
The SIOX Architecture – Coupling Automatic
Monitoring and Optimization of Parallel I/O

Julian Kunkel1, Michaela Zimmer1, Nathanael Hübbe1, Alvaro Aguilera2,
Holger Mickler2, Xuan Wang3, Andriy Chut3, Thomas Bönisch3, Jakob

Lüttgau1, Roman Michel1, and Johann Weging1

1 University of Hamburg
2 ZIH Dresden

3 HLRS Stuttgart ?

Abstract. Performance analysis and optimization of high-performance
I/O systems is a daunting task. Mainly, this is due to the overwhelm-
ingly complex interplay of the involved hardware and software layers.
The Scalable I/O for Extreme Performance (SIOX) project provides a
versatile environment for monitoring I/O activities and learning from
this information. The goal of SIOX is to automatically suggest and ap-
ply performance optimizations, and to assist in locating and diagnosing
performance problems.
In this paper, we present the current status of SIOX. Our modular archi-
tecture covers instrumentation of POSIX, MPI and other high-level I/O
libraries; the monitoring data is recorded asynchronously into a global
database, and recorded traces can be visualized. Furthermore, we offer
a set of primitive plug-ins with additional features to demonstrate the
flexibility of our architecture: A surveyor plug-in to keep track of the
observed spatial access patterns; an fadvise plug-in for injecting hints to
achieve read-ahead for strided access patterns; and an optimizer plug-in
which monitors the performance achieved with different MPI-IO hints,
automatically supplying the best known hint-set when no hints were ex-
plicitly set. The presentation of the technical status is accompanied by
a demonstration of some of these features on our 20 node cluster. In ad-
ditional experiments, we analyze the overhead for concurrent access, for
MPI-IO’s 4-levels of access, and for an instrumented climate application.
While our prototype is not yet full-featured, it demonstrates the potential
and feasibility of our approach.

Keywords: Parallel I/O, Machine Learning, Performance Optimization

1 Introduction

I/O systems for high-performance computing (HPC) have grown horizontally to
hundreds of servers and include complex tiers of 10,000 HDDs and SSDs. On

? We want to express our gratitude to the
”
Deutsches Zentrum für Luft- und Raum-

fahrt e.V.“ as responsible project agency and to the
”
Bundesministerium für Bildung

und Forschung“ for the financial support under grant 01 IH 11008 A-C.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-07518-1_16
1/16

the client side, complexity of high-level software layers increases. This leads to
a non-trivial interplay between hardware and software layers, and diagnosing it
has become a task to challenge even experts. Parameterizing the layers for opti-
mum performance requires intimate knowledge of every hardware and software
component, including existing optimization parameters and strategies.

The SIOX Project was initiated to shed light on the interactions, and to offer
automatic support for optimizing the HPC-I/O stack. Continually monitoring
performance and overhead, an I/O system instrumented with SIOX will au-
tonomously detect problems, inferring advantageous settings such as MPI hints,
stripe sizes, and possible interactions between them. In this paper we will present
first results obtained with the SIOX prototype.

The contributions of this paper are: 1) a description of our modular archi-
tecture for monitoring, analysis and optimization. 2) analysis of the overhead
for synthetic benchmarks and a climate model. 3) use-cases demonstrating the
benefit of automatic optimization.

This paper is structured as follows: Section 2 sketches the state of the art
in I/O performance analysis. The modular architecture and implementation of
SIOX is introduced in Section 3. Section 4 describes tools to analyze and visu-
alize instrumented applications. We evaluate the overhead of our prototype in
Section 5, and demonstrate the potential of this approach in several scenarios.
Finally, ongoing and future work is discussed in Section 6 and conclude our ex-
perience with the SIOX prototype in Section 7.

2 Related Work

Efforts to monitor I/O behavior are legion, the latest widely-used exponent being
Darshan [1], a lightweight tool to gather statistics on several levels of the I/O
stack, primarily MPI and POSIX.

Early approaches to true system self-management relied on the direct classi-
fication of system state or behavior to automatically diagnose problems or even
enact optimization policies. The work of Madhyastha and Reed [2] compares
classifications of I/O access patterns, from which higher level application I/O
patterns are inferred and looked up in a table to determine the file system pol-
icy to set for the next accesses. The table, however, has to be supplied by an
administrator implementing his own heuristics.

Later approaches are marked by schemes to persist their results in order to
benefit from past diagnostic efforts, possibly even applying known repair actions
to recognized problems. Magpie, a system by Barham et al. [3], traces events un-
der Microsoft Windows, merging them according to predefined schemata spec-
ifying event relationships. Their causal chains are reconstructed, attributed to
external requests and clustered into models for the various types of workload
observed. Deviations will point to anomalies deserving human attention.

Yuan et al. [4] combine system state and system behavior to identify the
root causes of recurring problems. Tracing the system calls generated under
Windows XP, they use support vector machines to classify the event sequences.

2/16

A presumptive root cause is identified, leaving the sequence – if flagged by a
human as accurately diagnosed – available as eventual new training case for the
classifier. The root cause description may include repair instructions, which in
some cases can be applied automatically.

Of the systems focusing on system metrics, Cluebox by Sandeep et al. [5]
analyses logs for anomalies, pointing out the system counters most likely involved
in the problem. Expected latencies can be predicted for new loads, not only
detecting anomalies but also which counters most significantly deviate from par.
No direct tracing or causal inference are needed, but once again, only hints
for administrators are produced. In Fa (Duan et al. [6]), a system’s base state
is defined by service level objectives; compliance constitutes health, violation
failure. A robust data base of failure signatures is constructed from periodically
sampled system metrics.

Behzad et al. [7] offer a framework that uses genetic algorithms to auto-tune
select parameters of an HDF5/MPI/Lustre stack; but its monolithic view of the
system disregards the relations between the layers as well as the users’ individual
requirements, setting optimizations once per application run.

Valuable capabilities of existing approaches are combined in the SIOX in-
frastructure and extended by unique features: 1) SIOX covers parallel I/O on
client and server level as well as intermediate levels, 2) it aims to be applicable
at all granularities and portable across middle-ware and file systems, 3) SIOX
does not require MPI and can be applied to POSIX applications easily 4) it
unites user-level and system-level monitoring supporting both views, 5) it ap-
plies machine-learning strategies to learn optimizations on-line and off-line and
apply them – ultimately without human intervention, 6) SIOX utilizes a system
model to estimate performance, 7) it restricts monitoring to relevant anomalies,
8) finally, SIOX is extremely modular and its capabilities can be configured for
many different use-cases.

3 The Modular Architecture of SIOX

Under SIOX, a system will collect information on I/O activities at all instru-
mented levels, as well as relevant hardware information and metrics about node
utilization. The high-level architecture of SIOX has been introduced in [8]: SIOX
combines on-line monitoring with off-line learning; monitoring data is first trans-
ferred into a transaction system, and then imported into a data warehouse for
long-term analysis. The recorded information will be analyzed off-line to create
and update a knowledge base holding optimized parameter suggestions for com-
mon or critical situations. During on-line operations, these parameters may be
queried and used as predefined responses whenever such a situation occurs. The
choice of responses to every situation is diverse, ranging from intelligent moni-
toring in the presence of anomalies, via alerting users and administrators with
detailed reports, to automatically taking action to extract the best possible per-
formance from the system. In Zimmer et.al. [9] we discussed the knowledge path
in more detail, and sketched several modules for anomaly detection. This paper

3/16

extends our previous theoretical articles by describing our existing prototype,
and presenting first results.

SIOX is written in C++, and heavily relies on the flexible concept of modules:
Upon startup of either a process, a component, or the daemon, a configuration
is read which describes the modules that must be loaded. Several modules offer
an interface for further plug-ins which, for example, may offer specialized detec-
tion of anomalies, and may trigger actions based on the observed activities and
system state. Before we outline the currently existing modules and plug-ins, the
instrumentation of an application is described.

3.1 Low-level API

An instrumented application is linked against at least one instrumented soft-
ware layer, and against the low-level C-API. Upon startup of the SIOX low-level
library, a configuration file is read, and globally required modules are loaded.
Whenever a logical component – such as the MPI layer – registers, a component-
specific section in the configuration is read, and the layer-specific modules de-
scribed there are loaded. The following interfaces are directly required by the
low-level library:

– Ontology : The ontology module provides access to a persistent representation
of activity attributes such as function parameters.

– SystemInformationGlobalIDManager : Provides a means to map existing phy-
sical hardware (nodes, devices), and software components (layer and existing
activity types) to a global ID, and vice versa.

– AssociationMapper : While the Ontology and SystemInformation are rarely
updated, runtime information of an application changes with each execu-
tion. Therefore, this data is held in a separate store with an efficient update
mechanism, both provided by the AssociationMapper.

– ActivityMultiplexer : Once an activity is completed, it is given to the multi-
plexer, which forwards it to all connected MultiplexerPlugins.
Each of these analyzes the data of the incoming activities to fulfill higher-
level duties. The multiplexer offers both, a synchronous and an asynchronous
data path. The latter allows for more performance-intense analysis, but may
incur loss of activities when the system is overloaded.

– Optimizer : The optimizer provides a lightweight interface to query the best
known value for a tunable attribute. Internally, a value is provided by a
plug-in; each plug-in may support a set of attributes. The value may depend
on the system status, runtime information about the process, or sequence of
activities observed.

– Reporter : Modules can collect some information about their operation, such
as overhead, and amount of processed data. Upon termination of an applica-
tion, this data is handed over to so-called reporter modules. A reporter may
process, store, or output these statistics, according to its configuration.

Additionally, the library uses some helper classes to build activities, to load and
manage modules, and to monitor the internal overhead.

4/16

3.2 Instrumentation

When tracing foreign code, keeping the instrumentation up to date can become a
maintenance problem. To keep manual work to a minimum, SIOX automatically
generates instrumentations for layers from annotated library headers. In the
modified headers, short annotations represent aspects of otherwise complex code.
It is also possible to inject code, or include custom header files. An example of
these annotations is given in Listing 1. Each annotation set before a function
signature instantiates a template with the given name and defines it arguments.

The siox-wrapper-generator, a dedicated python tool, either creates code
suitable for ld’s --wrap flag or for use with LD PRELOAD. The tool uses so-called
templates to turn annotations into source code, thus a single annotated header
allows for many different outputs by switching templates.

//@activity
//@activity_link_size fh
//@activity_attribute filePosition offset
//@splice_before ’’int intSize; MPI_Type_size(datatype, &intSize);

uint64_t size=(uint64_t)intSize*(uint64_t)count;’’
//@activity_attribute bytesToWrite size
//@error ’’ret!=MPI_SUCCESS’’ ret
int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void * buf, int count,

MPI_Datatype datatype, MPI_Status * status);

Fig. 1. Annotations for MPI File write at() in the header.

We constantly update the capabilities of the instrumentation. At the moment,
the instrumentation covers a number of functions in different I/O interfaces: 74 in
POSIX, 54 in MPI, 5 in NetCDF and 18 in HDF5. Instrumentation of open and
close functions in NetCDF and HDF5 allows SIOX to relate lower-level I/O
to these calls. Asynchronous calls are supported by linking the completion of
an operation to its start, but require creation of this link in the instrumented
interface. A restriction, in this respect, is that we expect that start and end calls
are executed by the same thread, but this restriction will be lifted in the future.
Concepts to relate calls across process boundaries, e.g. between I/O client and
servers, have been developed but are not being used so far.

3.3 Existing Modules

For the basic modules needed by the low-level API, database and file system
back-ends are available. The ActivityFileWriter and StatisticsWriter store the
respective information into a private file, persisting observed activities and statis-
tics without the need to set up a database. There are three alternative Activity-
FileWriter modules with alternative representations available: A text file using
the Boost library, our own binary format and a Berkeley DB implementation.
These modules can be embedded in the daemon to all activities of multiple pro-
cesses in a file or in the process to store its activities independent of other pro-
cesses. With the DatabaseTopology, we have implemented a PostgreSQL database

5/16

Fig. 2. Example configuration of SIOX modules within a process and the node-
local daemon, and their interactions. Those used for monitoring are styled orange
or white, those for self-optimization purple; utility modules are gray.

driver for key-value like tables. This module offers a convenient interface for
a TopologyOntology, TopologySystemInformation, and TopologyAssociationMap-
per. Also, the PostgresWriter stores the activities into a PostgreSQL database.

The GIOCommunication module handles all communication within SIOX. It
uses GLIB IO sockets, thus offering both TCP/IP and Unix sockets connections.
For each communication partner, two threads are started: one handling incoming
messages, and one for transmission.

The typical configuration and interactions of higher-level modules are illus-
trated in Figure 2. In this setup, a client with POSIX and MPI instrumentation
transfers observations to a node-local daemon, which, in turn, injects the ac-
tivities into the transaction system. Additionally, system statistics are gathered
by the daemon. The responsibility of these modules is briefly described in the
following:

– Optimizer : The current optimizer implementation is very lightweight, dis-
patching the requests for optimal parameters to plug-ins.

– ActivityMultiplexerAsync: This implementation of an activity multiplexer
provides both a synchronous processing of completed activities and spawns
a thread for background processing of asynchronous notification of registered
activity plug-ins. Due to potentially concurrent execution of activities, each
plug-in is responsible for protecting critical regions.

6/16

– Reasoner : Any reasoner will play one of three roles, indicating its scope of
responsibility: Process, node, or system (global) reasoner. They periodically
poll each AnomalyDetectionPlugIn within their respective domain for an
aggregated view of all anomalies witnessed during the last polling cycle.
These will be related to the latest generalized health reports of neighboring
reasoners in the SIOX hierarchy to form a comprehensive view of the local
subsystem’s health, In this context, the collected anomalies are evaluated,
and the decision is made whether to signal an anomaly to all registered
listeners. Although the current standard implementation has a very simple
decision matrix with only a few heuristic rules, later versions will play a
crucial part in regulating the stream of log data.

– The ANetFWClient provides a ring buffer to store a number of recently ob-
served activities. A connected reasoner may emit an anomaly signal which
causes the ANetFWClient to transmit all pending activities to a remote
ANetFWServer. Several configurations are possible; at the moment, the pro-
cess only sends its data to a daemon if the process-internal reasoner decides
to do so. In another configuration, a process may always send its data to the
node-local daemon which forwards it if an anomaly is detected at node level.

– GenericHistory : A plug-in monitoring accesses and the hint set which was
active during their execution. After a learning phase, it can identify the hint
set most advantageous to a given operation’s performance in the past; these
can be further conditioned on user ID and file name extension. The optimizer
will query this plug-in, and inject commands to set the hints appropriately
before each access; this requires instrumenting the layer issuing the access
calls for SIOX. The calls to be observed, and the attributes governing their
performance (such as data volume or offset) are configurable.

– Histogram ADPI : This plug-in either learns a typical runtime histogram for
each type of activity, or it reads the required data from the database. This
data is then used to categorize the speed for subsequent activities into very
slow, slow, normal, fast, and very fast operations. An aggregate view of this
information is supplied to the reasoner, which may then judge the overall
system state in turn.

– FileSurveyor : Activities of the classes Read, Write, and Seek are monitored
here, counting sequential (further distinguished by stride size) and random
accesses, and reporting the totals upon application termination. The calls
belonging to each class may be configured according to the layer surveyed.

– FadviseReadAhead : This plug-in tracks POSIX I/O, and may decide to inject
posix fadvise() calls to read-ahead future data. The decision is made based
on the amount of data accessed in the previous call, and the spatial access
pattern. For each file, it predicts the next access position of the stream, and
initiates a call to fadvise() if a configurable number of preceding predictions
have been correct.

– Statistics infrastructure: Statistics are provided by StatisticsProviderPlug-
ins. Their task is to acquire the data, tag it with ontology attributes and
topology paths, and to make it accessible to SIOX via a simple interface. A
StastisticsCollector then polls all the providers registered with it; the current

7/16

implementation uses a dedicated thread for this purpose. Afterwards, the col-
lector calls a StatisticsMultiplexer to distribute the statistics information to
its listeners.
All Statistics can remember values from the near past, going back as far
as 100 minutes. As our polling interval for statistics is 100 milliseconds, we
cannot store the entire history at full resolution. Consequently, the statistics
data is aggregated into longer intervals, providing five different sampling
frequencies, each storing its last ten samples, and each serving as the basis
to aggregate at the next level. With this approach, it is possible to ensure a
reasonable memory overhead while providing long history information. The
sampling intervals used in SIOX are 100 milliseconds, 1 second, 10 seconds,
1 minute, and 10 minutes.

– StatisticsProviderPlugins: Currently, five StatisticsProviderPlugins are avail-
able, collecting information on CPU, memory, network, and I/O load. The
fifth plug-in is the QualitativeUtilization plug-in, which acts both as a Statis-
ticsMultiplexerListener and a StatisticsProviderPlugin, integrating the de-
tailed information supplied by the specialized plug-ins into four simple high-
level percentages describing the relative utilization of CPU, network, I/O-
subsystem and memory.

4 Analysis and Visualization of I/O

Post-mortem and near-line analysis of observed activity in files and the database
are crucial. At the moment, we offer a command-line trace reader and a database
GUI. Additionally, each SIOX-instrumented application and the daemon gather
statistics about their own usage and overhead. This reporting data is usually
output during termination of a process.

4.1 Command-line Trace Reader

The command-line trace reader offers a plug-in interface to process monitored
activities. The print plug-in just outputs all recorded trace information, replacing
attributes with their human-readable representations. An excerpt of a trace is
given in Figure 4; note the cause and all potential relations of an activity printed
at the end of each line. Another plug-in, the AccessInfoPlotter extracts the
observed spatial and temporal access pattern for each process and uses pyplot to
illustrate the I/O behavior. Figure 3 shows the interleaved I/O of two processes
each writing 20 × 100 KiB blocks with one non-contiguous MPI File write().
Thanks to data sieving, these patterns lead to several read-modify-write cycles
(500 KiB of data per iteration). Both traces have been channeled through a local
daemon, and are stored in a single trace file.

4.2 Database GUI

The visualization of the large amount of data produced by a fully functional
deployment of SIOX is a challenging and resource-intensive task that exceeds

8/16

(a) Rank 0 (b) Rank 1

Fig. 3. Generated plots for the observed POSIX access pattern from a shared
file accessed by two processes using non-contiguous I/O. Each process locks a
file region, reads the data, modifies it and writes it back. Selected phases are
marked with arrows to illustrate the behavior.

0.0006299 ID1 POSIX open(POSIX/descriptor/filename="f1",POSIX/descriptor/filehandle=4) = 0
0.0036336 ID2 POSIX write(POSIX/quantity/BytesToWrite=10240, POSIX/quantity/BytesWritten=

10240, POSIX/descriptor/filehandle=4, POSIX/file/position=10229760) = 0 ID1
0.0283800 ID3 POSIX close(POSIX/descriptor/filehandle=4) = 0 ID1

Fig. 4. Example trace output created by the trace-reader. ID* is the locally
generated ID (shortened in this example). The relation between open() and the
other calls is recorded explicitly.

the scope of the project. However, the possibility of a user-friendly inspection
of the data stored in the database is essential for the development and admin-
istration of the SIOX system. For this reason, we created a web interface based
on HTML/PHP that extracts and presents the information we are interested in.
Giving the simplicity of its implementation, this interface is extensible without
much programming effort, resulting in a useful tool for experimenting with the
collected data as well as for debugging the system. Currently, the interface offers
a listing of all activities stored in the database (see Figure 5), as well as a detailed
view of any particular activity together with the causal chain of sub-activities it
produced (Figure 6).

4.3 Reporting

By way of the Reporter module, any SIOX component may compile a report
upon component shutdown. The ConsoleReporter module will collect all reports,
and write them to the console for later inspection by the user. Report data is
structured into groups, and every field can be accessed separately, allowing for
further processing; the MPIReporter module, for instance, aggregates reports
over several nodes, computing a minimum, maximum, and average for every
numeric value reported. Figure 7 demonstrates some statistics collected by the
FileSurveyor plug-in for a single file during a Parabench [10] run.

9/16

Fig. 5. Activity list showing I/O function and timestamps.

Fig. 6. Detailed view of activity showing the causal chain and list of attributes.

5 Experiments

In this section, we analyze the overhead of the SIOX infrastructure, and discuss
two use-cases in which SIOX already improves performance.

5.1 System Configuration

The experimental configuration on the WR cluster consists of 10 compute nodes
(2×Intel Xeon X5650@2.67GHz, 12 GByte RAM, Seagate Barracuda 7200.12)
and 10 I/O nodes (Intel Xeon E3-1275@3.40GHz, 16 GByte RAM, Western
Digital Caviar Green WD20EARS) hosting a Lustre file system. A dual-socket
compute node provides a total of 12 physical cores and 24 SMT cores. All nodes
are interconnected with gigabit ethernet, thus, the maximum network through-
put between the compute and the I/O partition is 10 × 117 MB/s. As a software

10/16

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Accesses = (40964,40964,40964)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Accesses/Reading/Random, long seek = (20481.8,20480,20482)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Accesses/Reading/Random, short seek = (0,0,0)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Accesses/Reading/Sequential = (0.2,0,2)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Bytes = (8.38861e+09,8.38861e+09,8.38861e+09)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Bytes/Read per access = (204780,204780,204780)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Bytes/Total read = (4.1943e+09,4.1943e+09,4.1943e+09)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Seek Distance/Average writing = (1.0238e+06,1.0238e+06,1.02382e+06)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Time/Total for opening = (3.9504e+08,3.66264e+08,4.38975e+08)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Time/Total for reading = (1.47169e+11,1.0968e+11,1.76617e+11)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Time/Total for writing = (1.08783e+12,1.03317e+12,1.16192e+12)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Time/Total for closing = (1.0856e+11,6.11782e+10,1.46834e+11)

[FileSurveyor:15:"MPI Generic"] "/mnt/lustre//file.dat"/Time/Total surveyed = (1.34568e+12,1.34568e+12,1.3457e+12)

Fig. 7. Example report created by FileSurveyor and aggregated by MPIReporter
(shortened excerpt). The number format is (average, minimum, maximum).

basis, we use Ubuntu 12.04, GCC 4.7.2, and OpenMPI 1.6.5 with ROMIO. For
the overhead measurement, we compiled SIOX using -O2.

5.2 Instrumentation of Concurrent Threads

The software instrumentation of SIOX adds overhead to the critical path of ap-
plications. To assess this overhead, we created a multi-threaded benchmark: each
thread calls fwrite() without actually writing any data. Without instrumen-
tation, a single call needs roughly 6 ns or 14 CPU cycles. The overhead of the
instrumented fwrite() is visualized in Figure 8 for 1 to 24 threads and three
different configurations. SIOX plain refers to an almost empty configuration
without additional modules, in SIOX POSIX fw we add a configuration section
for POSIX containing the AForwarder and the additional AMux for POSIX. In
the SIOX process configuration, we enabled all the modules inside a process as
shown in Figure 2 (the Reasoner is not included here because it contains only a
low-frequency periodic thread).

Since we must protect critical regions for each module, an increasing number
of threads compete for these resources, leading to contention. In our measure-
ments, the critical section accounts for a runtime of about 0.75µs (plain con-
figuration) to about 6µs (process configuration). As every activity is intended
to be transferred to the node daemon, if an anomaly occurs, this path may im-
pose a bottleneck. A benchmark of the communication module demonstrates a
sustained transfer rate of 90,000 messages/s (1 KiB payload). Thereby, it should
handle typical I/O scenarios. The file writer modules store activities with a rate
of 70,000 activities/s, thus they could persist the activities on node level.

We did not include the database back-end for activities in our measurements
because our PostgreSQL instance on a VM just inserts about 3,000 activities/s
and thus is a bottleneck we are working on. Regardless of the low integration
of activities into our transaction system; as these processes are usually done by
the daemon, they happen concurrent to the application execution not deferring
application I/O.

11/16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0
2
4
6
8

10
12
14
16
18
20

SIOX plain SIOX posix fw SIOX process

of threads

M
ic

ro
se

co
n

d
s

Fig. 8. Overhead per thread due to critical regions in the modules.

5.3 Instrumentation of the ICON Climate Model

In addition to our benchmark experiments, we also measured the impact of
SIOX on the runtime of a climate model. For this test, we used the ICON
model [11] developed by the Max Planck Institute for Meteorology (MPI-M)
and the German Weather Service (DWD). The test setup was as follows: First
we simulated one day using a 20480 cell icosahedral grid (ICON’s R2B04 grid),
utilizing all 12 physical cores available on one cluster node. This takes 100.7
seconds on average. Then the model was rerun with different levels of SIOX
instrumentation using LD PRELOAD. This was repeated ten times to get runtime
measurements that were precise enough to be interpreted.

The resulting times show an overhead between 2.5 and 3.0 seconds when
only POSIX or MPI were instrumented and 5.0 seconds for both. Measurement
errors ranged from 0.29 seconds to 0.65 seconds. To assess the amount of relative
and absolute overhead, the entire test was repeated with twice the simulation
time which takes 193.3 seconds on average without instrumentation. In this test,
only the overhead of the pure MPI instrumentation increased to 4.5 seconds,
the other two instrumentation overheads increased slightly but remained within
their respective error intervals.

Much of the constant overhead is due to the reporting output produced by
SIOX or by the initialization of the database connection. The incremental costs
of SIOX, however, are barely measurable.

5.4 Instrumentation/Optimization of Parabench: 4 Levels of Access

In this experiment, we instrument the parallel I/O benchmark Parabench with
SIOX. Additionally, we sketch a scenario in which SIOX will improve perfor-
mance by automatically setting MPI hints.

In our strided access pattern, each process accesses 10240 blocks with a size
of 100 KiB, which accumulate in a shared file of 10 GiByte. We measure the per-
formance of the four levels of access in MPI. According to [12], they are defined
by the two orthogonal aspects: collective vs. independent I/O, and contiguous

12/16

write ind-ctg read ind-ctg write coll-ctg read coll-ctg write ind-nc read ind-nc write coll-nc read coll-nc
0

100

200

300

400

500

600

700

No hints Hints Hints, MPI instr. using ld –wrap Hints, POSIX & MPI instr. with LD_PRELOAD

T
h

ro
u

g
h

p
u

t i
n

 M
iB

/s

Fig. 9. Performance comparison of the 4-levels of access on our Lustre file sys-
tem. The configuration with hints increases the collective buffer size to 200 MB
and disables data sieving.

vs. non-contiguous I/O. The observed performance is illustrated in Figure 9, the
four configurations are as follows: First, there is a configuration without user-
supplied hints, the second configuration adds hints but no SIOX instrumentation,
the third adds MPI instrumentation using SIOX’s ld wrap option, and the last
uses LD PRELOAD to instrument both, MPI and POSIX.

On our system, we observe that data-sieving decreased performance signifi-
cantly (look at the ind-nc cases), therefore we disable it in our hint set.

Overall, the observable performance of the instrumented Parabench is com-
parable to a regular execution. There is one exception; at 130 MiB/s, the read
coll-ctg is behind the normally measured performance of 200 MiB/s. Thanks to
our reporting, we could understand the cause. Since we intercept all POSIX I/O
operations, the socket I/O caused by MPI is also monitored, adding overhead
to each communication4.The MPI communication causes 650,000 activities per
process and is most intense for collective contiguous I/O. In total, I/O accounts
to just about 60,000 and 41,000 activities, for POSIX and MPI, respectively.
Also, the FadviseReadAhead applies read-ahead hints to socket I/O (without
this plug-in, performance improves to 170 MiB/s).

A potential gain for users will be the automatic learning of SIOX, which we
just started to explore with the first plug-ins. By virtue of the GenericHistory
plug-in, SIOX can already automatically set hints during MPI File open that
have proven to be beneficial in the past. If we modify our benchmark slightly
to repeat the test with different hint sets (for example, the default hints, and
the improved ones), then the plug-in will remember the improved hints, and set
all hints for subsequent opens that do not define them. Thus, without any mod-
ification or recompilation of the application, users would benefit from globally
known hints.

4 With the newest version, is possible to report these operations to a
“POSIX Network” component, handling them differently to I/O operations. How-
ever, this is not done in this benchmark.

13/16

Experiment 20 KiB stride 1000 KiB stride

Regular execution 97.1µs 7855.7µs

Embedded fadvise 38.7µs 45.1µs

SIOX fadvise read-ahead 52.1µs 95.4µs

Table 1. Time needed to read one 1 KiB data block in a strided access pattern.

5.5 Read-ahead with fadvise

With the FadviseReadAhead plug-in, a module has been implemented which de-
tects a strided read access pattern and injects posix fadvise() to fetch data for
the next access – if the last 4 predictions have been correct. To assess its perfor-
mance, a small benchmark is created which loops over 10 GiB of data stored on a
compute node’s local disk. On each iteration, the benchmark simulates compute
time by sleeping a while, then it seeks several KiB forward and reads a 1 KiB
chunk – the whole area covered by the seek and one access is defined as the
stride size. Two different strides are evaluated: 20 KiB and 1000 KiB. Sleep time
is adjusted from 100µs in the 20 KiB case to 10 ms to make read-ahead possi-
ble. The benchmark is executed several times, between each run the page cache
is cleared using echo 3 > /proc/sys/vm/drop caches; the deviation between
runs is below 1% of runtime.

In order to validate the results, the posix fadvise() calls issued by the
SIOX module have also been embedded into the original source code, thus yield-
ing best performance without any overhead from SIOX. Table 1 compares reg-
ular, uncached execution with the manual source code modifications and the
FadviseReadAhead module. It can be observed that fadvise improves perfor-
mance already for 20 KiB strides but excels at 1000 KiB stride, decreasing time
per I/O from 7.8 ms to 45µs. This improvement can be explained by the data
placement: Since EXT4 tries to place logical file offsets close together on the
drive’s logical block addressing, the larger stride forces movement of the disk’s
actuator. Consequently, with appropriate hints, the programmer can reduce I/O
time drastically, but this requires manual adaption of the code. The module
shipped with SIOX adds some overhead but improves performance similarly and
automatically.

6 Future Work

Opportunities for future work abound. With our basic infrastructure, we can
now quickly develop new modules dedicated to certain purposes. Besides new
optimizations, we are working on improving the performance of our transaction
system which, in turn, we will use to record a large training set of I/O from
various benchmarks and applications. Once available, we can improve the rules
of our reasoner module, and evaluate machine learning techniques to extract

14/16

further knowledge. Also, new services will be located in the daemon to cache the
necessary information of the global services, such as the ontology.

In the consortium, we are currently working on a first prototype for a GPFS
plug-in in OpenMPI which is explicitly instrumented for SIOX. The implemen-
tation will also monitor GPFS using the Data Management API framework[13]
that is used to keep track of I/O events for selected files and file regions. The
SIOX high-level I/O library is designed to not only monitor I/O operations uni-
directionally, it is also capable of receiving optimization hints from SIOX at
runtime. Finally, we aim to automatically select the best GPFS hints based on
the utilization and historical I/O records from our knowledge bases. However,
the various modules imaginable for pattern creation and matching, for anomaly
detection and for optimization, as well as the machine learning algorithms, offer
a rich field for researchers and system administrators alike.

7 Summary and Conclusions

Our vision for SIOX is a system that will collect and analyze activity patterns
and performance metrics in order to assess and optimize system performance. In
this paper, we presented results of our prototype and have given a glimpse of its
flexible and modular architecture. Although the monitoring with SIOX imposes
some overhead in the critical path of I/O, we were able to demonstrate that this
overhead is very small compared to the performance gains that may be achieved.
The I/O stack offers a large variety of potential optimizations which need to be
controlled intelligently, and the SIOX system provides the architecture to do so.
In this sense, SIOX is the swiss army knife for experimenting with alternative
and automatic I/O optimizations without even modifying existing code. Since
the overhead is bearable, we believe that (with appropriate modules and con-
figuration) constant supervision with SIOX will greatly improve performance in
data centers.

References

1. Carns, P.H., Latham, R., Ross, R.B., Iskra, K., Lang, S., Riley, K.: 24/7 Char-
acterization of Petascale I/O Workloads. In: Proceedings of the First Workshop
on Interfaces and Abstractions for Scientific Data Storage, New Orleans, LA, USA
(September 2009)

2. Madhyastha, T., Reed, D.: Learning to Classify Parallel Input/Output Access
Patterns. Parallel and Distributed Systems, IEEE Transactions on 13(8) (August
2002) 802–813

3. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for Request Ex-
traction and Workload Modelling. Proceedings of the 6th Symposium on Opearting
Systems Design and Implementation 6 (2004) 259–272

4. Yuan, C., Lao, N., Wen, J.R., Li, J., Zhang, Z., Wang, Y.M., Ma, W.Y.: Automated
Known Problem Diagnosis with Event Traces. In: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006. EuroSys ’06,
New York, NY, USA, ACM (2006) 375–388

15/16

5. Sandeep, S.R., Swapna, M., Niranjan, T., Susarla, S., Nandi, S.: CLUEBOX: a
Performance Log Analyzer for Automated Troubleshooting. In: Proceedings of
the First USENIX conference on Analysis of system logs. WASL’08, Berkeley, CA,
USA, USENIX Association (2008)

6. Duan, S., Babu, S., Munagala, K.: Fa: A System for Automating Failure Diagnosis.
In: Data Engineering, 2009. ICDE ’09. IEEE 25th International Conference on. (29
2009-April 2 2009) 1012–1023

7. Behzad, B., Huchette, J., Luu, H.V.T., Aydt, R., Byna, S., Yao, Y., Koziol, Q.,
Prabhat: A framework for auto-tuning hdf5 applications. In: Proceedings of
the 22Nd International Symposium on High-performance Parallel and Distributed
Computing. HPDC ’13, New York, NY, USA, ACM (2013) 127–128

8. Wiedemann, M.C., Kunkel, J.M., Zimmer, M., Ludwig, T., Resch, M., Bönisch,
T., Wang, X., Chut, A., Aguilera, A., Nagel, W.E., Kluge, M., Mickler, H.: To-
wards I/O Analysis of HPC Systems and a Generic Architecture to Collect Access
Patterns. Computer Science - Research and Development 1 (2012) 1–11

9. Zimmer, M., Kunkel, J., Ludwig, T.: Towards Self-optimization in HPC I/O. In
Kunkel, J.M., Ludwig, T., Meuer, H.W., eds.: Supercomputing. Number 7905 in
Lecture Notes in Computer Science, Berlin, Heidelberg, Springer (06 2013) 422–434

10. Mordvinova, O., Runz, D., Kunkel, J., Ludwig, T.: I/O Performance Evaluation
with Parabench – Programmable I/O Benchmark. Procedia Computer Science
(2010) 2119–2128

11. Max-Planck-Institut für Meteorologie: ICON. http://www.mpimet.mpg.de/en/

science/models/icon.html

12. Thakur, R., Gropp, W., Lusk, E.: Optimizing Noncontiguous Accesses in MPI/IO.
Parallel Computing 28(1) (2002) 83 – 105

13. IBM: Data Management API Guide. (2013)

16/16

http://www.mpimet.mpg.de/en/science/models/icon.html
http://www.mpimet.mpg.de/en/science/models/icon.html

