
Towards Self-Optimization in HPC I/O

Michaela Zimmer and Julian Martin Kunkel and Thomas Ludwig

University of Hamburg, Germany ?

michaela.zimmer@informatik.uni-hamburg.de

Abstract. Performance analysis and optimization of high-performance
I/O systems is a daunting task. Mainly, this is due to the overwhelm-
ingly complex interplay of internal processes while executing application
programs. Unfortunately, there is a lack of monitoring tools to reduce
this complexity to a bearable level. For these reasons, the project Scal-
able I/O for Extreme Performance (SIOX) aims to provide a versatile
environment for recording system activities and learning from this in-
formation. While still under development, SIOX will ultimately assist in
locating and diagnosing performance problems and automatically sug-
gest and apply performance optimizations.
The SIOX knowledge path is concerned with the analysis and utilization
of data describing the cause-and-effect chain recorded via the monitor-
ing path. In this paper, we present our refined modular design of the
knowledge path. This includes a description of logical components and
their interfaces, details about extracting, storing and retrieving abstract
activity patterns, a concept for tying knowledge to these patterns, and
the integration of machine learning. Each of these tasks is illustrated
through examples. The feasibility of our design is further demonstrated
with an internal component for anomaly detection, permitting intelligent
monitoring to limit the SIOX system’s impact on system resources.

Keywords: Parallel I/O, Machine Learning, Self-Optimization

1 Introduction

While processor performance has been blessed with continual growth according
to Moore’s Law for decades now, performance increases of persistent storage
media fall short of this by several orders of magnitude. To bridge this gap, I/O
systems for high-performance computing (HPC) in particular have had to grow
horizontally, requiring ever more layers of management infrastructure to control
the ensuing complexity. Diagnosing such a system has become a task to chal-
lenge even experts. Parametrizing it for optimum performance requires intimate
knowledge of every component, its optimization parameters and strategies and
the interplay emerging when dozens to tens of thousands of them are combined.

? We want to express our gratitude to the
”
Deutsches Zentrum für Luft- und Raum-

fahrt e.V.“ as responsible project agency and to the
”
Bundesministerium für Bildung

und Forschung“ for the financial support under grant 01 IH 11008 A-C.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38750-0_32
1/14



The vision of autonomous computing, as laid out by Kephart and Chess
[1], promised to curb this complexity by marshalling the system itself to share
into the effort. The SIOX Project [2] was initiated to realize that vision with re-
spect to self-optimizing HPC-I/O systems. Continually monitoring performance
and overhead, an I/O system instrumented for SIOX will autonomously detect
problems and infer advantageous settings such as MPI hints, RAID stripe sizes
and possible interactions between them. By adjusting its own level of reflexive
activity to the situation, it will secure a net positive impact on overall efficiency.

This paper illustrates the structure of and techniques used in the knowledge
processing sub-system enabling SIOX to achieve these goals.

In Section 2, we survey some other approaches to the problem, highlighting
the differences to SIOX. We briefly outline the SIOX design with some definitions
and an overview of the components involved in Section 3. Our main focus lies
on Section 4, where we introduce the SIOX knowledge path, its modules and the
concepts realized in its operation. Section 5 describes how the knowledge path
can use modules for intelligent monitoring, before we conclude with a summary
and some thoughts on future work in Section 6.

2 Related Work

Early approaches to system self-management relied on the direct classification
of system state or behaviour to automatically diagnose problems or even enact
optimization policies.

A typical proponent is the work of Madhyastha and Reed [3], comparing
classification of I/O access patterns by feed-forward neural networks and by
hidden Markov models. As results, higher level application I/O patterns are
inferred and looked up in a table to determine the file system policy to set for
the next accesses. The table, however, has to be supplied by an administrator
implementing his heuristics.

Later approaches are marked by schemes to persist their results. Holding
these in a database, problem analysis benefits from past diagnostic efforts, pos-
sibly even applying known repair actions to recognized problems. Here, we can
divide systems according to whether they observe system state, recording met-
rics, or behaviour, tracing program execution.

Of those relying on program traces, Modani et al. [4] employ the call stacks
reported by system failures as a search index to classify presumptive root causes.

Magpie, a system by Barham et al. [5], traces events under Windows, merg-
ing them according to pre-defined schemas specifying event relationships. Their
causal chains are reconstructed, attributed to external requests via temporal
joins over the event stream and clustered into models for the various types of
workload observed. Deviations will point to anomalies deserving human atten-
tion.

Yuan et al. [6] combine system state and system behavior to identify the
root causes of recurring problems. Tracing the system calls generated under
Windows XP, they use support vector machines to classify the event sequences.

2/14



A presumptive root cause is identified, leaving the sequence – if flagged by a
human as accurately diagnosed – available as eventual new training case for the
classifier. The root cause description may include repair instructions, which, in
some cases can be applied automatically.

Of the systems focussing on system metrics, Cluebox by Sandeed et al. [7]
analyses logs for anomalies, pointing out the system counters most likely involved
in the problem by principal feature analysis, ranking by decision trees and subse-
quent clustering.Expected latencies can now be predicted for new loads, detect-
ing not only anomalies but also the counters most significantly deviating from
par. No direct tracing or causal inference are needed, but once again, only hints
for administrators are produced.

Cohen et al. [8] build on their previous work on metric attribution, identifying
the low-level system metrics most significant for given classes of high-level system
states using Tree-Augmented Bayesian Networks [9]. They collect system state
information and combine the attributed metrics into signatures, clustering those
belonging to the same problem class into syndromes.

In Fa, Duan et al. [10] define a system’s base state by service level objectives;
compliance constitutes health, violation failure. A robust data base of failure
signatures is constructed from periodically sampled system metrics. New data
is first classified against failure data annotated by a human, then, if necessary,
against data clusters from healthy system states.

The one thing all of these systems have in common is the need for human
intervention to benefit from the results, to apply the solutions to the problems
identified or prepare the automated responses that some of the authors hint at.

While the work on invasive programming by Bungartz et al. (e.g. [11]) aims
to automatically acquire and release resources according to the system’s current
requirements and capabilities, and can thus be regarded targeted at a similar
problem as SIOX, it is mainly concerned with resource management. In contrast,
SIOX will enable the existent management mechanisms to adapt their parame-
ters to the system’s current state and workload. As its scope is also limited to
the I/O subsystem, the results of SIOX and invasive programming may very well
complement each other in any system implementations.

3 The SIOX Approach

In comparison to described related work, SIOX covers full HPC I/O systems and
aims to be applicable at all granularities and portable to platforms and across
middleware and file systems, in a flexible and extensible hierarchy accommodat-
ing both bespoke heuristics and generic machine learning modules.

Under SIOX, a system will collect information on I/O activities on all instru-
mented levels, as well as relevant system information and metrics. An example
I/O stack and the integration of SIOX is sketched in Figure 1, a scenario for
potential activities is illustrated in Figure 2.

Continuous intelligent monitoring, possibly adapting to problem type, will
detect more than mere service level violations; instead, locally diverse anomaly

3/14



MPI

MPI-IO

Application

I/O-lib.

GPFS
C

lie
n

t

...ServerServer ServerServer

Activity & state

Activity & state

Activity & state

Activity & state

I/O-strategy

SAN

S
IO
X

Activity

Fig. 1. Integration of SIOX into a traditional I/O-stack

conditions will be able to trigger fully automated (and learned) responses rather
than provide mere pointers for human intervention. For this, SIOX combines
on-line monitoring with off-line learning, joining state- to behaviour-based at-
tributes and comparison to signatures as well as to a base-line. The recorded
information will be analysed off-line to create and update a knowledge base
holding optimized parameter suggestions for common or critical situations. Dur-
ing on-line operations, these parameters may be queried and used as pre-defined
responses whenever such a situation occurs. Furthermore, the choice of responses
to every situation is diverse, ranging from a mere log-level adjudication and de-
tailed reports to facilitate human administration right to automated optimiza-
tions and problem solution strategies.

To cover the enormous multitude of possible hardware and software compo-
nents that may be part of today’s HPC system, SIOX takes an abstract view,
as first suggested by Kunkel and Ludwig [12]. By virtue of this I/O path model
(IOPm), a minimal set of components making up the system can be determined
and classified according to their functionality, such as cache, block storage, net-
work or an address translation of objects. A model graph of the system can
be constructed covering the minimal cause-and-effect chain from application to
storage device. Components may need to be represented by more than one of
these elements, but this scheme warrants that any and all can be described by
a very limited set of generic categories.

4/14



Process X

MD-Server

Dataserver1

Dataserver2
Dataserver3

Process Y

t

NIC 50 MiB/s 40 MiB/s3 MiB/s

Fig. 2. Activity timelines of two processes and four file system servers – one
system metric is provided for the entity executing process Y. Details for server
activity and intermediate high-level I/O libraries are omitted

3.1 Definitions

The literature on computer systems is extensive, with many terms being used
ambiguously. We therefore define some terms we will refer to in the following:
Component A hardware or software entity, such as a network switch, a hard

disk drive, an application or a library.
Entity A logical subunit of a component aware of SIOX, using SIOX interfaces

or reporting monitoring data to it. Its extent is defined according to its
functionality, such as a software layer in a library or a cache in a server.

Activity A single, elementary operation on a single entity, possibly bundled
with parameters, attributes and metrics pertaining to it. For example, an
HDF5 write(), ATAPI read(), POSIX fadvise() or setting an MPI hint.

System Information The state of a component and the whole system, de-
pending on the hardware characteristics and executed activities. It consists
of dynamic information describing the system state, e.g., utilization of the
components, and static information about hardware and software, such as
device types, available resources and performance characteristics.

Metric A measurable or derivable quantity describing an aspect of the system,
a component, an entity or an activity on any of the former, such as the
number of Bytes written per second. An Activity Metric is a metric tied
at report time to a specific activity, such as the execution time of a call. A
System Metric is a metric that cannot be accurately assigned to a single
activity, though usually influenced by them.

System Statistics Data derived or regularly sampled from system metrics.
Some system metrics can only be measured periodically, either because the
system only provides the difference over that interval, or because the value
changes so fast that recording every variation would prove prohibitive. Ex-
amples are network and disk throughput and CPU utilization.

Pattern A set of activities linked by closeness in executing entity, time or causal
relation. Also, a formal representation of such a set like a regular expression.

5/14



2) SIOX
Daemon

correlates component-wide
and compresses

3) SIOX
Transaction System

collects and correlates
across system boundaries

4) SIOX
Data Warehouse

cleanses, compresses
and archives

5) SIOX
Knowledge Base

holds analyses
and optimizations

monitoring
data

extract,
transform
and load
process

(off-line)

machine
learning

algorithms
(off-line)

patterns and
optimizations

Compute node

m : 1

1
 :

 m

Application
or

Library

1) sioxlib

monitor data
and apply

optimizations
supports

n : 1

reports

Fig. 3. The main components of the SIOX system and their cardinality. Moni-
toring data moves along the orange path; the knowledge path is shown in violet

Situation The current system state as observable by SIOX, including activities
being executed and system metrics.

History A limited record of recent situations, including a sliding window of
previous activities and observed performance statistics.

Optimization Strategy A scheme detailing how operations are executed by
an entity, while not altering its functionality; e.g., a cache strategy. The
strategies supported, if any, depend on the individual entity. The parameters
for an optimization strategy, once chosen, influence operational performance
according to the system’s characteristics. Optimization is the choice of and
selection of parameters for one or more optimization strategies.

Log-Level The level of detail of its history an entity reports to SIOX. A higher
log-level will supply more details but also require more system resources.

Response Actions that may be taken upon certain situations occurring; they
may also depend on the history. Typical examples are re-configuring an opti-
mization or adjusting the log-level, both of which may also cascade through
the entity’s dependencies.

3.2 Components of the SIOX System

As first detailed in Wiedemann et al. [2], the SIOX system will be comprised of
five primary components as shown in Figure 3:

1. The sioxlib linked to every component instrumented to work with SIOX.
2. One SIOX daemon per compute node. It acquires system information and

aggregates and pre-processes activity logs, performance data and metrics. In
a hierarchical set-up, additional daemons may serve as concentrator nodes
to allow for scalability (see Section 4.4).

6/14



Fig. 4. SIOX modules involved in the knowledge path

3. A transaction system to collect, revise and concentrate the data submitted.
4. A data warehouse for long-time archiving of the monitoring data.
5. A knowledge base to hold the system information, as well as knowledge ex-

tracted from the data warehouse by off-line machine learning processes.

4 The SIOX Knowledge Path

The SIOX knowledge path (see Figure 3) begins at the data warehouse, holding
representations of every activity logged, its parameters and the activity metrics
that resulted from executing it. Off-line machine learning processes generalize
activity sequences with comparable characteristics into patterns and potential
responses to them (see Section 4.2). The results are stored in the knowledge
base, together with records on system statistics for heuristics to assess observed
vs. potential behaviour. A tree-shaped hierarchy of concentrator nodes connects
knowledge base and entities to maintain full scalability (see Section 4.4). For ev-
ery entity, the knowledge base will also hold information about the patterns most
likely to occur there, those most likely to allow for effective optimizations, and
those most warranting further investigation. Based on this, every entity will keep
a local cache, updated regularly, of the patterns most crucial to its operation;
this will conserve bandwidth and vastly improve response time. During oper-
ations, entities will match the cached patterns against situational and historic
information to optimize their behaviour and control logging (see Section 5).

4.1 Modules and Interfaces

To allow for maximum flexibility while maintaining manageability, the SIOX
knowledge path is built on a modular design. Not only does this permit us to
replace a module with another implementation even after starting sioxlib, but
many modules also allow concurrent loading of multiple plug-ins, all of which

7/14



might excel at different jobs. Of the modules involved in the knowledge path
(shown in Figure 4), two take lead roles: KOptimizer and KAnomalyDecision.

KOptimizer directs various plug-ins implementing the KOptimizerPlugin

interface, observing the entity’s recent activity history and injecting a response
if a relevant pattern occurs. Each of these plug-ins may be tailored to optimize
certain aspects of the entity’s operation, specializing on certain heuristics for a
group of activities or a class of patterns; details are given in Section 4.2.

KAnomaly orchestrates various KAnomalyPlugin implementations, each of
which will monitor the entity’s operational metrics or activities to detect excep-
tional (good or bad) performance (see Section 5). For example, a plug-in might
compare an activity’s execution time with a model of system characteristics
to estimate its performance. Should any of these report anomalous behaviour,
the entity’s log-level will be adjusted and relevant parts of the history will be
dispatched along the monitoring path.

Plug-ins that implement one of the interfaces KAssessor, KPredictor or
KEfficiency are basic building blocks performing evaluations on activities and
higher granularities. They differ in the scope of information used for evaluation,
as described in Section 4.3. By our modular design, an KOptimizerPlugin may
use any evaluator, easing development and maintainability significantly.

The decision which, if any, pattern matches a given sequence of activities
best will be delegated to KPatternCmp. Therewith, each plug-in can have its own
matching rule, to rely on only certain activities, such as file I/O. KSystem man-
ages an entity’s knowledge about general system characteristics, such as neigh-
bourhood topology and hardware specifications, accessing the knowledge base
via KSystemFetcher. Likewise, KPattern administers the entity’s local cache of
patterns and responses regularly, updated via KPatternFetcher.

MHistory provides access to an entity’s sliding history. Certain events, such
as a new activity being entered into the history or the history reaching capacity,
will trigger callback functions previously registered. The latter follow the form
laid down in the MHistoryCB interface. Plug-ins for KAnomaly and KOptimizer

will subscribe and automatically be called when the situation changes.
The statistical performance monitor for system metrics, encapsulated in

MStatistics, performs regular updates on system statistics as supplied by the
module MMetric and delivers the information to MHistory. To provide the met-
rics themselves, it in turn may interface various tools such as PAPI-C, or use
existing plug-ins from Munin1.

4.2 From Observation to Pattern and Response

The modules responsible for pattern creation and processing come in pairs of an
off-line machine learning plug-in (OMLP) and an on-line module implementing
KAnomalyPlugin and/or KOptimizerPlugin.

The OMLP will employ data mining algorithms to extract interesting (read:
having performed exceptionally badly or well) sequences of activities and their

1 http://munin-monitoring.org/

8/14



open(a, ”F”) read(a, 1024) open(b, ”B”) write(b, 1024) read(a, 2MiB) write(b, 2MiB) close(a) close(b)

(a) Observed activities (timing information omitted)

pattern advice

Sr()Sr()Sr() seq & willneed(size)

O(ext=”nc”) willneed(0, 20 KiB)

O(ext=”dat”) noReuse & random

Rw(size < 4K){5} noReuse & random

(b) Table for an fadvise() plug-in

pattern buffer-size

O() 4 MiB

W(size < 2 KiB){5} 1 MiB

W(size < 4 MiB) W(size < 4 MiB) 20 MiB

W(size ≥ 100 MiB) direct-write

(c) Table for a write-behind plug-in

Fig. 5. Exemplary patterns including key/value pairs in brackets and responses
for two optimization plug-ins. Usage of symbols and key/value pairs are the
responsibility of OMLP and the plug-ins

pertinent metric data from the data warehouse, cluster them and create a pat-
tern representation of the set selected. It may simply concatenate the symbols
representing the single activities and collect any additional attributes in a list of
key-value pairs. It may first transform the sequence of activities, merging sub-
sequences into single symbols or filtering some, deriving new attributes from the
original ones in the process. As this process will run off-line, it does not influence
a production system.

The result, in any case, will be a table of symbol strings in a form resembling
regular expressions, and their attributes as key-value pairs attached to each
symbol. Responses will be encoded as key-value pairs and appended to its list.
This table will be personal to the OMLP and its on-line plug-ins, stored in the
knowledge base and propagated to entities as applicable.

Figure 5 has some illustrative examples: In (a), activities observed at file
level are shown; in (b) and (c), patterns and responses are listed for two plug-
ins. One controls fadvise() while the other manages the size for a write-behind
buffer (assuming such controls exist for the deployed parallel file system). Both
plug-ins filter observed activities and translate them into symbols and relevant
attributes. Timings are not given but are part of the attributes observed. The
first plug-in converts sequential accesses to the symbols Sr and Sw for read
and write, respectively. Whenever three sequential reads are observed, Line 1
in its table encodes the response seq and willneed(size) which translates to a
FADV SEQUENTIAL of the total file and an FADV WILLNEED which pre-fetches the
same amount of data as previously accessed. This plug-in also allows usage of
the file extension to restrict matching patterns. The write-behind plug-in could
use ranges to match defined file sizes, and prioritize patterns further down in the
table. It dynamically adapts to the record size. When a file is first opened, Line 1
sets a default buffer size of 4 MiB; for 5 small write accesses, Line 2 reduces the
buffer size. While these are simple examples, they demonstrate the power of the
concept.

9/14



A plug-in registers a function with the KOptimizer or KAnomaly modules for
these entities, to be invoked in a pre-defined order whenever a defined condition
is met, for example, when new activity or metric is reported. It then compares
current situation and history to its table, finds the best matches – if any – and
decides which of those with attached responses will see them enacted.

Any entity or higher-order sub-system may employ many of these plug-in
pairs, each working in turn on its own pattern table and each implement-
ing a different specialization or heuristic. A simple pair concerned only with
MPI File open() and optimizing them by setting appropriate hints is just as
possible as a general catch-all pair, forming actual regular expressions over the
set of all activity types possible at this entity. This allows for quick implemen-
tation of highly specialized heuristics as well as for classical machine learning
algorithms which will even determine activities and attributes of interest.

4.3 Assessing Activities

To ease assessing system performance, we decided to employ three distinct basic
function classes. Though each can operate on activities, patterns, components
and other granularities right up to the whole system itself, usually utilizing in-
formation generated by its more specific variants, we will concentrate on activity
evaluators to demonstrate the concepts.

Assessors resort to the local situation and history to evaluate a completed
activity’s perceived performance impact, returning a performance metric.
Example: A very simple model for file access or data transfer, computes an
estimate for a device’s transfer rate:

fassess(Device, Job) =
Time(Job)

Size(Job)

Predictors forecast an incomplete action’s performance given the current situ-
ation and history. Its return value has to be comparable to an assessor’s, thus
following the same rules. Predictors’ main usage is to estimate the benefit
of possible responses for optimization plug-ins.
Example: The most simple and important one, the historical predictor, is an
extrapolation of all assessments of the pattern’s previous occurrences under
comparable system states and loads.

Efficiency evaluators relate the action’s actual performance as given by an
assessor to the best performance possible on the given system and may take
present conditions into account, e.g. faults in hardware. They compute a real
number from the interval [0; 1], but use additional information about the
pattern’s performance distribution to return one of {−1; 0; +1}, signifying
exceptionally bad, reasonable and exceptionally good performance, respec-
tively.
Example:

fefficiency =


+1 if 0.9 < eff

0 if 0.2 ≤ eff ≤ 0.9

−1 if eff < 0.2

10/14



with

eff =
fassess(Device, Job)

SequentialTransferRate(Device)
,

which will classify any observed transfer rate estimated at more than 90% or
less than 20% of the maximum as exceptional, but more complex functions
with more than three value ranges are well possible.

Like their base-level cousins, higher-order evaluators may compute simple
weighted averages of their component activities’ results, or follow any more so-
phisticated scheme.

4.4 Scalable Data Transport

To allow for the degree of scalability required in high-performance computing,
SIOX implements a hierarchical subdivision scheme where daemons can act as
concentrators, collecting, forwarding and disseminating data as needed. An ex-
ample topology is illustrated in Figure 6. Daemons cache the information most
important to a compute node, observing the local stream of activities as re-
ported via the sioxlib and choosing and enacting any responses suggested by
the knowledge available to them. They also keep a sliding history window of
the activities, performance data and system statistics for each of their assigned
entities.

Concentrators are similar but also function as local executive for the sub-
tree of nodes assigned to them, just with more complex patterns combined of
their child nodes’ patterns. Additionally, each of the concentrators can deploy
KAnomaly and KOptimizer plugins that operate on data generated by multiple
entities and evaluate patterns spanning them.

Fig. 6. Scalable data transport. SIOX-aware applications run on several compute
nodes and fetch information from the knowledge base. Intermediate nodes in the
graph cache fetched information to increase scalability

11/14



5 Intelligent monitoring

Every entity needs to determine which data about the current or past activities to
report along the monitoring path, how much of the history to retain and and for
how long, which system statistics to collect, at what interval to sample them and
what additional derived metrics to compute. As transferring all reported activity
over the network and into the transaction database has a huge performance
impact, it is imperative to restrict the logging to exceptional behaviour. For SIOX
to provide detailed logs on anomalies while remaining unobtrusive otherwise, it
must be able to react to developments in system stability – quickly, sensitive
to developments spanning whole sub-systems, and with a fine local granularity.
Our scheme for intelligent monitoring allows for three ways to influence logging:

– A user can control logging on each component to manually correct situations
for which the history window is not sufficient or for bootstrapping the system.

– Neighbouring entities such as the local daemon may request a change in
log-level to propagate alerts and allow pattern analysis across components.

– Most importantly, the various KAnomalyPlugin implementations may flag
anomalies, influencing log-levels in the process. Of course, a plug-in detecting
a return to normal behaviour will use the same mechanism to give the all-
clear and decrease the log-level again.

As described in Section 4.1, the KAnomaly module permits implementations of
KAnomalyPlugin to register as callback functions, calling them in a pre-defined
order whenever a new activity is reported. Each of them may inspect current
activity, situation and history to decide whether they constitute an anomaly,
i.e., unusually good or bad system performance.

A typical example would be a system metric entering exceptional range,
though defining these often is anything but trivial. A low processor load, for
instance, may signify either a balanced system coping well with its workload, or
a severe unbalance, leaving some components idling and others congested.

Should any plug-in flag the current state, it will cause the history to be
dispatched along the monitoring path for later analysis. Additionally, it may
adjust local log-levels, which may even be propagated to other entities.

The usual fate of the data thus recorded is to serve as a lesson to SIOX. Dis-
tilled into patterns (see Section 4.2) bearing the response “raise log-level” – the
other typical example for anomaly detection – it will alert SIOX whenever the
conditions leading up to the error are observed. This greatly benefits the anal-
ysis of recurring failures, as every instance provides some valuable new insights
into the problem’s preconditions and, ultimately, cause. In this sense, SIOX will
intelligently direct its own analytical efforts where they are needed most.

6 Conclusion and Future Work

Our vision for the SIOX project is a system that will collect and analyse activity
patterns and performance metrics in order to assess current and possible system

12/14



performance, locate and diagnose problems and suggest solutions and improve-
ments. In this paper, we have described the design of and information flow along
the SIOX knowledge path. We have shown its logical layout and how its modules
interact to perform their various tasks. Examples for our approach to knowledge
representation have been given to demonstrate its applicability and a scheme for
intelligent logging presented.

Opportunities for future work abound. Different platforms pose different
problems even though SIOX is designed to be portable to all major operating
and file systems. In the consortium, we are currently working on a first prototype
for GPFS and MPI-IO which will rely on simple plug-ins. However, the various
modules imaginable for pattern creation and matching, for anomaly detection
and optimization as well as the machine learning algorithms offer a rich field for
researchers and system administrators alike.

References

1. Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer 36(1)
(January 2003) 41–50

2. Wiedemann, M.C., Kunkel, J.M., Zimmer, M., Ludwig, T., Resch, M., Bönisch,
T., Wang, X., Chut, A., Aguilera, A., Nagel, W.E., Kluge, M., Mickler, H.: To-
wards I/O Analysis of HPC Systems and a Generic Architecture to Collect Access
Patterns. Computer Science - Research and Development 1 (2012) 1–11

3. Madhyastha, T., Reed, D.: Learning to Classify Parallel Input/Output Access
Patterns. Parallel and Distributed Systems, IEEE Transactions on 13(8) (August
2002) 802–813

4. Modani, N., Gupta, R., Lohman, G., Syeda-Mahmood, T., Mignet, L.: Automati-
cally Identifying Known Software Problems. In: Data Engineering Workshop, 2007
IEEE 23rd International Conference on. (April 2007) 433–441

5. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for Request Ex-
traction and Workload Modelling. Proceedings of the 6th Symposium on Opearting
Systems Design and Implementation 6 (2004) 259–272

6. Yuan, C., Lao, N., Wen, J.R., Li, J., Zhang, Z., Wang, Y.M., Ma, W.Y.: Automated
Known Problem Diagnosis with Event Traces. In: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006. EuroSys ’06,
New York, NY, USA, ACM (2006) 375–388

7. Sandeep, S.R., Swapna, M., Niranjan, T., Susarla, S., Nandi, S.: CLUEBOX: a
Performance Log Analyzer for Automated Troubleshooting. In: Proceedings of
the First USENIX conference on Analysis of system logs. WASL’08, Berkeley, CA,
USA, USENIX Association (2008)

8. Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Capturing,
Indexing, Clustering, and Retrieving System History. SIGOPS Oper. Syst. Rev.
39(5) (October 2005) 105–118

9. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating In-
strumentation Data to System States: a Building Block for Automated Diagnosis
and Control. In: Proceedings of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation – Volume 6. OSDI’04, Berkeley, CA, USA,
USENIX Association (2004)

13/14



10. Duan, S., Babu, S., Munagala, K.: Fa: A System for Automating Failure Diagnosis.
In: Data Engineering, 2009. ICDE ’09. IEEE 25th International Conference on. (29
2009-April 2 2009) 1012–1023

11. Bader, M., Bungartz, H.J., Gerndt, M., Hollmann, A., Weidendorfer, J.: Invasive
programming as a concept for HPC. In: Proc. of the 10h IASTED Int. Conf. on
Parallel and Distr. Comp. and Netw, PDCN. (2011)

12. Kunkel, J., Ludwig, T.: IOPm – Modeling the I/O Path with a Functional Rep-
resentation of Parallel File System and Hardware Architecture. In: PDP 2012,
Munich Network Management Team, IEEE (2012)

14/14


