
Provenance Auditing in the GWDG

Maxim Barnstorf

Georg-August-Universität Göttingen

maxim.barnstorf@stud.uni-goettingen.de

October 19, 2025

1 Introduction

The foundation of the scientific method is validating or disproving hypotheses with data gath-

ered from experiments. As our ability to gather, store, and process data steadily increases, the

opportunities for using this data in that process increase as well. This in turn leads to exper-

iments involving more, and more complex data and more sophisticated computations to make

use of it. Take, for instance, the recent advancements in machine learning. The computations

to train a big model are very resource intensive and involve large amounts of training data. The

fact that we are now able to perform these calculations is completely revolutionizing the way

research is being performed in many areas.

With these computations becoming more advanced, it becomes simutaniously much harder

and more important to be able to reproduce the results of those computations. It is very easy to

lose sight of the used data if it is split up into millions of individual files. And every file matters.

It is clear that even a slight difference in the source-data, be it due to missing or different files

or a even slightly different content, can cause major changes in the overall interpretation of the

dataset. Reproducibility is most vital for scientific experiments, so this represents a real issue.

The same goes for the software which is used to interpret the data. Often, multiple programs

are used and their version matters. In extreme but not necessarily rare cases, the incorrect

version will simply make it impossible to perform the interpretation because of compatibility

issues.

This issue can be addressed by provenance auditing services. With the help of these tools,

dependencies can be monitored so the user can later access information about the dependencies

used and understand how the computation was carried out.

However, most existing provenance auditing services do not offer the right functionality

to do this at scale and on High-Performance Computing (HPC) clusters, which are designed

to efficiently carry out scientific computations, addressing the demand for more capable com-

puting infrastructure resulting from the shift to more data-intensive experiments. The main

contributions of this paper are:

� Gap analysis of provenance auditing services: An analysis of the characteristics a prove-

nance auditing service ideally should have for HPC and how existing tools compare to

that.

� Provenance auditing service taxonomy: Since the auditing can be performed in different

ways, a taxonomy is proposed that aims to categorize each service depending on how it

obtains the data.

1



2 The ideal provenance auditing tool

In order to understand which tools could be used, it helps to understand what the ideal tool

for HPC would look like. Very broadly it comes down to the following 4 properties:

� Quality of the provenance data: It would track not just the input and output data but

also which part of the input produced which part of the output, the software that has

been used, including its versions, the overall environment like the version of the kernel,

and the user who is carrying out the computation. It would also be able to collect this

information about containerized computations, so Docker or Kubernetes would not be an

obstacle. It ultimately comes down to how close the recorded information gets to 100%

reproducibility.

� Scope of applications: It would work regardless of the programming languages, work-

flow managers, containers, etc. used for the computations and can therefore be applied

everywhere.

� Transparency: It would be transparent to the user, meaning the user would not notice it

and does not have to do anything for it to work. Otherwise errors would be introduced,

it would take valuable time away from the scientists, and most importantly, it would

decrease adoption because the benefits of provenance auditing are often only understood

in hinsight.

� Applicability: The service would be broadly and systematically applicable across every

computation. This is ultimately a function of the scope of applications and the trans-

parency to the user.

� Minimal overhead: It would have minimal time and space overhead, meaning that the

auditing barely slows down the computation. The biggest factor that slows down compu-

tations is processing overhead, but the file and folder read and write speed also factors

in.

These properties are not binary. Rather, every tool fulfills each criterion to a certain extent.

Unfortunately, provenance auditing is highly complex, and despite many attempts over the

last 30 years, no tool exists that fits the above description. It is always about tradeoffs, for

example, between granularity and time overhead or between specificity of the provenance data

and the range of applications. More precise data will take more overhead to be generated. A

tool supporting a broad range of applications will never offer specific information for a certain

library.

3 Provenance auditing categories

There are many ways to collect provenance auditing, and that is reflected in the variety of

tools that exist today. Many of them are specialized for a certain workflow. Others for certain

languages. Some are completely transparent and independent of the computation. Others rely

on the user to integrate the service into their code. To gain a better overview, here the different

tools will be categorized:

Provenance APIs can provide a great deal of control. Here the user has to manually call the

API from within the code to report back to the provenance tool, thus rewriting the application.

Kernel instrumentation enables the highest level of compatibility and transparency to be

reached. Here, the kernel itself is monitored in order to inspect the users system calls. Every

time a file is read and written to or a script is being executed, a call to the kernel has to be

2



made. This works regardless of the workflow, and the user never even has to know that it exists.

Library wrappers work by wrapping the original library and auditing the calls made to it.

It can be better tailored to the particular functionality of the library and could give specific

insights more flexible tools can not.

Compute platform based tools use workflows to access the provenance data. Most tools in

this category are workflow based services. Many of the workflow-systems used have provenance

features as part of their original design and are specifically made for provenance auditing. The

compute platform term is used as an umbrella term here and also encompasses services hooking

into compute frameworks, namely RAMP [1] and code frameworks, specifically ProvBook [2].

Other tools exist. Another option is to augment the language, injecting API calls to the

provenance auditing system into the code by parsing a specific language, usually SQL. There are

even modified language interpreters like CXXR [3] for R which then has provenance auditing

integrated into the R interpreter, recording the data while interpreting the R code.

3.1 Categorization of existing tools

Here are a selection of existing provenance auditing tools and the categories they fit in:

� Compute platform: ZOOM [4], Vistralis [5], Kepler [6], PLUS [7], REDUX [8], Chimera

[9], myGrid/Taverna [10], Dataprov [11], Wings-Pegasus [12], RAMP [1], ProvBook [2],

Karma [13]

� Augmented language: Lipstick [14], Perm-GProM [15], Cui 2000 [16]

� Provenance language: Swift [17]

� API based: PReServ [18], ProvLake [19], AiiDA [20], Core Provenance Library [21],

RDataTracker [22]

� Language Interpreters: CXXR [3]

� User space events: BURRITO [23]

� Library Wrappers: SPROV [24], PROV-IO [25]

� Kernel instrumentation: LPS [26], SPADEv2 [27], PASSv2 [28], ES3 [29], CamFlow [30]

4 Discussion of applicability

The tool must be compatible with existing software in the HPC environment. The user should

not be forced to use a custom workflow manager or a programming language specifically for the

provenance auditing. This would severely limit adoption. Additionally, transparency will be

factored into applicability as well. If the users need to exert great effort to learn and integrate the

respective services into their computations, it will heavily reduce adoption, important resources

that should be spent on research will be misdirected, and it leaves room for inevitable errors.

Therefore, before determining the performance of a given service, this segment analyzes the

compatibility of each tool and its transparency, respectively. Good performance does not help

if the service is never being used.

4.1 Compute platform

For workflow-specific provenance auditing tools, while the method is transparent, the main

issue is always that the respective workflow managers are not commonly used. ZOOM [4],

Vistralis [5], Kepler [6], myGrid/Taverna [10], Wings-Pegasus [12] and Chimera [9] are custom-

made workflow managers that include provenance as their central feature. As a result, they are

3



not suitable. REDUX [8] uses the Windows Workflow Engine. Karma [13] was developed for

LEAD used for scientific workflows related to weather simulations. Both are not used in the

GWDG HPC environment.

There are services in this category that are built for platforms widely used. RAMP [1]

uses Hadoop’s MapReduce. Hadoop is more popular, and that could justify implementing it.

Dataprov [11] is compatible with Snakemake which is excellent because Snakemake is quite

commonly used. For this reason, Dataprov could actually be useful. ProvBook [2] is meant

to be used with Jupyter Notebook, which is ubiquitous. As a result, ProvBook is also worth

evaluating further.

4.2 API-based

All the API-based solutions require the user to heavily modify their existing scripts to include

calls to the provenance API. This kind of overhead is just not scalable and only useful in niche

applications. The API-based method is the least transparent of all. In very specific cases it can

offer control that is otherwise impossible, but it is more suitable for individuals who decide to

do this on their own terms rather than system wide.

Usually these APIs provide libraries for one or several languages. Python is the most popular

language in HPC, so when judging the scope of applications, APIs made for Python will be

adopted more frequently, which are AiiDA [20] and ProvLake [19]. The other API-based tools

(PReServ [18], Core Provenance Library [21] and RDataTracker [22]) are meant to be used with

other languages. Finally, to reiterate, the high user overhead ultimately makes none of them

deployable at scale regardless of the language they are designed for.

4.3 Library wrappers

Library wrappers might sound like their range of applications is very restricted, but this is not

necessarily the case. SPROV [24] for example, wraps functions inside the C I/O library stdio.h.

This means it can be used for C and C++ programs. Questions about transparency can also be

raised. After all, the original library needs to be replaced with the wrapper first. But this can

be done by the system administrators. PROV-IO [25] is built for the system administrators to

embed it into existing C/C++ libraries. That does require significant effort, especially across

multiple libraries. But after that is done, it will not create any further overhead for users.

PROV-IO also supports programs using HDF5 transparently.

4.4 Kernel instrumentation

Kernel instrumentation services are, by design, transparent and the most versatile because

they are working at the core of the OS. Here the primary factor restricting usage is the kernel

version it was designed for. For example, PASSv2 [28] was first published in 2006, and the

Linux kernel has changed since. The newer version, PASSv2, is incompatible with the latest

version as well. Ideally the system would be built with future maintenance in mind so it can

be continually adjusted to changes in the Linux kernel. This was one of the main motivations

behind CamFlow [30] which was made by one of the authors of PASSv2 and is currently the

state-of-the-art.

Since the main advantage of the kernel instrumentation method is to be usable independently

of the programming language or workflow and without the user having to interact with it, the

kernel compatibility is the only real obstacle. ES3 [29] is from 2008 but since it is using strace, it

4



should still be compatible. SPADEv2 [27], LPS [26] and Camflow are all modern and compatible

with modern Linux kernels.

4.5 Other

Similarly the technique of augmenting languages to store provenance is also only applied to

specific languages. This method appears to never be used with conventional languages like

Python, likely because of the involvement of libraries and general complexity. Perm-GProM [15]

and Cui 2000 [16] primarily use SQL. They receive the queries and directly inject the provenance

auditing. This is an obvious and low-overhead method, not just for the user but also for the

processor. But SQL is not helpful for typical HPC computations. Lipstick [14] parses and

modifies Pig Latin to add provenance auditing. Again, Pig Latin is not commonly used.

The Swift scripting language [17] would have to be learned and adopted just for the auditing,

so it is not useful either. And additionally, it would severely limit what the user could do and

would therefore be useless even if the users were willing to learn Swift.

CXXR [3] is a modified R interpreter that includes provenance auditing that way. It seems

rather niche, and most importantly, a language-specific tool is not widely usable enough unless

it is for Python.

BURRITO [23] has a variety of plugins for Bash and even the Firefox browser to collect

information that way. Here, a primary focus is recording the methods the scientist is employing

with the idea of providing insight into the research methodology of the user rather than regular

provenance. This is also not what is required.

4.6 Summary

Therefore the different services can be categorized according to the scope of their applicability:

� Niche/Not-applicable: ZOOM [4], Vistralis [5], Kepler [6], PLUS [7], REDUX [8], Chimera

[9], myGrid/Taverna [10], Wings-Pegasus [12], Lipstick [14], Perm-GProM [15], Cui 2000

[16], Swift [17], Karma [13], PReServ [18], ProvLake [19], AiiDA [20], Core Provenance

Library [21], RDataTracker [22], CXXR [3], BURRITO [23], PASSv2 [28]

� Applicable in common applications: SPROV [24], PROV-IO [25], Dataprov [11], ProvBook

[2], RAMP [1]

� Universally applicable: LPS [26], SPADEv2 [27], ES3 [29], CamFlow [30]

In summary, RAMP, Dataprov, ProvBook, SPROV, PROV-IO, SPADEv2, ES3, LPS and Cam-

Flow could be worth implementing.

5 Discussion of Overhead

How much overhead is the service creating? What kind of overhead is being created? It is not

just about the increased demand for processing power. The speed at which files and directories

are opened, closed, and modified, as well as how much RAM is needed, can also be important.

Finally, disk space requirements could also be of note but not as relevant as the other metrics.

This section will be dealing with time overhead specifically because that is the most critical.

A time overhead comparison is really difficult to do. Different workloads are being used

for the evaluation in the respective papers. Often, the overhead will only be presented with

broad ranges depending on the operations audited, and it is not completely clear how the level

of detail compares between tools. Therefore, rather than aiming for precision, the goal in this

5



comparison is to get a rough estimate. Since the differences between the tools can be very

significant, even if one estimate over- or understates the true performance by, say, 50%, it is not

critical. This section deals more with comparing the orders of magnitude rather than precise

figures. This section focuses on the tools which are applicable in HPC. A full list is provided in

the evaluation.

Dataprov ProvBook RAMP SPROV PROV-IO ES3 SPADEv2 CamFlow LPS
0% 0% 26-75% 12-16% 0.02-11% - 12% 12-23% 1%

Table 1: Time overhead of selected services.

Dataprov [11] just does a quick Snakemake dry run to gather the data, which should take

few resources, so it should not be a concern. The ProvBook [2] paper did not provide any

information about its overhead. It should also be negligible, though, as it simply needs to

record the input code and the output for it to function. Therefore, it is perfectly reasonable for

DataProv and ProvBook not to provide any estimates. RAMP [1] has a very high overhead of

26-75%. Tasks using MapReduce can often take a significant amount of time when applied to

big datasets, and that time overhead will be significant. It is therefore not suitable to be used

for every MapReduce task systematically.

LPS [26] is specifically built for HPC, and the main reason behind its creation is the high

overhead of comparable tools. Of note is that LPS includes an automatic system for throttling

syscall probes when a certain threshold of I/O operations is reached. It is not possible to

recognize how many I/O operations will be performed in advance, and even if the user would

know, it would undermine transparency to ask them to manually adjust this granularity. LPS

is the only service in this list that has this capability. Other kernel instrumentation tools do

not prioritize performance enough to include it. It is important to emphasize that adjusting

granularity at runtime is a unique feature of kernel instrumentation tools and that services using

most other methods are unable to do this, although exceptions are possible. Due to this, no

matter the computation, LPS can always stay below 1% overhead.

PROV-IO [25] also has acceptable performance, the 11% is only for HDF5, and the paper

generally reports overhead of 3.5%. In one experiment the authors ran where it was integrated

into a C library, the overhead did not exceed 0.02%.

Meanwhile, SPROV [24], SPADEv2 [27], and CamFlow [30] are all in the 10-20% range. The

CamFlow authors only provided direct performance estimates for specific kernel operations, not

relative to the program executed. However they did state that it is in line with SPADEv2 and

PASSv2. The authors of ES3 [29] also never provided a time overhead estimate, but considering

the overhead of the other kernel instrumentation tools and that good performance was never a

criterion for ES3, it is likely similar as well. None of these tools were explicitly built for HPC

and it is reflected in this large time overhead. That kind of overhead is not acceptable on an

HPC system. It is very hard to justify a 10% minimum overhead given how expensive data

center hardware and electricity are, no matter how beneficial the provenance auditing might be.

The overhead of the workflow manager-based systems that have provenance auditing in-

cluded, as well as the Swift provenance language, cannot be measured, as it is part of the core

of the respective system and not separable. As for APIs, most of them were unfortunately

not evaluated for performance. Lastly, serveral papers provide overhead assessments in dif-

feret formats, one example provided earlier is CamFlow. While this can make sense in some

circumstances, these measurements are left out in the final comparison. To summarize, when

considering the overhead of sufficiently applicable systems, only Dataprov, ProvBook, LPS, and

6



PROV-IO are feasible.

6 Evaluation

Considering the criteria together, 4 of the 30 tools, Dataprov, ProvBook, LPS and PROV-IO,

have a reasonably low overhead and can at least be somewhat broadly used considering both

transparency and the application scope:

System Overhead Transparent Scope Applicability Category
AiiDA - No API
BURRITO - Yes User Space
CamFlow 12–23% Yes Kernel Instrumentation
Chimera / Yes Compute Platform
CPL - No API
Cui 2000 - Yes Augmented Language
CXXR - Yes Language Interpreter
Dataprov None Yes Compute Platform
ES3 - Yes Kernel Instrumentation
Kepler / Yes Compute Platform
Karma - Yes Compute Platform
Lipstick 16-35% Yes Augmented Language
LPS 1% Yes Kernel Instrumentation
myGrid/Taverna - Yes Compute Platform
PASSv2 23% Yes Kernel Instrumentation
Perm-GProM - Yes Augmented Language
PLUS / Yes Compute Platform
PReServ 10% No API
PROV-IO 0.02–11% Yes Library Wrapper
ProvBook None Yes Compute Platform
ProvLake 1% No API
RAMP 26–75% Yes Compute Platform
RDataTracker - No API
REDUX / Yes Compute Platform
SPADEv2 12% Yes Kernel Instrumentation
SPROV 12–16% Yes Library Wrapper
Swift / Yes Provenance Language
VisTrails / Yes Compute Platform
Wings-Pegasus / Yes Compute Platform
ZOOM / Yes Compute Platform

Table 2: Performance overhead, transparency, scope, applicability, and category of all prove-
nance systems.

Legend: Overhead: - = Not measured, / = Not measurable

Scope, Applicability: = Broad, = Partial, = Limited.

6.1 LPS

LPS [26] uses Systemtap [31] to probe the kernel for three categories which will establish a

complete history of the files the process read and modified:

� Execution: LPS probes the kernel for syscalls related to process creation, execution and

termination.

� File access: open, close, read and write calls are being recorded to keep track of file

accesses and changes.

7



� Metadata: rename, link, unlink and delete operations are being kept track of.

LPS identifies which calls to save by using the original process as a root node and building

a tree from there with child processes as nodes. In HPC, users use ssh and shell to launch their

computations from login nodes. In compute nodes, computations are executed either through

shell or other runtime libraries. LPS will recognize these origin processes, build this execution

tree, and keep track of file changes invoked by any child process. This way, even parallelization

will not be an obstacle, as everything can be tracked back to the original root process.

The syscalls do not reveal the actual changes made to the files. Therefore, it does not help

to debug or understand a script. The objective is reproducibility by keeping track of the inputs,

and the information provided by these operations is sufficient to accomplish that.

LPS demonstrates that kernel instrumentation tools can be very efficient. While it has never

been published, it still demonstrates that it will be more cost-effective to build a similar system

compared to incurring the large overhead created by other, less optimized kernel instrumentation

systems listed in this category, considering how high the cost of data center hardware and the

electricity consumed is.

6.2 PROV-IO

PROV-IO [25] can actually be used fully transparently. It can be embedded into any C/C++

application, which has some very unique benefits. Depending on the library, very different

information is relevant and needs to be tracked. Kernel instrumentation tools could never

track this information, and neither could workflow manager-based services beyond data on the

workflow itself. The only other method that allows for such tailored data is provenance APIs.

But this method is the only one allowing it transparently. It follows that this tool could uniquely

fill an important niche. Unlike LPS it has also been published, although this has been done for

development purposes, not large scale application in production.

Overall the burden here lies on the system administrators that need to understand which

provenance data is important for which library and who have to actually modify the existing

library. This is a constant effort, with libraries receiving frequent updates and with different li-

braries becoming more or less popular. This is really the main drawback for PROV-IO and quite

a severe one. That unfortunately also makes it unsuitable for the GWDG HPC environment.

6.3 ProvBook

ProvBook [2] simply saves all the code executed for each block and its output and allows the

user to view previous inputs and outputs conveniently within Jupyter Notebook. It makes it

possible to scroll through the entire history with a slider. This is practical and immediately

useful. Minimizing the friction the user has with viewing the provenance data is critical for

adoption. The notebooks with the data can also be exported to RDF. This file can later be

converted back into a notebook as well. Installation is very convenient as a Jupyter Notebook

extension and should not be an issue for system administrators. Overall it is quite useful within

the scope of Jupyter Notebook and could be worth implementing given how many people use

it. It is also available on Github.

6.4 Dataprov

Finally, Dataprov [11] provides a reasonable amount of provenance auditing without any relevant

time overhead and complete transparency for Snakemake. Dataprov will record all input and

8



output files without attributing them to the respective step in which they were used or produced.

It will also record programs used and their versions, as well as the kernel version and information

about the user, which they are required to enter. A lot of what the tool achieves can also be

achieved by simply backing up the Snakemake file at each run. But with Dataprov it is formatted

in XML which could then be used to store it in a database in the future. A visualization for

said data would also have to be programmed. It is significantly less complex than most tools

listed, but that is part of what makes it useful. Fortunately, Dataprov has also been published

and it works, albeit only with specific dependencies. It is the only service that can be applied

to a reasonable percentage of computations, has a low overhead, and is transparent.

7 Conclusion and Outlook

To conclude, when looking at transparency, scope of applications, overhead to the user, and

overhead to the system administrators, LPS [26], Dataprov [11] and ProvBook [2] could be

worth implementing. Specifically, LPS could have great potential, as it can be used system-

wide and can keep track of all input files. While it is not publicly available, there is much to

learn from the concepts presented in the paper, specifically in terms of efficiency and auditing

the provenance holistically across the child processes invoked by the original process.

As future work, Dataprov and ProvBook could be implemented in a real HPC data center.

This will also involve storing the collected data in a database that can be queried and respond

with human-readable output. The input and output data referenced by the provenance auditing

data could also automatically be indexed and stored using the GWDG GöDL Data Catalog

service [32] to enable searching and organizational capabilities, as this data can be notoriously

hard to keep track of and organize. Additionally, a system with a similar approach to LPS

could be developed and integrated as well.

References

[1] H. Park, R. Ikeda, and J. Widom, “Ramp: a system for capturing and tracing provenance in mapreduce

workflows,” Proc. VLDB Endow., vol. 4, p. 1351–1354, Aug. 2011.

[2] S. Samuel and B. König-Ries, “Provbook: Provenance-based semantic enrichment of interactive notebooks

for reproducibility,” in Proceedings of the 17th International Semantic Web Conference (ISWC 2018) - Demo

and Poster Track, vol. 2180 of CEUR Workshop Proceedings, (Monterey, California, USA), pp. 57–60, 2018.

[3] A. Runnalls and C. Silles, “Provenance tracking in r,” in Provenance and Annotation of Data and Processes

(P. Groth and J. Frew, eds.), (Berlin, Heidelberg), pp. 237–239, Springer Berlin Heidelberg, 2012.

[4] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson, “Addressing the provenance challenge using zoom,”

Concurr. Comput. : Pract. Exper., vol. 20, p. 497–506, Apr. 2008.

[5] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo, “Vistrails: enabling

interactive multiple-view visualizations,” in VIS 05. IEEE Visualization, 2005., pp. 135–142, 2005.

[6] S. Bowers, T. M. McPhillips, and B. Ludäscher, “Provenance in collection-oriented scientific workflows,”

Concurrency and Computation: Practice and Experience, vol. 20, no. 5, pp. 519–529, 2008.

[7] A. Chapman, M. Allen, B. Blaustein, L. Seligman, P. Profiler, M. Morse, and A. Rosenthal, “Plus: Prove-

nance for life, the universe and stuff,” Proceedings of the VLDB Endowment, 01 2010.

[8] R. S. Barga and L. A. Digiampietri, “Automatic capture and efficient storage of e-science experiment prove-

nance,” Concurr. Comput. : Pract. Exper., vol. 20, p. 419–429, Apr. 2008.

[9] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao, “Chimera: Avirtual data system for representing,

querying, and automating data derivation,” in Proceedings of the 14th International Conference on Scientific

and Statistical Database Management, SSDBM ’02, (USA), p. 37–46, IEEE Computer Society, 2002.

9



[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. R. Pocock,

A. Wipat, and P. Li, “Taverna: a tool for the composition and enactment of bioinformatics workflows,”

Bioinformatics, vol. 20, p. 3045–3054, Nov. 2004.

[11] F. Bartusch, M. Hanussek, and J. Krüger, “Automatic generation of provenance metadata during execution

of scientific workflows,” in IWSG, 2018.

[12] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,

J. Good, A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus: A framework for mapping complex scientific

workflows onto distributed systems,” Scientific Programming, vol. 13, no. 3, p. 128026, 2005.

[13] Y. L. Simmhan, B. Plale, and D. Gannon, “A framework for collecting provenance in data-centric scientific

workflows,” in 2006 IEEE International Conference on Web Services (ICWS’06), pp. 427–436, 2006.

[14] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and V. Tannen, “Putting lipstick on

pig: enabling database-style workflow provenance,” Proc. VLDB Endow., vol. 5, p. 346–357, Dec. 2011.

[15] B. S. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic, “A generic provenance middleware for

database queries, updates, and transactions,” 06 2014.

[16] Y. Cui, J. Widom, and J. L. Wiener, “Tracing the lineage of view data in a warehousing environment,”

ACM Trans. Database Syst., vol. 25, p. 179–227, June 2000.

[17] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and

M. Wilde, “Swift: Fast, reliable, loosely coupled parallel computation,” in 2007 IEEE Congress on Services

(Services 2007), pp. 199–206, 2007.

[18] P. Groth, S. Miles, and L. Moreau, “Preserv: Provenance recording for services,” 12 2010.

[19] L. G. Azevedo, R. Souza, R. M. Thiago, E. F. S. Soares, and M. F. Moreno, “Experiencing provlake to

manage the data lineage of ai workflows,” Anais Estendidos do XVI Simpósio Brasileiro de Sistemas de

Informação (Anais Estendidos do SBSI 2020), 2020.

[20] S. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann, D. Gresch, T. Müller, A. Yakutovich,

C. Andersen, F. Ramirez, C. S. Adorf, F. Gargiulo, S. Kumbhar, E. Passaro, C. Johnston, A. Merkys,

A. Cepellotti, N. Mounet, and G. Pizzi, “Aiida 1.0, a scalable computational infrastructure for automated

reproducible workflows and data provenance,” Scientific data, vol. 7, p. 300, 09 2020.

[21] P. Macko and M. Seltzer, “A general-purpose provenance library,” in Proceedings of the 4th USENIX

Conference on Theory and Practice of Provenance, TaPP’12, (USA), p. 6, USENIX Association, 2012.

[22] B. S. Lerner and E. R. Boose, “Rdatatracker and ddg explorer,” in Revised Selected Papers of the 5th

International Provenance and Annotation Workshop on Provenance and Annotation of Data and Processes

- Volume 8628, IPAW 2014, (Berlin, Heidelberg), p. 288–290, Springer-Verlag, 2014.

[23] P. J. Guo and M. Seltzer, “Burrito: wrapping your lab notebook in computational infrastructure,” in

Proceedings of the 4th USENIX Conference on Theory and Practice of Provenance, TaPP’12, (USA), p. 7,

USENIX Association, 2012.

[24] R. Hasan, R. Sion, and M. Winslett, “Preventing history forgery with secure provenance,” ACM Trans.

Storage, vol. 5, Dec. 2009.

[25] R. Han, S. Byna, H. Tang, B. Dong, and M. Zheng, “Prov-io: An i/o-centric provenance framework for

scientific data on hpc systems,” in Proceedings of the 31st International Symposium on High-Performance

Parallel and Distributed Computing, HPDC ’22, (New York, NY, USA), p. 213–226, Association for Com-

puting Machinery, 2022.

[26] D. Dai, Y. Chen, P. Carns, J. Jenkins, and R. Ross, “Lightweight provenance service for high-performance

computing,” in 2017 26th International Conference on Parallel Architectures and Compilation Techniques

(PACT), pp. 117–129, 2017.

[27] A. Gehani and D. Tariq, “Spade: support for provenance auditing in distributed environments,” in Pro-

ceedings of the 13th International Middleware Conference, Middleware ’12, (Berlin, Heidelberg), p. 101–120,

Springer-Verlag, 2012.

[28] D. Holland, M. Seltzer, U. Braun, and K.-K. Muniswamy-Reddy, “Passing the provenance challenge,” Con-

currency and Computation: Practice and Experience, vol. 20, pp. 531–540, 04 2008.

[29] J. Frew and P. Slaughter, ES3: A Demonstration of Transparent Provenance for Scientific Computation,

p. 200–207. Berlin, Heidelberg: Springer-Verlag, 2008.

10



[30] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and J. Bacon, “Practical whole-system

provenance capture,” in Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, (New York,

NY, USA), p. 405–418, Association for Computing Machinery, 2017.

[31] SystemTap Developers, “Conditional probes.” https://www.sourceware.org/systemtap/, 2025.

[32] GWDG, “GWDG GöDL: Data Indexing for HPC.” https://docs.hpc.gwdg.de/services/g%C3%B6dl/

index.html, 2025.

11

https://www.sourceware.org/systemtap/
 https://docs.hpc.gwdg.de/services/g%C3%B6dl/index.html
 https://docs.hpc.gwdg.de/services/g%C3%B6dl/index.html

	Introduction
	The ideal provenance auditing tool
	Provenance auditing categories
	Categorization of existing tools

	Discussion of applicability
	Compute platform
	API-based
	Library wrappers
	Kernel instrumentation
	Other
	Summary

	Discussion of Overhead
	Evaluation
	LPS
	PROV-IO
	ProvBook
	Dataprov

	Conclusion and Outlook

