
Lab Report

Starfive’s VisionFive 2 and HPC

A Setup Guide

Jonas Hafermas

MatNr: 21862404

Supervisor: Julian Rüger

Georg-August-Universität Göttingen
Institute of Computer Science, GWDG

August 14, 2024

Abstract
In this lab report, we set up the VisionFive 2 Single Board Computer (SBC) to prepare
it for further investigation. The firmware is updated, the operating system is configured,
a custom kernel is compiled and booted, challenges will be discussed and a brief outlook
for further work is provided.

i

Contents

List of Figures iii

List of Abbreviations iv

1 Introduction 2

2 Updating the Firmware 3

3 Setting up Debian 6

4 Experimental Linux Kernels 8

5 Challenges and Outlook 9

ii

List of Figures
1 Quad Serial Peripheral Interface (QSPI) Flash Boot Mode Setting 3
2 GPIO Pinout . 4
3 Percentage of source packages built for each official Debian architecture . . 9

iii

List of Abbreviations
HPC High-Performance Computing

RISC Reduced Instruction Set Computer

ISA Instruction Set Architecture

SBC Single Board Computer

SoC System on Chip

TFTP Trivial File Transfer Protocol

QSPI Quad Serial Peripheral Interface

openSBI (RISC-V) Open Source Supervisor Binary Interface

SD Secure Digital (Card)

eMMC Embedded Multimedia Card

NVMe Non-Volatile Memory - Express (Protocol)

VDI Virtual Disk Image

iv

Starfive’s VisionFive 2 and HPC

DISCLAIMER: This report was independently written and is not sponsored, endorsed, or
influenced by any of the parties mentioned within. The author has no affiliations, financial
or otherwise, with any of the entities discussed in this report. The opinions expressed
are solely their own and are based on their personal research and analysis, unless stated
otherwise.

Section 0 Jonas Hafermas 1

Starfive’s VisionFive 2 and HPC

1 Introduction
While the x86-architecture has for a long time played the most important role in the
design of High-Performance Computing (HPC) systems, alternatives are gradually begin-
ning to surface. One such example is Reduced Instruction Set Computer (RISC)-V, an
open-source Instruction Set Architecture (ISA) initially developed at the University of
California, Berkeley and implementing the reduced instruction set design principle, which
is especially interesting due to its high architectural flexibility and low power consump-
tion, both of which are of great importance in HPC applications. Further information
for the curious can be found on the official website. Until a few years ago, the lack of
HPC-viable RISC-V hardware limited more technical research attempts to a handful of
boards with few, low-powered cores. One SBC that shows potential for testing toy HPC
workloads is the VisionFive 2 by Chinese company Starfive which is built around their
improved JH7110 64-bit quad-core System on Chip (SoC). In this report, guidance will
be provided on how to prepare the VisionFive 2 for further investigation with regards
to its HPC viability. This includes updating the firmware, installing a current operating
system and experimenting with a custom Linux kernel to hopefully improve functionality.
Finally, the first impressions of working with the VisionFive 2 will be discussed and an
outlook at further research will be provided.

Section 1 Jonas Hafermas 2

https://riscv.org/about/history/
https://riscv.org/about/history/
https://www.starfivetech.com/en/site/boards

Starfive’s VisionFive 2 and HPC

2 Updating the Firmware
Note: All images in this section were taken from Starfives official quickstart guide, which
also holds more information as well as pointers towards advanced topics not covered in
this document.

Our board revision is v1.3B, which shows no discernible differences to v1.2A except for
the second LAN port now too operating at 1 GBit/s1. The units came shipped with 8 GB
of RAM installed and have not been tampered with. Unfortunately, the factory default
settings only support a minimal Debian 12 snapshot based on the obsolete Linux kernel
version 5.15.0 with limited functionality, thus requiring an update of the firmware and
the bootloader before being able to load more recent images. The manufacturer suggests
using a Trivial File Transfer Protocol (TFTP) server to upgrade the firmware which is
comparatively cumbersome to set up, so another, more practical way to transfer the files
using the YMODEM protocol directly from the host system without having to use TFTP at
all will be lined out2.

First, we want to install lrzsz and minicom using the built-in package manager of our
respective linux distribution. lrzsz is needed to enable YMODEM functionality for minicom,
a friendly serial communication program which we will use to indeed communicate with
the SBC over a serial connection we will set up shortly. In minicom (initial launch may
need -s option, see manpage), we set the baud rate to 115200 bps and the bit parity to
8N1. Furthermore, we need to determine the serial port we wish to use for communication
(for example /dev/ttyUSB0).

Next, we prepare the files we want to flash. Usually, when getting a release from
Starfives Debian webpage or the release repository, the files in question will be called
u-boot-spl.bin.normal.out and visionfive2_fw_payload.img. It is generally advis-
able to use the newest version, though sometimes during testing, the firmware version
had to exactly match the Debian release version it belonged to so conflicts cannot be
ruled out entirely. After the files have been procured and saved to an easy to reach
location, we boot the SBC in QSPI flash mode without an SD card inserted.

Source: https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/

Figure 1: QSPI Flash Boot Mode Setting

1https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/VisionFive_2/specification_pb.
html

2https://forum.rvspace.org/t/guide-upgrading-firmware-with-only-a-serial-uart-connection-via-u-boot/
1589

Section 2 Jonas Hafermas 3

https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/
https://en.wikipedia.org/wiki/YMODEM
https://www.man7.org/linux/man-pages/man1/minicom.1.html
https://debian.starfivetech.com/
https://github.com/starfive-tech/VisionFive2/releases
https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/
https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/VisionFive_2/specification_pb.html
https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/VisionFive_2/specification_pb.html
https://forum.rvspace.org/t/guide-upgrading-firmware-with-only-a-serial-uart-connection-via-u-boot/1589
https://forum.rvspace.org/t/guide-upgrading-firmware-with-only-a-serial-uart-connection-via-u-boot/1589

Starfive’s VisionFive 2 and HPC

We need to connect the serial adapter to the VisionFive 2 as is shown below. If chaos
ensues, try switching the TX and RX cables3.

Source: https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/

Figure 2: GPIO Pinout

Power on the SBC and launch minicom. If everything is set up correctly, we should see
(RISC-V) Open Source Supervisor Binary Interface (openSBI) starting up and the u-boot
autoboot being interrupted automatically (since no boot drive is present).

1 Hit any key to stop autoboot: 0
2 StarFive #

Now that we’re in u-boot, we can start the flashing process. These first steps are identical
for both files. We use the loady command to select one of the two files via the minicom
prompt.

1 StarFive # loady
2 ## Ready for binary (ymodem) download to 0xA0000000 at 115200 bps...
3 CCxyzModem - CRC mode, 1(SOH)/128(STX)/0(CAN) packets, 7 retries
4 ## Total Size = 0x0001fe80 = 130688 Bytes
5 StarFive #

Since the firmware is sensible data, we want to ensure its integrity. We do this by running
crc32 on the file and comparing it against a checksum calculated locally (for example
using cksum).

1 StarFive # crc32 $loadaddr $filesize
2 crc32 for a0000000 ... a001fe7f ==> ca14da8e

If the sums match, we most likely have an uncorrupted file and can proceed.

3https://jamesachambers.com/starfive-visionfive-2-firmware-update-guide/

Section 2 Jonas Hafermas 4

https://doc-en.rvspace.org/VisionFive2/Quick_Start_Guide/
https://jamesachambers.com/starfive-visionfive-2-firmware-update-guide/

Starfive’s VisionFive 2 and HPC

First, we have to call and detect the SPI Flash device.

1 StarFive # sf probe
2 SF: Detected gd25lq128 with page size 256 Bytes, erase size 4 KiB, total 16 MiB

Then, we can finally start flashing. It is important to know that the two files require
different loading address offsets. For u-boot-spl.bin.normal.out, the offset is zero.

1 StarFive # sf update $loadaddr 0x0 $filesize
2 device 0 offset 0x0, size 0x1fe80
3 130688 bytes written, 0 bytes skipped in 0.600s, speed 221563 B/s

For visionfive2_fw_payload.img, the right offset is 0x100000.

1 StarFive # sf update $loadaddr 0x100000 $filesize
2 device 0 offset 0x100000, size 0x2aae85
3 867973 bytes written, 1929216 bytes skipped in 5.750s, speed 497796 B/s

We perform one of the two operations above depending on the file we have loaded before.
After the process has finished without any apparent errors, we repeat the steps with
the other file. Once both files have been flashed to memory successfully, we can reboot
the system by either using the reset command or by pressing the reset button on the
VisionFive 2. If we end up in the serial console again, then congratulations, the firmware
has been flashed!

Section 2 Jonas Hafermas 5

Starfive’s VisionFive 2 and HPC

3 Setting up Debian
Starfive is hosting minimal Debian images in the cloud; at the time of writing, Debian
images using kernel version 5.15.0 as well as 6.6.20 were available. In addition, sev-
eral storage device types are supported, most prominently Secure Digital (Card) (SD)
as well as Embedded Multimedia Card (eMMC), but also Non-Volatile Memory - Ex-
press (Protocol) (NVMe). We went with the newer kernel version which is actually not
that far behind the most recent LTS kernel (6.6.41 at the time of writing) and should
thus be decently usable out-of-the-box. Our proof-of-concept system used an SD instal-
lation for ease of access. balenaEtcher was used to flash the SD image for the same reason.

Upon startup, the system is reasonably responsive and even supports high display refresh
rates and ultrawide configurations if available. However, light graphics tests like launching
Google Maps and searching through the local area’s cartography showed disappointing
3D performance and no load spikes on the GPU, indicating issues with rendering task
delegation which might be ironed out with future patches. The Debian version of the
image is described as bookworm sid, indicating an unstable snaphot pre-Debian 12 (which
is codenamed bookworm). We tried to upgrade the Debian version by selecting the newest
snapshot with decent software availability from the debian-ports snapshot archive, the
newest meaningful upgrade being from July 2023. Following standard Debian upgrade
procedures yielded no issues and the system was successfully upgraded to Debian 12
unstable, codenamed trixie sid (trixie being the codename for Debian 13).

1 user@starfive:~$ cat /etc/os-release
2 PRETTY_NAME="Debian GNU/Linux trixie/sid"
3 NAME="Debian GNU/Linux"
4 VERSION_CODENAME=trixie
5 ID=debian
6 HOME_URL="https://www.debian.org/"
7 SUPPORT_URL="https://www.debian.org/support"
8 BUG_REPORT_URL="https://bugs.debian.org/"

It is important, however, to reinstall or hold back custom packages provided by Starfive
since they would be overwritten by the upgrade.

Seeing that Debian runs reasonably well using the precompiled images, we went ahead and
attempted to build a newer Debian image from scratch. To ensure proper installation of
proprietary/custom software, this paragraph follows StarFive’s own guide on building De-
bian images for the VisionFive 2 from source. We undertook this task using a VirtualBox
Debian 12.6 environment running kernel version 6.1.0. Conveniently packaged Virtual
Disk Image (VDI)s are available from sources like osboxes.org. Initial test results show
that much of the kernel configuration and proprietary software installation can be auto-
mated with a simple bash script (appended as build_deb.sh) while Debian configuration
can cause more or less complex software dependency issues when using a newer Debian
snapshot, thus requiring individual handling. Two things should be noted throughout
the installation process: When choosing a development branch to fetch the kernel from,
note that the standard choice (JH7110_VisionFive2_devel) uses version 5.15.0 instead of
6.6.20. Instead, use JH7110_VisionFive2_6.6.y_devel to get the newer kernel version.
Secondly, by default, the build script sets an older Debian snapshot as package source,

Section 3 Jonas Hafermas 6

https://github.com/balena-io/etcher#redhat-rhel-and-fedora-based-package-repository-gnulinux-x86x64
https://snapshot.debian.org/archive/debian-ports/
https://snapshot.debian.org/archive/debian-ports/20230724T141507Z
https://wiki.debian.org/DebianUpgrade
https://wiki.debian.org/DebianUpgrade
https://github.com/starfive-tech/Debian/releases
https://rvspace.org/en/project/Building_StarFive_Debian_Image
https://www.osboxes.org/

Starfive’s VisionFive 2 and HPC

but recommends a newer version as well as allowing the user to input a custom URL.

On booting up the self-built image, in its current version the root partition does not take
up all of the unallocated space (only around 3 GB) and should thus be enlarged using
parted or adjacent software (do not forget to run resize2fs on the partition afterwards).
Since the custom images software stack is decidedly minimal, we install some prerequisites
for building a kernel image (see section 4) as well as additional custom software provided
by Starfive via a small script.

1 #!/bin/bash
2

3 # just a simple script fetching the latest software for the VisionFive 2 SBC
4 # provided by Starfive
5 # check if the linux image decompressed correctly (no unallocated space),
6 # otherwise storage will not suffice!
7

8 # get prerequisites for setup and custom kernel installation
9 sudo apt-get install -y bc binutils bison curl dwarves flex gcc git gnupg2 gzip

10 libelf-dev libncurses5-dev libssl-dev make openssl pahole perl-base rsync tar
11 xz-utils
12

13 # get redirect and download latest install script
14 RE_URL=$(curl -sL -o /dev/null -w "%{url_effective}" https://github.com/starfive-
15 tech/Debian/releases/latest | grep -oE '[^/]+$')
16

17 curl -L -o ./install_package_and_dependencies.sh https://github.com/starfive-
18 tech/Debian/releases/download/${RE_URL}/install_package_and_dependencies.sh
19

20 # let Starfive work their magic
21 sudo bash install_package_and_dependencies.sh

A final word on alternative image files: Pre-compiled eMMC images work fine when run
in QSPI boot mode (see section 1), however the dedicated eMMC option sometimes fails
to boot. Starfive is aware of the issue but as of July 2024, it has not beeen fixed. However,
simply booting in QSPI mode seems to mitigate the issue. eMMC images can be built
from source without much apparent hassle, as is described in the build guide. It was
out-of-scope for this report, however.

Section 3 Jonas Hafermas 7

https://github.com/starfive-tech/Debian/releases/latest

Starfive’s VisionFive 2 and HPC

4 Experimental Linux Kernels
After confirming system operability both on SD and eMMC devices, we finally attempted
to build a newer kernel from scratch and getting it to run on the SBC. Starfive has
completed patchwork and is now awaiting upstream integration approval4 for linux kernel
version 6.9, with prepatched linux kernels already floating around the internet. We will
use yuzibo’s prepatched vf2 kernel (version 6.9.8) for this experiment. There are a lot of
guides on how to build the Linux kernel from source, but this section took inspiration
from a nicely written article on https://itsfoss.com/compile-linux-kernel/. Following up
on section , no extra software should be needed at this point. We first want to fetch our
kernel files by cloning yuzibo’s repository. We also want to make sure that we are on the
right branch for version 6.9.8.

1 user@starfive:~$ git clone https://github.com/yuzibo/vf2-linux.git && git checkout
2 vf2-v6.9.8-dev

Afterwards, we follow the instructions given in the article above (skipping the checksum
verification since we cloned the repository directly) until the actual kernel installation,
where we have to fix an error in our current Debian image version, more precisely an
issue with escaped variables within zz-initramfs-mod which blocked proper initrd image
setup. We can quickly and elegantly correct this using sed.

1 user@starfive:~/vf2-linux$ sudo sed 's/\\\(\$\w\+\)/\1/g' /etc/kernel/postinst.d/
2 zz-initramfs-mod

Lastly, after installation has finished successfully, we have to update the u-boot bootloader
to properly accomodate the new kernel at startup.

1 user@starfive:~/vf2-linux$ sudo u-boot-update
2 P: Checking for EXTLINUX directory... found.
3 P: Writing config for vmlinuz-6.9.8-vf2-custom...
4 P: Writing config for vmlinuz-6.6.20-starfive...
5 P: Updating /boot/extlinux/extlinux.conf...

After rebooting, we can see that indeed, we are now running an updated and patched
kernel!

1 user@starfive:~$ uname -r
2 6.9.8-vf2-custom

Further testing was outside the scope of this report, but one possible approach could
be to install a benchmark tool like the phoronix test suite for system evaluation and
performance testing (for example using gromacs).

4https://rvspace.org/en/project/JH7110_Upstream_Plan

Section 4 Jonas Hafermas 8

https://github.com/yuzibo/vf2-linux
itsfoss.com
sec:setup
https://github.com/phoronix-test-suite/phoronix-test-suite
https://rvspace.org/en/project/JH7110_Upstream_Plan

Starfive’s VisionFive 2 and HPC

5 Challenges and Outlook
Just because this report is nice and short does of course not mean that challenges were
not encountered.

Firstly, the process of updating the firmware (which is very much mandatory due to the
limited functionality of Debian images available pre-flash) is an arduous and unnecessarily
complex task which elevates the barrier of entry for users without experience in embed-
ded systems development (which also includes the author). The user-devised solution
presented within this report mitigates some of the issues arising from following the official
procedure, but flashing shouldn’t have to be done via serial console and instead come
configured with the minimal linux distribution provided alongside the hardware, as is the
case with for example the Raspberry Pi series of ARM-based SBCs.
Furthermore, the kernels provided by Starfive rely heavily on built-in functionality, with
few modules loaded at runtime, which is desirable for embedded systems but generally un-
favourable for HPC configurations. Of course, the VisionFive 2 is not explicitly advertised
as a system for HPC deployment but neither should it be considered a barebones SoC
powering a coffee machine. Often cited as a direct competitor to Raspberry Pi SBCs5, it
seems to lack the refined software ecosystem available on ARM systems as of right now.

Because in principle, the VisionFive 2 arrives at a time when great strides are being made
within the RISC-V community. This is supported by riscv64 becoming an official Debian
architecture6 with out-of-the-box support set to ship with Debian 137.

Source: https://buildd.debian.org/stats/

Figure 3: Percentage of source packages built for each official Debian architecture

In their recent paper, Nick Brown et al outline that the performance improvements
over several generations of RISC-V hardware (culminating in the VisionFive 2) are con-
siderable and that large-scale integration of RISC-V CPUs is already underway [Bro24],
with another relevant example being the server solutions provided by Esperanto AI.

5https://www.heise.de/tests/Einplatinencomputer-im-Test-StarFive-VisionFive-2-mit-RISC-V-Chip-7473680.
html?seite=all

6https://lists.debian.org/debian-riscv/2023/07/msg00053.html
7https://lists.debian.org/debian-devel-announce/2023/06/msg00001.html

Section 5 Jonas Hafermas 9

https://buildd.debian.org/stats/
https://www.esperanto.ai/products/
https://www.heise.de/tests/Einplatinencomputer-im-Test-StarFive-VisionFive-2-mit-RISC-V-Chip-7473680.html?seite=all
https://www.heise.de/tests/Einplatinencomputer-im-Test-StarFive-VisionFive-2-mit-RISC-V-Chip-7473680.html?seite=all
https://lists.debian.org/debian-riscv/2023/07/msg00053.html
https://lists.debian.org/debian-devel-announce/2023/06/msg00001.html

Starfive’s VisionFive 2 and HPC

Those scalable systems in particular should offer plenty of new research opportunities
beyond what is achievable with SBCs, particularly into the various options an open in-
struction set could bring to the table for synchronisation and parallelisation efforts as well
as customised instruction pipelining and increased hardware adaptability for HPC tasks
overall.

Section 5 Jonas Hafermas 10

https://en.wikipedia.org/wiki/Instruction_pipelining

Starfive’s VisionFive 2 and HPC

References
[Bro24] Nick Brown. RISC-V for HPC: Where we are and where we need to go. 2024.

arXiv: 2406.12398 [id=’cs.DC’ full_name=’Distributed, Parallel, and
Cluster Computing’ is_active=True alt_name=None in_archive=’cs’ is_general=False
description=’Covers fault-tolerance, distributed algorithms, stability,
parallel computation, and cluster computing. Roughly includes material
in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7,
E.1.’].

Section Jonas Hafermas 11

https://arxiv.org/abs/2406.12398
https://arxiv.org/abs/2406.12398
https://arxiv.org/abs/2406.12398
https://arxiv.org/abs/2406.12398
https://arxiv.org/abs/2406.12398
https://arxiv.org/abs/2406.12398

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Updating the Firmware
	Setting up Debian
	Experimental Linux Kernels
	Challenges and Outlook

