
Tracing Performance of MPI-I/O with
PVFS2: A Case Study of Optimization

Yuichi TSUJITA a, Julian KUNKEL b, Stephan KREMPEL b, Thomas LUDWIG c

a Kinki University
1 Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan

b Ruprecht-Karls-Universität, Heidelberg
Im Neuenheimer Feld 348, 69120 Heidelberg, Germany

c Universität Hamburg & German Climate Computing Centre (DKRZ)
Bundesstraße 45a, 20146 Hamburg, Germany

Abstract. Parallel computing manages huge amounts of data due to a dramatic in-
crease in computing scale. The parallel file system PVFS version 2 (PVFS2) real-
izes a scalable file system for such huge data on a cluster system. Although several
MPI tracing tools can check the behavior of MPI functions, tracing PVFS server
activities has not been available. Hence, we have missed chances to optimize MPI
applications regarding PVFS server activities although effective usage of limited
resources is important even in PVFS servers. An off-line performance analysis tool
named PIOviz traces both MPI-I/O calls and associated PVFS server activities to
assist optimization for MPI applications. Besides, tracing statistical values of PVFS
servers such as CPU usage and PVFS internal statistics assists optimization of MPI
applications. In this paper, we demonstrate two performance evaluation tests of the
HPIO benchmark, and carry out off-line analysis by using PIOviz. The evaluation
shows effectiveness of PIOviz in detecting bottlenecks of MPI-I/O.

Keywords. cluster computing, tracing tool, MPI-I/O, PVFS, performance optimization

Introduction

The Parallel Virtual File System (PVFS) [1] was developed to realize parallel file systems
on a cluster environment by deploying metadata and data servers on cluster nodes. Each
data server has a data storage space to store chunks of striped data, while metadata servers
hold information of a cluster-wide consistent name space and file distributions associated
with the striped data. The file system is accessible from POSIX I/O and MPI-I/O APIs.

In parallel computing, there is a variety of I/O patterns in both contiguous and non-
contiguous data accesses provided by the MPI-I/O. One of the implementations is the
ROMIO in MPICH2 [2]. In independent operations with a non-contiguous access pattern,
each client process might carry out a large number of small data accesses. In contrast,
collective operations adopt the two-phase I/O protocol [3] to improve performance. Data
exchanges and synchronizations among client MPI processes are carried out to make
large contiguous data accesses on file domains.

Performance optimization is carried out by measuring throughput for example. How-
ever, it is difficult to examine reasons for inefficient operation. Variety of data access pat-

The final publication is available at IOS Press through the DOI https://doi.org/10.1007/978-3-540-75416-9_32
1/8



terns such as non-contiguous accesses also makes optimization rather difficult. Further-
more, utilization of a parallel file system such as PVFS brings complexity in optimiza-
tion. However, there is not sufficient research work to reveal effects of PVFS activities
under complex I/O patterns. PIOviz [4] is developed to assist such application optimiza-
tion. In this paper, several measurements for PVFS server statistics were carried out by
using the HPIO benchmark [5] with PIOviz.

The rest of this paper is organized as follows. Section 1 provides brief overview of
related work. Section 2 describes functionality of PIOviz, followed by short explanations
of MPI-I/O access patterns in the HPIO benchmark in section 3. Section 4 discusses per-
formance evaluation of MPI-I/O operations using the HPIO benchmark with the help of
PIOviz. Conclusions and future work are discussed in Section 5.

1. Related Work

Jumpshot [6] and Vampir [7] are well-known tracing tools for MPI applications. Jump-
shot works in cooperation with the MPICH2 library. It supports analysis of MPI func-
tions for data communications and parallel I/Os. Vampir visualizes MPI calls and records
performance data according to the Open Trace Format [8]. Recently it supports MPI-
I/O tracing [7]. Another framework SCALASCA [9] supports runtime summarization of
measurements during execution and event trace collection for postmortem trace analysis.
TAU [10] provides robust, flexible, and portable tools for tracing and visualization of ap-
plications. It can also generate trace information which can be displayed with the Vam-
pir. The Paraver toolset [11] provides fruitful analysis tools such as hardware counter and
system activity monitor in addition to profiler for applications. However, these tools do
not support tracing activities within parallel file systems such as PVFS.

Our project PIOviz is an off-line trace-based environment for MPI operations. It ex-
tends existing tracing implementation by incorporating PVFS instrumentation to support
tracing PVFS activities in conjunction with MPI-I/O calls. As data format of the trace
file is based on SLOG2 format [6], a user can analyze trace information with Jumpshot.

2. PIOviz

PIOviz traces MPI calls and typical PVFS server activities such as network communi-
cations (effected by the BMI layer) and disk accesses (Trove layer) in conjunction with
MPI-I/O calls. In addition, it also collects statistics of CPU usage and PVFS internal
statistics [12]. As PIOviz uses standard PMPI APIs, an application user can utilize it
without modification in source codes. Once a user executes a program, trace files are
generated by PIOviz in both client and server sides. Correspondence of trace information
between client and server sides is analyzed, and then a combined trace file is generated
from the trace files through several merging stages. A user can analyze all the MPI and
MPI-I/O calls in conjunction with associated PVFS activities with Jumpshot.

3. HPIO Benchmark

The MPI-I/O benchmark HPIO reveals performance statistics about non-contiguous data
access patterns in collective and independent operations. For the non-contiguous data

2/8



Figure 1. Example of a derived data type in the HPIO benchmark

accesses, derived data types are created with an ensemble of region size, region count,
and region space, where region stands for a data area. Figure 1 illustrates an example
of a data pattern for two processes. Here we assume that data is stored in a memory
contiguously and in a data file non-contiguously. Gaps between data regions are specified
by region space of this benchmark. According to a file view created by a derived data
type, each client process accesses the data file.

4. Performance evaluation

We used a cluster of 9 PC nodes for our performance measurement. All nodes, DELL
PowerEdge 830 PCs, were interconnected via a Gigabit Ethernet switch, 3Com Super-
Stack 3 3824. Table 1 summarizes specifications of the cluster system. Since a 64 bit
operating system was used, all the libraries in this test were built as 64 bit applications.
A PVFS file system was prepared on five nodes. A head node was configured as a meta-
data server and four computation nodes as data servers. Data storage on each data server
was prepared on an ext3 file system configured on a RAID-1 volume. The remainder of
the nodes (four nodes) was used for client MPI processes. PIOviz incorporated MPICH2
version 1.0.5p4 and PVFS version 2.6.2, and it was used to build the HPIO.

In the following experiments, we used a contiguous access pattern in a memory
(client MPI application side) and a non-contiguous access pattern on a PVFS file sys-
tem. We arranged short and long data region tests with 32 Bytes and 1024 Bytes for
region size, respectively. In both cases, region count was 32768 and region space was

Table 1. Specifications of the test cluster system

CPU Intel Pentium-D 3.2 GHz, 2×2 MBytes L2 cache
Chipset Intel E7230
Memory 1.5 GBytes DDR2 667 SDRAM
Disk system (system) Western Digital WD1600JS-75N (available in each node)
Disk system (storage space) RAID-1 (data nodes) RAID controller: 3ware Escalade 9550SX-4LP

Disk: 2 × Seagate Barracuda 7200.9 160 GBytes
Network I/F Broadcom NetXtreme BCM5721 (on-board)

Linux kernel 2.6.9-42.ELsmp (CentOS 4.4 for x86_64)
C compiler gcc version 3.4.6
Ethernet driver Broadcom tg3 version 3.52

3/8



128 Bytes. In the short data region test, total data size was 4 MBytes (32 Bytes × 32768
× 4 processes) and total file size including data gaps was about 20 MBytes ((32 Bytes +
128 Bytes) × 32768 × 4 processes - 128 Bytes). On the other hand, total data size in the
long data region test was 128 MBytes (1024 Bytes × 32768 × 4 processes) and total file
size including data gaps was about 144 MBytes ((1024 Bytes + 128 Bytes) × 32768 ×
4 processes - 128 Bytes).

In this chapter, we show (1) an evaluation between independent and collective oper-
ations and (2) an evaluation in terms of sizes for collective buffer (hereafter CB) in the
two phase I/O. In both cases, mean values of traced statistics obtained by PIOviz were
calculated through 10 iterations. For reference, mean values of throughput (including
MPI_File_sync()) calculated by the HPIO are included. Note that we set the HPIO
to compute the mean throughput values by excluding the highest and lowest value.

4.1. Independent and collective I/O

MPI_File_write() and MPI_File_write_all() were used in the independent
and collective cases, respectively. Here MPI_File_write() accessed only data re-
gions, while MPI_File_write_all() accessed data regions and data gaps because
of the two-phase I/O protocol. Table 2 shows mean statistical values of four data servers.
Note that BMI load is higher than Trove load if the network is a bottleneck due to many
network transfer, and vice versa if there are many disk I/Os. From a user perspective,
utilization of available server resources is important, thus a high load is preferable. How-
ever, evaluation of the load values together is essential to assess efficient utilization. In
the default configuration, a PVFS server issues an I/O operation for a maximum of 256
KBytes. In our case, the write-behind of the Linux kernel can combine multiple small
requests into one. It is desirable to issue as much large I/O operations as possible to the
kernel to allow efficient write-back. Consequently, it is also important to check Trove
size as close to the maximum size.

We can see that BMI load in collective operations is higher than that in independent
operations. This was due to the two-phase I/O protocol. On the other hand, Trove load
and Trove access in independent operations are higher than those in collective operations
due to large number of small data accesses in independent operations.

Table 2. Statistics of data servers obtained by PIOviz in collective (C) and independent (I) I/O operations of
the HPIO benchmark

Region I/O BMI load Trove load Trove access Trove size CPU usage Throughput
size mode (ops/s) (ops/s) (ops) (B/op) (%) (MB/s)

(Bytes)

C 0.425 10 800 262137.6 2.03 15.842
32 (read, write) (read,write)

I 0 49.9 30719 1365.4 11.55 5.352
(write) (write)

C 0.875 10.3 5760 262143.1 5.02 71.169
1024 (read,write) (read,write)

I 0.3 59.4 81919 16384 15.135 92.954
(write) (write)

4/8



In the case of 32 Bytes in a region size, collective operation outperformed indepen-
dent one. By focusing on CPU usage, the value in the independent case is higher than that
in the collective one. This was caused by many small Trove accesses in the independent
case. So, the independent case was not efficient in this configuration from the viewpoint
of throughput and CPU usage.

On the other hand, independent operation outperformed collective operation with
region size of 1024 Bytes. In the collective case, we found inefficient operations of the
two-phase I/O in screenshots of trace files generated by PIOviz. Later, this will be dis-
cussed in 4.2. Although higher throughput is preferable, users need to pay attention to
CPU usage in the independent mode. The high Trove load value is caused by many small
I/O operations. As a result, CPU usage is higher than that in the collective mode. If many
users share a PVFS file system, performance of independent case might be degraded due
to short of CPU resources. As there is a trade-off between throughput and other fac-
tors such as CPU usage due to limited computing resources, PIOviz can help to select
preferable operation pattern.

4.2. Effects of collective buffer size in the two-phase I/O

We also measured statistical values of the PVFS servers in MPI_File_write_all()
with changing CB size. Note that default CB size of the ROMIO is 4 MBytes. Table 3
shows measured values from trace files in the case of 32 Bytes in region size. In this test,
16 MBytes was desirable for CB size regarding small CPU usage and higher throughput
values. Here, a CB with this size could store the whole data (∼ 5 MBytes per process).
Trove load, Trove access, and Trove size are almost constant with more than 4 MBytes
for CB size. This means that a CB with 4 MBytes was sufficient for PVFS servers to
achieve its peak performance. However, throughput in the case of 4 MBytes was smaller
than that of 16 MBytes due to larger overhead caused by the two-phase I/O.

Measured throughput values sometimes showed high variance in 10 iterations runs.
Four screenshots in Figure 2 show what was going on in client MPI applications and
PVFS servers. In every screenshot, the upper 4 time-lines show activities of client MPI
applications, while the first line in the lower 5 lines shows activities of a PVFS metadata
server and the rest of them shows those of PVFS data servers.

Fig. 2 (a) shows an effective iteration in the case of 4 MBytes in CB size. We can see
consecutive operation by Trove read, BMI, and Trove write on every PVFS data server
twice for the two-phase I/O protocol. When the MPI I/O function was called, data on
a file domain was read by Trove read. The data was transferred to a CB of each client

Table 3. Statistics of data servers with different collective buffer (CB) size in collective operations with region
size of 32 Bytes

CB size BMI load Trove load Trove access Trove size CPU usage Throughput
(MBytes) (ops/s) (ops/s) (ops) (B/op) (%) (MB/s)

0.5 0.2 10.275 1600 131068.8 2.605 14.962
(read,write) (read,write)

4 0.425 10 800 262137.6 2.0325 15.842
(read,write) (read,write)

16 0.5 10.5 800 262137.6 2.0675 23.571
(read,write) (read,write)

5/8



(a) efficient case (CB size: 4 MBytes)

(b) inefficient in client (CB size: 4 MBytes)

(c) inefficient in network transfer (CB size: 4 MBytes)

(d) efficient case (CB size:16 MBytes)

Figure 2. Screenshots of one iteration in the HPIO benchmark

6/8



Table 4. Statistics of data servers with different CB size in collective operations with region size of 1024 Bytes

CB size BMI load Trove load Trove access Trove size CPU usage Throughput
(MBytes) (ops/s) (ops/s) (ops) (B/op) (%) (MB/s)

0.5 0.4 10.475 11520 131071.6 5.3475 46.955
(read,write) (read,write)

4 0.875 10.325 5760 262143.1 5.02 71.169
(read,write) (read,write)

16 2.025 10.7 5760 262143.1 5.355 96.138
(read,write) (read,write)

64 2.6 10.5 5760 262143.1 5.38 114.634
(read,write) (read,write)

process by using BMI. Later on, data to be written was exchanged among client processes
and overwritten in each CB non-contiguously. Finally data in each CB was transferred to
a PVFS data server by using BMI. Then it was written back to an assigned file domain
by using Trove write.

Figs. 2 (b), and (c) show typical inefficient cases. In the case (b), PVFS servers were
idle for a long time (∼ 240 ms) because ROMIO did not issue any request. Note that the
waiting time was about 7 ms in Fig. 2 (a). It is considered that network transfer among
client applications took a long time. The case (c) shows long network transfer by BMI
between client applications and PVFS servers. Here, there could be inefficient network
transfer or inefficient MPI communications inside ROMIO. From both examples, it is
considered that MPI operations inside ROMIO had some inefficient parts. However we
could not examine the network transfer and MPI calls inside ROMIO in detail because
the PIOviz could not trace them this time.

In the case of 16 MBytes in CB size, the number of the consecutive operation in the
two-phase I/O was one due to enough CB size as shown in Fig. 2 (d). Thus, the screen-
shots from trace files of PIOviz are useful for off-line analysis of bottleneck detection.

Table 4 summarizes measured statistics with region size of 1024 Bytes. A 64 MBytes
CB provided the best throughput. Here, BMI load values raised up with an increase in
CB size. This means that network throughput between client processes and PVFS servers
raised up with an increase in CB size. However, Trove load, Trove access, and Trove
size are constant with more than 4 MBytes for CB size. A 4 MBytes CB is considered
to be enough to achieve peak performance of PVFS servers. By increasing CB size to
64 MBytes, each client process could store whole data (∼ 36 MBytes per process) in a
CB. As a result, throughput was improved.

5. Summary

MPI-I/O and a PVFS file system provide scalable I/O operations on a cluster system.
In order to optimize resource usage of MPI applications, it is helpful to trace relevant
performance data. This is composed of not only application related information but also
other statistics like e.g. CPU and network usages. PIOviz traces PVFS server activities
in conjunction with MPI-I/O calls. Besides, it traces performance statistics and PVFS in-
ternal statistics. We demonstrated how PIOviz was used for application optimization. In
our experiments of the HPIO benchmark, collective operations were better than indepen-

7/8



dent ones with short data regions regarding both throughput and CPU usage. Independent
operations outperformed collective ones with longer data regions. However, we should
pay attention to CPU usage because CPU utilization in the independent operations was
higher than that in the collective ones.

We also demonstrated tracing of collective operations in terms of collective buffer
size in the two-phase I/O protocol. Obviously we could obtain higher throughput by in-
creasing the buffer size. Other statistics such as CPU usage, Trove load, and the number
of Trove accesses informed by PIOviz were useful in application optimization. PIOviz
is expected to be helpful for tuning MPI applications with paying much attention to ef-
fective resource usage of PVFS servers. In our experiments, we showed examples which
have inefficient aspects in client applications or network communications. However, we
could not find reasons for the inefficient operation because PIOviz could not trace statis-
tics of network transfer and MPI communications inside ROMIO in client applications
at this moment. As a future work, implementation of functions to trace performance
statistics and MPI calls used inside ROMIO is considered.

Acknowledgments

This research was partially supported by MEXT, Grant-in-Aid for Young Scientists (B),
21700063. The authors would like to thank Olga Mordvinova for her useful advice to
improve this paper.

References

[1] PVFS2. http://www.pvfs.org/pvfs2/.
[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable implementation of the

MPI Message-Passing Interface standard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.
[3] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous accesses in MPI-IO,” Parallel Comput-

ing, vol. 28, no. 1, pp. 83–105, 2002.
[4] T. Ludwig, S. Krempel, M. Kuhn, J. M. Kunkel, and C. Lohse, “Analysis of the MPI-IO optimization

levels with the PIOViz jumpshot enhancement,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, vol. 4757 of LNCS, pp. 213–222, Springer, 2007.

[5] A. Ching, A. Choudhary, W. keng Liao, L. Ward, and N. Pundit, “Evaluating I/O characteristics and
methods for storing structured scientific data,” in Proceedings 20th IEEE International Parallel and
Distributed Processing Symposium, p. 49, IEEE Computer Society, April 2006.

[6] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly constant-time access to arbitrary time
intervals in large trace files,” Scientific Programming, vol. 16, no. 2-3, pp. 155–165, 2008.

[7] Vampir. http://www.vampir.eu/.
[8] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introducing the open trace format (OTF),”

in Computational Science - ICCS 2006, Part II, vol. 3992 of LNCS, pp. 526–533, Springer, 2006.
[9] Z. Szebenyi, B. J. N. Wylie, and F. Wolf, “SCALASCA parallel performance analyses of SPEC MPI2007

applications,” in Performance Evaluation: Metrics, Models and Benchmarks, vol. 5119 of LNCS, pp. 99–
123, Springer, 2008.

[10] S. S. Shende and A. D. Malony, “The tau parallel performance system,” The International Journal of
High Performance Computing Applications, vol. 20, pp. 287–311, Summer 2006.

[11] J. Labarta, J. Giménez, E. Martínez, P. González, H. Servat, G. Llort, and X. Aguilar, “Scalability of
visualization and tracing tools,” in Proceedings of the International Conference ParCo 2005, vol. 33 of
NIC Series, pp. 869–876, John von Neumann Institute for Computing, Jülich, 2006.

[12] J. M. Kunkel and T. Ludwig, “Bottleneck detection in parallel file systems with trace-based performance
monitoring,” in Euro-Par 2008 - Parallel Processing, vol. 5168 of LNCS, pp. 212–221, Springer, 2008.

8/8


