains are reconstructed and
clustered into models for the various types of workload observed. Deviations will
point to anomalies deserving human attention. Classifying new traces accord-
ing to these models yields insights into their actual and expected performance,
leading to various applications such as capacity planning and on-line latency
tuning, as described in [10] and [11]. Behzad et al. [12] offer a framework that
uses genetic algorithms to auto-tune select parameters of a stack consisting of
HDF5, MPI and Lustre. But its monolithic view of the system disregards the
relations between the layers as well as the users’ individual requirements, setting
optimizations but once per application run.

All of these systems have in common the need for human intervention to
benefit from the results or to apply the solutions to the problems identified. The
SIOX framework [13,14] aims to implement a holistic approach covering the full
cycle of monitoring, analysis, machine learning of the adequate settings and their
automatic enactment.

3 Limits of Non-Contiguous I/O

First, we discuss the handling of non-contiguous I/O with data sieving. From
the user perspective, the bytes to access are defined by the MPI file view: MPI
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Elementary type

Filetype
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...File view
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Hole - data not accessed (dhole)
Accessed data (ddata)

Logical MPI offset

Fig. 1. Example non-contiguous access pattern in which every other elementary
data type is accessed.

data types are used to describe the elementary data type (etype) the file consists
of (e.g. a structure), and the file type specifies which of those are to be accessed
by the current process. A programmer usually accesses data at the granularity
of etypes. An offset (the so-called displacement) is added to the beginning of
the file to account for e.g. file meta-data. An example file view and mapping
of its data to bytes in the file is illustrated in Figure 1. Here, the etype could
be a 4-Byte integer; the file type covers four contiguous regions (first etype is
occupied, then a hole, . . . ) and allows access to every other etype. We will refer
to the number of bytes one contiguous region occupies as ddata, and to the hole
size as dhole. The data sieving algorithm is parameterized by its state (s: on, off)
and a buffer size (sbuffer) which defines the granularity of data access for reading
and writing. It will access data at this size, starting from the bytes needed to be
accessed next that are not contained in the current buffer.

3.1 Experiments

To demonstrate the suboptimality and to illustrate the difficulties in parameter-
izing the current data sieving strategy, we conducted several experiments. The
mpipattern benchmark has been created to measure performance for arbitrary
file views and MPI hints. In the following experiments3, this benchmark uses a
file pattern similar to Figure 1; the etype is always an integer and we vary ddata

between 1 KiB and 16 MiB, the data sieving options (s, sbuffer) and the fill level
f := ddata

ddata+dhole
= ddata

dextent
.

The experiments have been conducted on our 20 node cluster: 10 I/O nodes
are each equipped with an Intel Xeon E3-1275@3.4 GHz, 16 GByte RAM and
one Seagate Barracuda 7200.12. Nodes are interconnected with Gigabit Ethernet
and the performance of one HDD is about 100 MiB/s. The I/O nodes run Cen-
tOS 6.5 and Lustre 2.5. On one additional compute node, a single mpipattern

process is run which reports the observed performance. In a production envi-
ronment, multiple users and applications access the shared storage; this may
lead to high fluctuations in observable performance. For a first discussion, this
effect is ignored; during the measurement, the whole cluster has been blocked to
ensure exclusive access to the I/O servers. The test file is pre-created with 8 GiB
of data; between runs, we clear the Linux cache. In the following, we limit our
discussion to read calls.
3 Experimental data is taken from Schmidtke’s thesis [15].
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(a) ddata = 16 KiB (b) ddata = 256 KiB

Fig. 2. Independent I/O performance for a variable hole size and two block sizes
measured with one client for different data sieving options.

Overall, out of 198 different configurations, the best result is achieved without
data sieving in 56 cases, and in 59 and 54 cases with sbuffer = 1 MiB and sbuffer =
4 MiB, respectively. A 100 MiB buffer never achieved best performance, even for
larger datasets and holes. In 29 cases, performance of all settings was similar
(relative performance within 95% of the best). Figure 2a and Figure 2b show
the observed performance for ddata = 16 and 256 KiB, respectively. The lines in
the figures represent the performance with data sieving turned off, or its buffer
set to 1 MiB or 4 MiB of data. Additionally, a theoretic line is given: it is based
on the maximum network performance (117 MiB/s) and assumes all holes would
be read; e.g., for a fill level of 10%, user data is transferred at 11.7 MiB/s.

For small blocks, data sieving performs better, because it avoids seeks and
the system benefits from the Linux read-ahead mechanism. The effects of read-
ahead can be seen by comparing performance from fill levels f of 100% and
98% (dhole = 160 Byte). With a low fill level and thus large holes, data sieving
actually slows down the operations; the reason is that it actually reads the full
buffer size for every required data block even though we only need the first 16 KiB
of data. When accessing 256 KiB of data, this strategy also explains the effect
starting at f = 16%: The 4 MiB buffer is much slower than the 1 MiB buffer.
However, a user would expect that larger buffers may increase performance but
never decrease it.

Moreover, for the large access granularity, turning data sieving off is bene-
ficial starting with f = 33%. For larger accesses, data sieving extracts similar
performance in many cases. Several interesting effects can be seen: performance
of f = 98% (dhole = 8 KiB) is slower; with f = 66% (dhole = 128 KiB), perfor-
mance converges; and with smaller fill levels, some values attain much better
performance. The 128 KiB hole can be explained by Linux read-ahead mecha-
nisms: normally, another 128 KiB block of data is fetched, which is available in
any case. We are striping in 1,048,576 Byte blocks; due to the layout, every single
256 KiB access is covered completely by one Lustre object storage target (OST).
In these cases, with data sieving, another performance pattern can be observed.
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Note that for a 1 MiB buffer, each I/O involves one additional OST, all of the
requested data of which is discarded.

Presumably, the reason for the zig-zag pattern for small fill levels without
data sieving is the OST-centric read-ahead in Lustre. Several patterns lead to
sequential access of data on a subset of servers, such as for 25% and 12.5%;
here, data is read from every (or every other) OST in a sequential fashion. The
read ahead stats from /proc reveal that per 256 KiB access, about 0.03 and 0.7
cache misses occur for the very good and bad cases, respectively. The osc read

shows about 0.77 to 1.75 operations per access; thus, some patterns trigger more
operations than others.

3.2 Performance Factors

There are many factors involved in the performance of non-contiguous I/O that
can be classified into the applications’ spatial and access pattern, the behav-
ior of file system client and parallel file system, and hardware characteristics.
Each individual I/O operation comes with some overhead for the system call
and transferring and processing the triggered I/O request within the parallel file
system. If data is not cached, the operation is dominated on the server side by
the latency of the block storage. Aggregating multiple non-contiguous accesses
into one operation alleviates these costs but may transfer irrelevant data from
block devices and across the network, and thus benefit depends on the through-
put of these components. The file’s data distribution (stripe size in Lustre and
number of servers) has a big impact on performance, as it should be avoided to
involve too many I/O servers with very small requests. Therefore, the alignment
of the accessed data on the file system’s server is important. An additional factor
is the cost for distributed locking needed for writes. The operating system’s and
file system’s pre-fetching mechanisms can transform some read patterns auto-
matically into beneficial sequential access patterns without explicitly requesting
large chunks at application level.

The decision whether or not to merge a consecutive operation with the cur-
rent operation depends on the knowledge of these factors; the best choice may
fuse certain blocks and process others individually. As none of these factors are
explicitly included in ROMIO’s data sieving, and the buffer sizes can only be
changed when opening the file, this approach is hard to tune for users and the
achieved performance is often suboptimal. Therefore, machine learning may be
a suitable technique to analyze the data.

4 Methodology

Every approach to optimization will consist of three basic steps: Identifying the
task’s fixed parameters, choosing the best set of variable parameters and suggest-
ing or enacting them. While we aim to perform the machine learning with the
execution of the application (online), in this study, we measured the performance
and investigate the machine learning offline to evaluate the accuracy.

6/17



In our use case, the fixed parameters consist of the access pattern, specified by
a sequence of (offset, size) tuples (cf. Figure 1). As this may constitute a sequence
of finite but unbounded length, we use a simple first abstraction, computing
only the total size ddata of each data type and its fill level f . Further research
will target more accurate representations and characteristics of the resulting
parameter spaces.

Our variable parameters are the state of data sieving (on, off ) and the buffer
size sbuffer used for it. Our optimization criterion is the performance p, the
average (arithmetic mean) throughput achieved under the mpipattern bench-
mark. The data to be used in training and validation was gathered by running
the benchmark five times per parameter set, then the performance’s arithmetic
mean is computed for each configuration. The relevant variable parameters and
target labels are stored in a CSV file. The evaluation is conducted by loading the
observed performance data into the statistics tool R. We then create the models
offline and compare their performance to the best achievable performance. Since
the observed performance data volume is small (CSV files of roughly 100 KiB),
the time needed for machine learning is negligible in the analysis.

We use standard machine learning techniques to extract knowledge from the
data. For our first method to evaluate, we chose Classification And Regression
Trees (CART)[16], as implemented in the open source library Shark [17], the
statistics tool R and the language python. Our first step is to create a predic-
tor for the performance to be expected from a given set of fixed and variable
parameters. This Performance Model (PM) is trained on a number of samples,
allowing it to estimate a performance value for any given parameter set (see Fig-
ure 3a). For this model, the CSV file contains: size, fill level, state, buffer size
and arithmetic mean performance. We train the model using a subset of rows in
the CSV file (the training set) and predict the performance for the validation
set. Since the mean performance of the data is available for the validation set,
we can determine the error.

As not all machine learning algorithms are suited to regression, we trans-
formed this task into a classification problem which allows for a full comparison
later on. For this, we form classes by quantizing the performance space into
intervals, similar to the “shingles” used in the R package lattice; parameter
sets are classified by mapping them to the interval “class” covering the achieved
performance p. For every parameter set thus classified, a representative of the
pertinent interval is then chosen as a performance estimate. Since our interval
partition is ignorant of the true performance’s distribution, we chose the inter-
vals’ middle points as representatives to facilitate error bound assertions. Using
the median of the values classed within each interval might decrease actual er-
rors as it better approximates clusters within the interval, though. With this
set-up, however, uniform intervals are imprecise in the lower ranges, while small
relative variations in the higher ranges will mean several classes displacement.
We therefore vary interval length with the absolute values they cover: Given a
relative error limit ε and the maximum performance measured pmax, we define
l := ε · pmax. Between 0 and l, we choose uniform interval lengths |Ii| := l · 2ε;
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(a) Performance Model
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(b) Parameter Setting Model

Fig. 3. PM provides a performance estimate, whereas PSM provides the corre-
sponding “tunable” variable parameters to achieve it.

above l, we increase them stepwise by |Ii| := |Ii−1| · (1 + 2ε). This implies the
quantization mean error errq := 1

4n

∑n
i=0 (∆Ii), where ∆Ii is the interval size of

the class that belongs to the i-th instance.
We imagine an implementation could automatically tune the data sieving

parameters online by estimating the performance for all sets of variable param-
eters and picking the values expected to perform best. This strategy has the
advantage that we can validate the prediction accuracy online by comparing
estimation with measurement, and disable the predictor if the results differ sig-
nificantly from the observation.

However, this strategy requires us to assess performance for many different
settings. Instead, we chose a complementing strategy to directly predict the
variable settings for a given set of fixed parameters; we call this the Parameter
Setting Model (PSM) Figure 3b. Since the performance data is still available to
us, we can also quantify the efficiency of this model in our evaluation. Note that
in an implementation, the PSM could use the performance prediction of the PM
to check its correctness.

5 Evaluation

To assess the quality of the machine learning algorithms, we created simpler
models and use them as a baseline: A very naive prediction for a sample would
be the arithmetic mean performance. In our experiments, the mean performance
is 54.7 MiB/s, which leads to an average error of 28.5 MiB/s. Experimenting with
different linear models based on the fixed and variable settings led to a model
with a mean error of 12.7 MiB/s.

5.1 Validation

A series of k-fold cross-validation tests (Table 1) shows that on our data set, the
CART classifier performs better than the our baseline. Unless noted otherwise,
all results cited in this section have been generated with the following parame-
ters: size of training set = size of validation set = 387 instances. Classification
parameter: ε = 0.05, pmax = 109.554.
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k
Performance errors Class errors
min mean max min mean max

2 6.74 6.80 6.87 1.46 1.59 1.72
4 5.19 6.25 6.92 0.94 1.34 1.72
8 4.67 5.66 6.77 0.87 1.19 1.62

Table 1. Prediction errors in MB/s and class errors for training sets under k-fold
cross-validation. Values for k=3..7 lie in between.

(a) CART prediction (trained by 387 in-
stances).

(b) Performance prediction for ddata =
256 KiB.

Fig. 4. Quality of PM performance prediction.

Figure 4a shows the observed and predicted classes when using half the train-
ing data. The graph is sorted by the true performance class (black dots) and
the red dots show the predicted classes. The actual performance prediction for
ddata = 256 KiB are presented in Figure 4b. Often, a predicted performance
matches one of the nearby observed values; the reason is that the original data
point is not contained in the training set and thus the model learns from nearby
values and uses them as approximation. Clearly, the sensitivity of the pattern
and thus major performance differences are impossible to predict accurately if
instances are missing.

5.2 Investigating Training Set Size

We are working towards a self-optimizing system that stops the optimization
process as soon as some convergence criterion is fulfilled, e.g. the learning rate
is negligible or the error rate small enough. This bypasses the need for rules or
a static formula to calculate an optimal training set size, allowing us to replace
learning algorithms and apply this approach to a variety of problems without
interdependency with our data acquisition scheme.

Nevertheless, we have investigated the prediction accuracy of PM under var-
ious training set sizes, using a variant (“inverse”) k-fold cross-validation where
one fold is used for training and the remaining k − 1 for validation instead of
the other way round. The results of the CART classifier are shown in Figure 5.
The 774-instances case validates the overall scheme: The CART classifier was
both trained and validated with the whole data set, yielding a prediction mean
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Fig. 5. Mean prediction error of PM by training set size under inverse k-fold
cross-validation. Class prediction errors show very similar behavior.

error of 1.7 MB/s. Deducting the quantization error of 1.31 MB/s due to our
assignment to classes leaves the real CART classifier error at 0.39 MB/s.

Beginning with the full data set, we reduce the number of training instances
by a factor of 1/2 in each iteration step until the CART classifier stops pro-
ducing reasonable predictions. By training with 24 instances, we can recognize
the first learning progress: the maximum prediction error drops beneath the raw
data’s standard deviation. 96 instances were sufficient to outperform the naive
approach, and after 387 instances, we could observe a considerable stagnation of
the learning rate (cf. Table 1). Moving to random forests[18] yielded very similar
results, not justifying the additional computational cost incurred.

The potential benefit of the approach can be assessed by applying the strategy
to the experimental data. Assuming the user had parameterized the data sieving
for all experiments in the same way, the average performance benefit of choosing
the optimal values instead is given in Table 2. As a default, setting data sieving to
1 MiB would yield the best result, as even optimal parameter settings outperform
it by at most 7.6 MB/s. But even here, our CART-driven PSM with training and
test set sizes of 387 instances each could improve performance by 1.9 MB/s.

5.3 Decision Rules

By classifying only into three classes (slow, average, fast), the CART classifier
applied to the complete data set of mean performance values creates a tree of
221 nodes; the first 4 levels are shown in Figure 6. The following analysis relies
on the fact that the test cases cover the selected parameter space equally. Based

Default Choice CART PSM, 387 Inst. Best Choice

Off 4.2 MB/s 9.6 MB/s

1 MiB 1.9 MB/s 7.6 MB/s

4 MiB 6.9 MB/s 12.2 MB/s

100 MiB 6.9 MB/s 12.2 MB/s

Table 2. Average performance improvements that can be achieved with the
PSM-learned and best choices for sbuffer, compared to one default choice.
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Fig. 6. First three levels of the CART classifier rules for three classes slow, avg,
fast ([0, 25], (25, 75], > 75 MB/s). The dominant label is assigned to the leaf
nodes – the probability for each class is provided in brackets.

on the figure, some rules can be derived: e.g., the left-most path tells us that
of non-contiguous accesses with f < 20% and ddata = 2 MiB, 79% will show
slow and 20% average behavior. Other rules thus created include: in most cases,
sparse access to larger blocks is slow; sequential access to small blocks is fast
(due to read-ahead); for f > 2/3 and ddata < 200 KiB, data sieving is beneficial
for almost all accesses; in the case of f < 2/3 and 2 MiB < ddata < 8 MiB,
performance is mostly fast – surprisingly, larger accesses achieve merely average
performance. Experts in the field typically know the first rules, but the last two
statements are interesting.

6 Learning Best Practices for DKRZ

DKRZ runs a test system to prepare for their next supercomputer that will be
installed in Q1 of 2015. We conducted measurements on this porting system
to study whether our methodology can be applied to learn appropriate Lustre
settings. The test system consists of 20 compute nodes and a Lustre 2.5 file
system hosted by one ClusterStor 6000 enclosure (SSU) from Seagate with two
OSS servers and 84 HDDs. All nodes are interconnected with FDR-Infiniband.

The following measurements are conducted with our NCT library which is
currently in development and offers POSIX-compatible calls for non-contiguous
access. Amongst other strategies, it implements the ROMIO algorithm for data
sieving, allowing for an analysis similar to the one discussed before: A single
process performs reads or writes on a previously created 10 GB file, varying
hole size and access granularity. As opposed to the results discussed so far, this
evaluation is conducted on the file system shared amongst all users. To gain
comparable results, the client cache is cleaned between the runs, and several
repetitions are measured. If a value differs more than 20% from the average of
all others measured so far for this configuration, an additional run is executed
after which this procedure is repeated, resulting in up to 10 measurements for
cases with high variation.

Overall, 408 configurations of hole and block size were measured for up to
8 combinations of user controllable settings (one or two Lustre servers, 128 KiB
or 2 MiB stripe size, data sieving with 4 MiB or off). 240 of these were run with
all 8 settings; of the remainder, 84 more cases each were only evaluated for
128 KiB and 2 MiB stripe sizes, respectively. For validation purposes, the two
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Data sieving Off On

Server count 1 2 1 2

Stripe size 128 KiB 2 MiB 128 KiB 2 MiB 128 KiB 2 MiB 128 KiB 2 MiB

Sieving Server # Stripe

Off
1

128 KiB - 0 0 0 31 31 33 31
2 MiB 2 - 0 0 31 32 34 32

2
128 KiB 54 57 - 3 43 43 35 37
2 MiB 56 59 2 - 39 45 42 37

On
1

128 KiB 114 115 109 93 - 5 8 19
2 MiB 104 103 90 83 0 - 3 14

2
128 KiB 112 112 104 107 65 71 - 8
2 MiB 112 111 104 96 56 69 2 -

Table 3. Frequency in which a setting of the row is better by 20% (at least
5 MB/s) than the one of a column, out of 240 hole/size configurations.

settings of stripe sizes were also evaluated for one server, which should not make
a difference.

First, we look at the frequency at which a particular setting is superior to
another. Table 3 shows the number of times the configuration in a row achieves
at least 20% and 5 MB/s better performance than the one in the column. A few
unexpected cases are observable: when only one server is used, the variation in
stripe sizes should lead to similar performance results. However, e.g. without
data sieving, the 2 MiB stripe size is in 2 (out of 240) cases better than the
one with 128 KiB which is presumably due to fluctuations on the shared storage
resource. Without data sieving, it can be seen that typically one server achieves
less performance than two; with data sieving, there are some cases in which
one server significantly outperforms two. In the sampled configurations, turning
data sieving on is usually superior to turning it off in about 100 cases, the naive
I/O is better in about 35 cases. While the configurations are similar to the ones
measured on our test cluster, the amount of data accessed is typically small
compared to the fast interconnect and storage system, which explains why data
sieving dominates the naive approach. With 20% tolerance, there are a few cases
in which the stripe size is relevant; reducing tolerance to 10%, this number rises
to about 50. Nevertheless, we expect that this number will grow much higher on
DKRZ’s final system than in this preliminary experiment.

6.1 Applying Machine Learning

In the following analysis, used the scikit-learn Python library with its Decision-
TreeClassifier (with its entropy criterion) on the CSV file to learn the decision
tree and extract knowledge. The triple (sieving, server count, stripe size) of the
best possible choice for each configuration is encoded as an integer and learned.
Note that we treat all configurations equally – in a real system, each would be
weighted based on the probability of observing it, making sure that frequent
access patterns will be well optimized.
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Looking at some statistics of the achieved performance allows us to quantify
the optimization potential: The best observed performances for a single run are
up to 800 MB/s and 350 MB/s for read and write operations, respectively. Over
the 240 configurations, an average performance of 213 MB/s is observable. The
average performance over all configurations, choosing the best setting for each,
is 293 MB/s; choosing the worst for each, it is 146 MB/s. Creating a decision
tree of depth 1 yields the rule if (write) select (data sieving=on, servers=2,
stripe=128 KiB) else select (data sieving=on, servers=1, stripe=128 KiB). Fol-
lowing even this simple rule reduces the gap in average performance compared
to the best per-case choice possible to only 16.6 MB/s.

In practice, we will not normally have all settings sampled for a given config-
uration, resulting in missing values similar to our case with 408 configurations.
Using pruned trees with reduced height however, as in this evaluation, rules may
still suggest settings that have not been measured so far, and if this recommenda-
tion is followed, the sampled portion of the parameter space will grow in the long
run. Using all values, the average performance over all measured configurations
and settings is 244.7 MB/s. The best setting for each configuration achieves an
average performance of 357.7 MB/s, and the worst choice of 179.9 MB/s. Table 4
lists the average performance loss of a given default choice when compared to
the best available choices.

When averaging test run performance, two scenarios may apply: Comput-
ing centers desire a continually saturated job queue, where the mean achieved
over a fixed time is of interest. Users, who typically have a fixed workload to
be completed, regard the mean derived from the total time to completion as
more important. The first is given by the arithmetic mean, while the harmonic
mean yields the second. Another interpretation of the arithmetic columns is the
expected performance when picking a random experiment, while the harmonic
performance defines the average throughput expected when executing all ex-
periments with the given setting. The arithmetic mean favors fast execution,

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Size Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 KiB Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128 KiB Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09

1 128 KiB On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128 KiB On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Table 4. Tunable settings: Expected performance of a user’s default choice vs.
the per-case optimal setting (absolute in MB/s, relative and performance loss in
MB/s compared to the best choice) using arithmetic and harmonic mean. The
number of cases in which a setting is the worst or best choice out of all 408
configurations is listed for reference.
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Fig. 7. Performance difference between learned and the best choices, by maxi-
mum tree depth, for the DKRZ porting system.

the harmonic mean is restricted by slow performance. With one server, 2 MiB
stripe size and activated data sieving, for instance, 64.1% of the best possible
performance is expected for any run and the arithmetic mean performance loss
compared to the optimal settings is 57 MB/s (achieving 245.6 MB/s). However,
when executing all experiments with this setting, only 15.2% of the best perfor-
mance is expected resulting in an average harmonic mean performance of only
0.16 MiB/s. This low harmonic mean is due to experiments with large holes and
small amounts of data achieving a performance below 1 MB/s. By choosing the
optimal tunable settings, the achievable performance can thus be significantly
increased, which further underlines the relevance of this early study.

Figure 7 shows the average performance loss between machine learning and
the per-case optimum, based on the depth of the tree learned. The figure also in-
cludes the relative performance achieved, compared as harmonic and arithmetic
means. Even at a very low height, the tree proves very efficient, achieving more
than 87% of the arithmetic mean performance and 79% of the harmonic4. This
is much better than all possible fixed defaults (72% arithm. mean and 15% har-
monic mean performance at best). Therefore, the trees avoid suboptimal choices
efficiently. One exception is the tree with a depth of 5: it suggests several slow
settings, resulting in a relative harmonic mean performance of 34%.

A tree of level four (shown as in Figure 8) achieves good performance (about
3.5 MB/s average gap) at a reasonable size; it can be expected to achieve 99% of
the potential performance (arithmetic and harmonic). The leaves are the choices
based on the access pattern. The number of instances in which this choice is
the best is given in the leaf for convenience, followed by the second best choice.
Interestingly, in most cases, both differ only in a single parameter, i.e., either
number of servers, data sieving or stripe size. Given an access pattern, this tree

4 Note that for a tree of depth one, 80 choices are made for which no measurement is
available; these values are excluded from the calculation of the average performance.
For bigger trees, less than a handful of choices are not quantifiable. Therefore, we
believe this comparison to be fair.
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Fig. 8. Decision tree for DKRZ test system with height 4. In the leaf nodes, the
settings (Data sieving, server number, stripe size) and number of instances of
the best and second best choice are shown.

allows users (or a library) to select appropriate and efficient settings. Also, using
machine learning and extracting rules from such a tree proved far less time
consuming and error-prone than studying the measurement results by hand.

7 Conclusions and Future Work

Even constrained to the few parameters governing data sieving, optimizing HPC
I/O is anything but trivial. We have discussed the challenges and limitations
faced when optimizing non-contiguous access using data sieving, and used Clas-
sification and Regression Trees to create a predictor for the I/O performance
resulting from a given parameter set. Evaluating this predictor under various
training set sizes, we found it a fairly accurate indicator of the performance
to be expected. We created another model that will choose the parameter set
promising the highest performance, achieving significant improvements over the
best default settings and increasing the average I/O performance by several
MiB/s. While the decision trees reproduced known heuristics correctly, we also
harvested interesting insights from them, yielding best practices for data sieving
on our system.

Future work will focus on automatically generating simple rules-of-thumb
from the extensive decision trees. Integrating our findings with the SIOX system
will allow us to harness this knowledge for optimization as well as for active
learning during phases of low utilization. Thus, sparse training data can be sup-
plemented to greatly improve predictor accuracy and overall effectiveness. Since
data sieving does not incorporate the important performance factors, observed
performance behaves unpredictably in many cases, leading to suboptimal accu-
racy of the CART when using sparse training data. The parameters discussed in
this paper are system dependent, but not affected by the file type and pattern,
marking them as candidates for machine learning. We are currently working
on an adaptive data sieving algorithm relying on this, and researching more
accurate representations and characteristics of the resulting parameter spaces.
Finally, future efforts will further explore ML techniques and their applicability,
as well as the effects of selective data acquisition and active learning.
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