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Abstract Large HPC installations today also include

large data storage installations. Data compression can

significantly reduce the amount of data, and it was one

of our goals to find out, how much compression can do

for climate data. The price of compression is, of course,

the need for additional computational resources, so our

second goal was to relate the savings of compression to

the costs it necessitates.

In this paper we present the results of our analysis

of typical climate data. A lossless algorithm based on

these insights is developed and its compression ratio is

compared to that of standard compression tools. As it

turns out, this algorithm is general enough to be usefull

for a large class of scientific data, which is the reason we

speak of MAFISC as a method for scientific data com-

pression. A numeric problem for lossless compression

of scientific data is identified and a possible solution is

given. Finally, we discuss the economics of data com-

pression in HPC environments using the example of the

German Climate Computing Center.
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1 Introduction

During the last decades, chip designers have worked

hard to uphold Moore’s Law of exponential transis-

tor count growth, giving the supercomputers of to-

day tremendous amounts of computational power. Data
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storage and data transfer, however, have not been able

to keep up [14]. Consequently, the costs for data stor-

age are taking up an ever increasing share of HPC in-

vestments when data intensive sciences are concerned.

This is especially true for climate research, where su-

percomputers take the role of data production tools.

The produced data needs to be held available for fur-

ther research, analysis and documentation of scientific

results. For the DKRZ (German Climate Computing

Center) this means annual costs of over 100,000e just

for tapes.

Data compression methods have been available for

approximately half a century already. Some lossy com-

pression methods, like jpeg[7] and mp3[2] have since be-

come state of the art in consumer products. In the HPC

domain, however, huge amounts of data are still stored
without any compression at all. For tape archives, the

state of the art is to use an sldc[5] based compression,

an algorithm that cannot reach the level of compression

achieved by other standard algorithms.

Scientists shy away from all lossy compression meth-

ods since it is usually not clear in what ways the com-

pression degrades the scientific value of the data. This

does not stop people from evaluating lossy methods for

scientific data compression [16], though. For this reason,

we restricted ourselves to systematically investigating

what lossless data compression can do for climate data.

1.1 Paper outline

First the current state of the art in data compression

is outlined and the current handling of scientific data

is presented in Section 2. After that, Section 3 takes a

closer look at the nature of the data that is to be com-
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pressed. A few issues concerning the representation of

floating point data are discussed in Section 4.

In Section 5 we start to detail the actual filters we

used to reduce the size of the data; the final algorithm

of MAFISC is outlined in Section 6.

Finally, the performance of MAFISC is evaluated

and compared to a number of standard compression

algorithms in Section 7, and the impact of data com-

pression on HPC economics is analysed in Section 8.

Section 9 wraps up the discussion and provides an out-

look on our future work.

2 State of the art

2.1 Data compression

Even though compression schemes are diverse, all algo-

rithms tend to use the same three step structure: The

first step applies some kind of filter to the data, the sec-

ond step eliminates repeating patterns before the data

is fed to an entropy coder, which constitutes the final

step. Many compression algorithms omit one of these

three steps; however, the steps that are present are al-

ways applied in this order.

Filter (step 1): This first step could also be called a

redundancy transformation step. For example, an array

of numbers counting up does not contain much infor-

mation, however long the sequence is. Yet no number

ever appears a second time, so many compression al-

gorithms will see no repetitions and fail to compress it

well. Filtering the data first by replacing each number

with its difference to the previous one will result in an

array of ones. And this sequence can be compressed by

simple run length encoding. The redundancy present in

the original data has been converted into an exploitable

form by changing the representation of the data.

The goal of this filtering step is not to reduce

the amount of data itself, it may even require addi-

tional data to be stored to be able to undo the fil-

tering step. Examples for such filters are the discrete

cosine transform used by jpeg compression [7] and the

wavelet transform [8] implemented in jpeg2000[3]. For

lossy compression algorithms, this filtering step also in-

troduces changes that cannot be undone, like quantiz-

ing the data or deleting small entries.

A rather radical filter has been proposed by Laksh-

minarasimhan et al. [10], sorting the data blockwise to

generate a smooth curve that can easily be compressed

using curve fitting. Of course, for invertability, this fil-

ter requires the indices of all the sorted data points to

be stored in the compressed format. Finding new filters

for specific kinds of data is a topic of ongoing research.

General compression algorithms, like zip, lzma and

sldc[5] do not include a filtering step since they do not

know what kind of data is fed to them.

Repetition elimination (step 2): Almost all data

files, even binary ones, contain sequences of bytes that

appear quite frequently. Consequently, most standard

compression algorithms include a step where they re-

place byte sequences by small references to a previous

occurence. This is usually an offset, but other dictio-

nary based aproaches exist. There are huge differences

in the quality of this step. sldc, for instance, can only

eleminate repetitions that occur within one KiB of data,

while lzma can find and use matches several mebibytes

back.

bzip2 is special at this point: Like all other good

general compressors, it takes advantage of recurring

patterns, but it does not use a dictionary for this pur-

pose. It relies on the Burrows-Wheeler transformation

to translate recurring patterns into repeating bytes, and

this is, technically, a filter[6].

Entropy coding (step 3): The last step, common to

all good compression schemes, is the entropy coder. The

data is compressed by using fewer bits for the more

frequent symbols than for the less frequent ones. This

is a closed subject in research. It can be proven that

no scheme will be better than the Shanon limit, and

arithmetic coding already works at that limit[12].

Even though the use of an entropy coder as the

last step can be regarded as state of the art, there

are notable compression schemes that omit this step;

sldc [5] is such an example. These methods rely entirely

on the elimination of recurring patterns and compress

with a severely suboptimal ratio. Nevertheless, they are

used in applications where simplicity is valued higher

than a good compression ratio; in online tape compres-

sion for example.

Since standard compression tools are already very

good at eliminating recurring patterns and perfect at

entropy coding, we developed filters adapted to climate

data, relying on the standard tools for the other two

steps.

2.2 Data handling in data intensive sciences

Today, we see the need to handle large datasets in a va-

riety of sciences. While specialized file formats exist in a

number of these fields, many scientists use NetCDF [11]

or HDF5 [9] files to store their data. The advantage of

these two formats is that they allow any kind of multi-

dimensional data to be stored in a general file format,

using a unified library interface. These files can even be

fairly self-descriptive through the use of attributes that

store meta information along with the data itself.
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The HDF5 library contains a filter interface that

can be used to compress the data before it is written

to disc and to decompress it transparently when it is

read again. The library itself includes support for GZIP,

SZIP and NBIT compression currently (as of Version

1.8). More filters can be added by programs using the

library. Using a nonstandard filter, however, limits the

usability of the data to the programs that know this

filter.

Originally, the NetCDF file format did not allow

for compression. With Version 4 however, the library

has replaced its own file format with the HDF5 file for-

mat. Consequently, NetCDF-4 allows to use some of

the standard filters provided by HDF5, including SZIP

and GZIP compression. Transparent compression as it

is offered by these libraries has the advantage that the

data will never be stored uncompressed. The downside,

of course, is the neccessity to (de)compress the data

whenever it is accessed.

For long term storage, the current state of the art is

to use tape archives. At this point, compression is cur-

rently state of the art. The tape drives can compress

the data on the fly as it is written, actually increasing

the throughput by fitting more data on a fixed length of

tape. On reading, it is again the tape drive that trans-

parently decompresses the data to deliver the original

data written to the archive.

Another way to reduce archive sizes is the use of

deduplication methods like the one presented in [4]. The

basic idea here is to divide the data into blocks and

to employ bloom filters to determine if a specific data

block has already been seen. If this is applied on a file

system level, it can automatically eliminate repeated
copies of a single file. Deduplication can be seen as a

coarse form of compression.

While the tape drive compression automatically

saves a lot of storage space, it was likely not to be the

best practice possible. In this paper we compare the

compressions achieved by different methods, including

our newly developed algorithm, and analyze their eco-

nomical impact. Doing so, it becomes evident that the

tape drive compression is indeed not the best choice,

even though it is the simplest option.

3 Properties of scientific data

Many scientific datasets, consist of a number of differ-

ent physical variables sampled on a multidimensional

grid. Such data can be stored in two fundamentally dif-

ferent ways: A record containing the values for all the

different variables can be stored for each grid point, or a

multidimensional array of values can be stored for each

variable. Scientists tend to use the later variant, with

the consequence that similar data is stored together.

This similarity encompases the legal value range, the

value distribution (possibly as a function of the location

within the multidimensional array) and the smoothness

properties of the data.

Since the data is multidimensional, each value has

more than just two neighbours. These neighbourhood

relations may be exploited for compression. However,

they are invisible to the standard compression algo-

rithms.

Many scientific datasets describe real valued vari-

ables which are stored as floating point numbers, usu-

ally with single precision. Consequently, each value oc-

cupies four or eight bytes that are in a close relationship

to each other.

Climate data tends to be smooth in one direction

at least. However, at the same time, climate data also

tends to include sharp jumps, many of which are trig-

gered by areas for which the variable is undefined. An-

other problem are variables with saturating values: The

cloud area fraction, for example, frequently reaches zero

or one, but cannot exceed these values. The saturation

leads to sharp peaks in the second derivation. Finally,

smoothness is not a property of all variables. In short:

Smoothness is abundant and should be exploited, yet

it cannot be relied upon.

4 Developing invertable filters for floating

point data

For the purpose of lossless compression, invertible oper-

ations are mandatory. Floating point arithmetic, how-

ever, is not even invertible for such simple operations

as additions and subtractions; and some of the filters

we developed rely on differences to produce small val-

ues. So a way had to be found to make the necessary

calculations invertible without producing unnecessarily

large values.

Most of the time, floating point data is represented

either in the single or double precision format standard-

ized by the IEEE. These floating point formats have

an interesting and, as detailed below, helpful property:

The order of the positive floating point numbers is the

same as the order of their binary representations inter-

preted as integers. In other words: If all positive float-

ing point numbers were sorted in an array, the index for

each number (an integer) would have the same bit pat-

tern as the floating point number itself. This property

is due to the relative position of the exponent bits to

the mantissa, and the fact that the exponent is stored

as an unsigned biased exponent.
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Since two floating point numbers with similar val-

ues will also be close to one another in the array of

all positive floating point values, their bit representa-

tions (interpreted as integers) will also be close to one

another. So, calculating their difference in fixed point

arithmetic will yield small values as well. An example

of this is given in Figure 1: The values 2.125 and 1.875

use different exponents (the tinted bits). The difference

computed with fixed point arithmetic, however, has no

bits set in the exponent area.

Fig. 1 Fixed point arithmetic difference of two positive sin-
gle precision IEEE floating point numbers that are close to
one another. Even though the exponent is different, the fixed
point difference has no bits set in the exponent part.

Unfortunately, this is only true for positive float-

ing point values. Negative values show the inverse

sorting as compared to negative integer values in 2-

complement representation: Negative zero is repre-

sented by 0x80000000 (single precision), which is the

smallest possible signed integer in two complement rep-

resentation. All the other negative values count up from

this value. This fact leads to the situation shown in Fig-

ure 2: The first line shows the smallest representable

positive number 2−149, below is the negative of it. Sub-

tracting the two numbers with fixed point arithmetic

yields the most negative signed integer even though

only the two zero values lie in between.

Fig. 2 Fixed point arithmetic difference of the smallest pos-
itive and the smallest negative single precision number. Even
though only the two zeros lie in between, the computed dif-
ference has the most significant bit set.

All that needs to be done to solve this problem, is

to invert all bits except the sign bit for negative values.

This inverts the sorting of the negative values. In Fig-

ure 3 this has been done to 2−149 and −2−149, yielding

a fixed point arithmetic difference of three, which is the

number of steps to go from −2−149 over −0 and +0 to

2−149. The result is a representation of floating point

values that looks like the two complement representa-

tion of signed integers.

What this transformation cannot alleviate is the

fact that one half of the valid floating point values lie in

the interval between −2 and 2, even the interval from

Fig. 3 Fixed point arithmetic differences of the smallest pos-
itive and the smallest negative single precision number after
transformation. Now the difference is as small as it should be.

−10−19 to 10−19 encompasses a quarter of the valid

values. The consequence is, that any variable with a

value range including zero will produce very large fixed

point arithmetic differences, and, even worse, the differ-

ences will be on different scales depending on the scale

of the values compared. Unfortunately, there is no way

to alleviate this problem without losing precision, with

the consequence that the compression would be lossy.

So, for now, we decided to ignore the problem for our

compression algorithm.

5 Developed filters

This section describes some of the different filters we

developed and tested. Not all of them are actually used

by our final algorithm; yet, they all have been imple-

mented and subjected to preliminary tests to evaluate

their potential. It is important to understand that all

the filters presented in this section can be applied one

after the other, theoretically in any order and any num-

ber of times. Nevertheless, some combinations do not

make sense at all and would never be able to enhance

compression. Also note, that these filters use only fixed

point arithmetic to be invertible; floating point data is

converted as described in section 4 in an implicit first

filtering step so that it can be handled using fixed point

arithmetic as well.

5.1 Simple difference filters

Each value is replaced by its difference to a neighbour-

ing value to exploit the smoothness of the data. The

smoothness leads to small differences being stored, and

small values imply low entropy. Since a notable amount

of scientific datasets exhibit smoothness in their deriva-

tions as well, it can be profitable to apply several dif-

ference filters in sequence.

5.2 Linear spline filter

The goal of this filter was to better exploit global prop-

erties of the data. This filter is based on the interpo-

lation between two values to provide a prediction for

a value in between. Again, the difference between the
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value and the prediction is stored. This filter was imple-

mented hierarchically, so that the value in the middle

is used as a predicting value for the next step of finer

resolution.

One problem with this filter is, that it cannot be ap-

plied multiple times sensibly. However, our tests have

also shown that the compression achieved by using the

linear spline filter is less than that produced by a sim-

ple difference filter run. Together with the added im-

plementation complexity, linear spline filtering appears

to be inferior to difference filtering in all aspects.

5.3 Bitsorting filters

With this class of filters it has been investigated

whether it is possible to enhance compression by chang-

ing the order of bits in the file. Several distinct ap-

proaches have been tested; sorting all the most signifi-

cant bits into one block for example, followed by a block

with the 30th bits of each value and so on. Since there

are almost always bits in scientific data that are con-

stant in all values, this transformation creates long runs

of zeros or 255s that can be compressed very easily. In

the example shown in Table 1, this would lead to a

quarter of the file containing only six such runs.

byte 3 byte 2 byte 1 byte 0
bit freq. bit freq. bit freq. bit freq.
31 0% 23 97.6% 15 49.8% 7 49.9%
30 100% 22 2.3% 14 50.1% 6 49.9%
29 0% 21 56.9% 13 50.0% 5 50.0%
28 0% 20 50.0% 12 50.0% 4 49.9%
27 0% 19 47.3% 11 49.9% 3 50.0%
26 100% 18 46.0% 10 50.0% 2 49.9%
25 0% 17 50.5% 9 50.0% 1 50.0%
24 100% 16 50.0% 8 50.0% 0 50.0%

Table 1 An example for the frequencies at which the bits
inside the single precision float values are set. The variable
used gives the air pressure at the ozone maximum.

byte 3 byte 2 byte 1 byte 0
bit freq. bit freq. bit freq. bit freq.
31 0% 30 100% 29 0% 28 0%
27 0% 26 100% 25 0% 24 100%
23 97.6% 22 2.3% 21 56.9% 20 50.0%
19 47.3% 18 46.0% 17 50.5% 16 50.0%
15 49.8% 14 50.1% 13 50.0% 12 50.0%
11 49.9% 10 50.0% 9 50.0% 8 50.0%
7 49.9% 6 49.9% 5 50.0% 4 49.9%
3 50.0% 2 49.9% 1 50.0% 0 50.0%

Table 2 The bit frequencies of Table 1 after value internal
reordering.

Another approach was to reorder the bits of each

value internally. Using this method, the four/eight most

significant bits of a value are distributed to the most

significant bits of its four/eight bytes, and so on. This

distributes the entropy evenly across the bytes, which

is better for entropy coding. Reordering the bits of the

example shown in Table 1 in this fashion produces the

bit frequencies shown in Table 2.

While we saw in our preliminary tests that these

filters do help gzip, zip and sldc to shrink the data,

they tend to be counterproductive for bzip2. For some

files, the value internal reordering was actually quite

successful when applied after the adaptive filter and

the prefix transformation described below.

5.4 Prefix transformation

For reasons presented in Section 4, all these filters see

only integer values in two complement representation.

Negative values in this representation have their most

significant bits set while positive values are zero pre-

fixed. When small values are stored in multibyte inte-

gers, the bytes of higher significance are either zero or

255, depending on the sign of their value. The prefix

transformation inverts all bits of negative values, ex-

cluding the sign bit itself, and rotates the value left one

bit so that all small values use a zero prefix, whether

they are positive or not. It is mandatory to apply

this transformation before bitsorting methods are used,

since it changes the frequencies at which many bits are

set from 50% to zero.

Note that a part of applying this filter actually re-

verses the effect of the sign transformation described

in Section 4, which is always applied to floating point

data before any other filter sees the data. These two

transformations serve two different purposes: The sign

transformation of Section 4 is applied to allow the fil-

ters to use fixed point arithmetic, the prefix transfor-

mation described here produces constant prefixes for

better compression and should be used after all arith-

metic based filters.

5.5 Adaptive filter

Plain difference filters are simple and powerful, yet they

have a disadvantage: They cannot adapt to the given

data. Scientific data, however, consists of many differ-

ent variables with very diverse properties, often chang-

ing their characteristics within a record. The adaptive

filter exploits this fact. Like the difference filters, the

adaptive filter replaces each stored value by its differ-

ence to some other value which is used as a prediction.
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However, instead of using a fixed neighbour for pre-

diction, the adaptive filter chooses between a number

of applicable predictors. The predictors we use are as

follows:

Zero predictor

The simplest possible predictor, in effect it does not

change the saved value at all.

Constant predictors

One predictor for each dimension. The predicted

value is equal to the value of the next neighbour

in the given direction. Using only a single constant

predictor is the same as the corresponding difference

method.

Linear predictors

One predictor for each dimension, including the

time. Each predictor works by extrapolating the last

two values in a direction linearly. Using only a single

linear predictor is the same as applying the corre-

sponding difference method twice.

Quadratic predictors

One predictor for each dimension, including the

time. Like linear predictors, but extrapolating three

values quadratically. This corresponds to triple dif-

ference filtering.

Our preliminary tests showed that it is best to always

use the predictor that made the best prediction for the

last value seen. Note that there is no need to store the

result of the predictor decision since it depends on the

last value seen and the predictions that were made for

it. All of this information is available to the decoder, so

that it can make the same decision.

6 Towards a better compression algorithm

As noted above, we did not implement an algorithm to

eliminate repetitions nor did we implement an entropy

coder; we simply relied on standard compression tools

for these steps. So the structure of MAFISC is to apply

a sequence of filters to the data and compress it with a

standard compression algorithm afterwards. Since our

tests have shown that lzma is superior to all the other

standard compression tools available, we currently use

lzma.

All of the filters described above have their advan-

tages and disadvantages. Most of them can be combined

with good results for specific variables. Yet, there is no

combination that performs best on all our test cases,

not to mention the many different variables scientists

store in NetCDF and HDF5 files that we know not

of. This diversity calls for more flexibility than a sin-

gle filter combination can provide; for best results, the

method combination must be chosen to fit the data at

hand.

Unfortunately, testing all sensible filter combina-

tions in a brute force manner is far too inefficient due

to the large number of possibilities. Even though this

would produce the best compression, other more time

efficient methods have to be used. We used two dif-

ferent approaches: The first is to test all the method

combinations on a small subset of the data. This yields

good results iff the subset is representative. This is true

for many subsets, but there are exceptions: A few time

slices of climate data will usually be representative for

example. A few latitude slices of the same data will not.

The second approach to select a good filter combi-

nation without resorting to brute force is to work on

small chunks of data at a time. Each chunk is com-

pressed using two different combinations; the one with

the better compression ratio is selected (or the uncom-

pressed data in the case that both combinations inflate

the data), and that decision is remembered as one of

the methods that will be tested for the next chunk.

Obviously, this approach limits the overhead to a

factor of two. Since there is usually a large number of

different filter combinations that are only slightly sub-

optimal, one of them is quickly selected and the amount

of disk space lost, compared to brute force testing, is

small. This is the method we prefer. Technically, we

implemented this algorithm as an HDF5 filter.

Of course, the filter chain that was used for compres-

sion needs to be stored together with the compressed

data, otherwise the data would not be readable after-

wards. To this end, we defined a concise string repre-

sentation of the filterchains using one or two characters

to describe each filter in the chain. These strings are

prepended to each compressed chunk.

7 Evaluation

We used two real datasets for the final evaluation. The

first contains data taken from the CMIP5 project [15]

which covers the entire globe using the standard lat-

itude/longitude coordinate system. The resolution is

roughly two degrees in both directions and one day in

the time dimension, and the file format is the classical

NetCDF format. The second dataset, generated by the

COSMO-CLM model code [13], contains data of only

a part of the earth surface at roughly half degree res-

olution and a time resolution of down to three hours.

Also, the grid used for the COSMO-CLM data is based

on a rotated pole coordinate system, and the file for-

mat employed here is the NetCDF-4 file format, which

is actually the HDF5 file format.
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Both the fact that the COSMO-CLM data includes

the day/night cycle, and the fact that it uses a rotated

coordinate system imply a reduced compressability of

the data. The consequence of both facts is that more

change is to be expected in a direction, which is gener-

ally bad for compression.

The results for these two test cases are shown in

Figure 4 and 5, respectively. The measurement used

is simply the total size of the data. As expected, the

CMIP5 dataset shows generally more compressability

than the COSMO-CLM dataset.

The compression methods that have been tested are

as follows: sldc is the algorithm employed by the tape

drives. zip, gzip, bzip2 and lzma are the standart

compression tools applied to the entire file. szip is a

compression that can be compiled into HDF5 by non-

commercial scientific users, so that it can be used trans-

parently. In both test cases we used the szip parameter

set that yielded the best compression (blocksize = 8,

coding method = NN). It should be noted, that the EC

coding method of szip delivered marginal compression

of our data at best. HDF5 also support transparent gzip

compression, yet since compression is generally better if

it is applied to the entire file, we used the later method

for our tests. mafisc is our new algorithm, applied ei-

ther via a custom HDF5 filter (for the CCLM dataset) or

by applying the filters to the data stored in NetCDF-2

files and compressing it with lzma afterwards (in the

case of cmip5 data).

Fig. 4 Compressed sizes of the COSMO-CLM dataset using
different algorithms.

Comparing the results, it is clear that the general

picture is the same. sldc, the compression used in tape

drives, performs worst in both test cases due to its lack

of an entropy coder. zip, gzip and bzip2 all perform

roughly on the same level, with bzip2 performing only

1.5% to 1.8% better than the other two. lzma signifi-

cantly outperforms all the other standard algorithms by

at least 10% due to its probabilistic model and highly

effective match finders. Since MAFISC employs lzma as

Fig. 5 Compressed sizes of the CMIP5 dataset using differ-
ent algorithms.

the last step, to which it can fall back, it is expected to

be at least as good as plain lzma. The tests, however,

show that it saves another 4.2% to 6.9% of the original

data size compared to plain lzma.

The only algorithm, that falls out of this general

picture is szip which performs better on the CCLM

dataset than on the cmip5 dataset, the reason for this

behavior remains unclear. There could be a connection

to the fact that we had to convert this dataset to the

NetCDF-4 format first before szip could be applied.

However, it is unlikely that this is the only reason, since

the bulk of the data is still stored as multidimensional

arrays of single precision float values. Anyhow, the main

advantage of using szip compression is its good compro-

mize between compression ratio and compression speed.

If the best evaluated standard algorithm is taken

as the basis for the calculation (lzma), MAFISC saves

7.9% to 15.1% of the compressed file size.

8 Impact on HPC installations

With the knowledge of the space savings of the differ-

ent compression algorithms on climate data, we can now

extrapolate to estimate their impact on the hardware

costs for real HPC installation. We used the raw tape

costs as a metric since it is easily calculated and a suffi-

ciently small unit. Consequently, the figures presented

here are a lower bound of the real costs. Of course, us-

ing compression will also reduce the number of tape

drives that are needed, the number of tape libraries

that have to be installed, the amount of space that the

system needs, the costs for service, and so on. These

costs, however, are heavily quantized (like the costs of

tape archives) and possibly site dependent (the amount

of available space for example) and therefore left out of

the equation.

In addition to this lower bound of the costs and

savings, we provide some throughput test results to es-

timate the costs of the necessary hardware to do this
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compression. We will base this calculation on the ex-

ample of the DKRZ, which takes part in the climate

calculations conducted by the Intergovernmental Panel

on Climate Change (IPCC) [1].

Last year, the DKRZ has archived approximately

five petabyte of data on tape per year. Taking the

COSMO-CLM test case (the one with the smaller sav-

ings) to be representative for the entire five petabytes,

we arrive at the savings given in Table 3, using
24e/800GB as the current tape costs (the base line are

costs of 150000e per year for uncompressed data); Ta-

ble 4 shows the results of the same calculation based

on the CMIP5 test case. These figures represent what

can be saved every year. This shows that the current

way of handling compression, which is to use the tape

drive compression, a variant of the sldc algorithm, is

severely suboptimal. Using MAFISC, the DKRZ could

save between 36490e and 46789e a year in compari-

son.

savings
method space tapes money rel. to sldc

sldc 1313 TB 1641 39386e 0e
zip 1715 TB 2144 51465e 12079e

gzip 1716 TB 2144 51465e 12079e
bzip2 1808 TB 2261 54253e 14867e

hdf5/szip 2046 TB 2557 61371e 21985e
lzma 2317 TB 2896 69501e 30115e

mafisc 2529 TB 3161 75876e 36490e

Table 3 Data compression savings of 5PB data comparable
to the COSMO-CLM dataset.

savings
method space tapes money rel. to sldc

sldc 1502 TB 1878 45068e 0e
zip 1871 TB 2338 56115e 11047e

gzip 1871 TB 2338 56115e 11047e
bzip2 1945 TB 2432 58363e 13295e

hdf5/szip 1797 TB 2246 53903e 8835e
lzma 2716 TB 3396 81494e 36426e

mafisc 3062 TB 3827 91857e 46789e

Table 4 Data compression savings of 5PB data comparable
to the CMIP5 dataset.

The question that remains to be answered is: How

much would it cost to achieve the compression? To pro-

vide an estimate of the costs of compression, we ran a

few throughput tests on a server that was purchased by

the University of Hamburg in the summer of 2011. The

machine has four AMD Opteron CPUs with 12 cores

each, running at 1.9 GHz. It also has a rather large

installation of 128 GiB RAM and was purchased for

5627.51e.

The throughput tests were done using 48 concurrent

processes (one process per core), each working on the

compression of a different file. In this setup, 26.4 MB/s

of compressed data were produced by MAFISC. The

throughput measurement was done on the compressed

side, since this gives much more stable results than on

the uncompressed side. This is due to the fact that

lzma spends most of its time searching for matches for

the data it is currently compressing, and the longer the

matches it finds, the fewer matches it needs to find to

compress the same amount of data.

Extrapolating again, our server can produce

833 TB/a of compressed data, which amounts to 1.68 to

2.15 petabyte of uncompressed data per year. Accord-

ingly, three such machines would be able to compress

all of the data archived by the DKRZ, an investment

that would pay off within a few months.

Yet it is possible to do even better: The options

passed to the lzma library can be easily adjusted to

increase the throughput on our test system up to

86.1 MB/s = 2.72 PB/a, with the tradeoff of losing 1%

of compression rate, equivalent to 1500e per year for

the DKRZ. In this case, our test server can compress

all the data archived by the DKRZ single-handedly.

In short: An investment of 5600e is enough to save

an HPC installation like the DKRZ ca. 40000e a year

compared to the current way of storing the data. It

would pay for itself within two months. It should also

be noted that this entire calculation is based on the

tape costs only, extending compression to data stored

on disks would reduce the costs even further. It seems

benefical that vendors of tape archives allow to plugin

additional compressors into their infrastructure. Prob-

ably the servers of the tape library could provide a solid

basis of compute power that could be used to run more

advanced algorithms, compressing the data as trans-

parently as the current tape drive compression does,

yielding much higher savings.

9 Summary and future work

We have analysed examples of climate research data in

order to develop an enhanced compression algorithm

for this specific field. This new algorithm could save

an additional 8% to 15% relative to the best reference

algorithm. Climate data, however, is diverse, with the

consequence that the algorithm we developed does not

only fit climate model data, but will be able to handle

any multidimensional, somewhat smooth scientific data

well. We also saw big differences between the evaluated

compression algorithms, the worst of which are the cur-

rent state of the art in HPC installations. We analysed
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the economics of employing better compression algo-

rithms and came to the conclusion that the necessary

investment is actually an order of magnitude lower than

the annual savings.

A patch that transparently integrates MAFISC into

the HDF5 library is already available, but more work is

required to enhance the interchangeability of the com-

pressed data, since the current implementation requires

the program reading the data to provide the decoder.

Future work will also address the problem of data stored

on irregular grids, like the data produced by climate

models working on icosahedral grids.
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