
SH

∞

Research Training Report

Exploring the Performance of NetCDF
Writing Routines in t8code

Jakob Hördt

MatrNr: 21565573

Supervisor: Jonathan Decker, Prof. Dr. Julian Kunkel

Georg-August-Universität Göttingen
Institute of Computer Science

1 March 2023

Abstract
t8code is an Adaptive Mesh Refinement (AMR) software based on Space-filling Curves
(SFCs) for HPC applications that supports NetCDF as an output format. Use-cases for
t8code include fluid dynamics simulations for airplanes and finite element methods, where
it is applied to large problem sizes with high parallelism and produces large files. IO is
often a bottleneck in HPC and impedes the scalability of applications, where t8code is
no exception. In t8code, writing the output can take on the order of hours for typical
use-cases even though modern NetCDF versions natively support parallel IO. Unfortu-
nately, some precarious configuration options are left up to the NetCDF users. In this
work, the performance of the NetCDF writing routines in t8code is explored via a se-
ries of benchmarks performed using a custom-made, configurable benchmark suite called
t8cdfmark. This work contributes an implementation of file-per-process IO to t8code and
shows that it outperforms NetCDF parallel IO by up to a factor of five. Another speedup
is possible by using Earth-System Data Middleware (ESDM), which is a comprehensive
parallel IO middleware, a part of which allows using it as an alternative implementation
of the NetCDF interface. It also offers a speedup of up to five over plain NetCDF IO.
The conducted benchmarks confirm that t8code chose good default NetCDF parameters,
but also show that the collective and independent IO settings in combination with con-
tiguous storage yield up to 1.5 speedup over the respective other setting when adjusted
for parallelism and problem size.

i

Acknowledgements
Thanks to Jonathan Decker and Prof. Dr. Julian Kunkel from the Gesellschaft für wis-
senschaftliche Datenverarbeitung mbH Göttingen (GWDG) for advising me and providing
invaluable feedback during this work. Thanks to Pavan Kumar Siligam from the GWDG
for helping me with the Earth-System Data Middleware (ESDM) usage and installation.
Furthermore, I want to thank Dr. Johannes Holke and Niklas Böing from the Deutsches
Zentrum für Luft- und Raumfahrt e. V. (DLR) for their support regarding t8code and
for being open to my contributions.

ii

Contents

List of Figures iv

Listings iv

List of Abbreviations v

1 Introduction 1
1.1 Goals . 1
1.2 Contributions . 1
1.3 Outline . 2

2 Background 2
2.1 t8code . 2
2.2 NetCDF . 3
2.3 ESDM . 5

3 t8code Contribution 6
3.1 file-per-process mode . 7
3.2 Benchmark CLI . 8

4 Methodology 8
4.1 SCC . 9
4.2 Benchmark configurations . 10

5 t8cdfmark 11
5.1 CLI specification . 11
5.2 Benchmark orchestration . 15
5.3 Data collection . 16

6 Results 16
6.1 Comparison with ESDM backend . 18
6.2 ESDM settings comparison . 19

7 Discussion 19
7.1 Issues . 20

8 Conclusion 21

References 23

iii

List of Figures
1 Space filling curve forest visualization . 3
2 strong node scaling settings comparison . 17
3 strong tasks per node scaling settings comparison 17
4 weak scaling settings comparison . 18
5 strong node scaling comparison with ESDM 19
6 strong tasks per node scaling comparison with ESDM 20
7 weak scaling comparison with ESDM . 21
8 strong node scaling settings comparison ESDM 22
9 strong tasks per node scaling settings comparison ESDM 23
10 weak scaling settings comparison ESDM 24

List of Listings
1 Contribution to t8_forest_write_netcdf_ext 7
2 Example usage of the CLI contributed to t8code 8
3 Configuration for strong scaling benchmarks 10
4 Configuration for weak scaling benchmarks 11
5 Example results.json output of the CLI . 14
6 Example sbatch usage similar to how the Python script invokes it. 16
7 Comma-separated values (CSV) header of output from extract.py 16

iv

List of Abbreviations
AMR Adaptive Mesh Refinement

API Application Programming Interface

CLI Command Line Interface

CPU Central Processing Unit

CSV Comma-separated values

DLR Deutsches Zentrum für Luft- und Raumfahrt e. V.

ESDM Earth-System Data Middleware

GCC GNU Compiler Collection

GNU GNU’s Not Unix

GWDG Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen

HDF Hierarchical Data Format

HPC High-Performance Computing

IO Input / Output

JSON JavaScript Object Notation

MPI Message Passing Interface

NetCDF Network Common Data Form

OGC Open Geospatial Consortium

POSIX Portable Operating System Interface

RAM Random Access Memory

S3 Simple Storage Service

SCC Scientific Compute Cluster

SFC Space-filling Curve

TM-SFC Tetrahedral Morton Space-filling Curve

v

Exploring the Performance of NetCDF Writing Routines in t8code

1 Introduction
“t8code1 (spoken as "tetcode") is a C/C++ library to manage parallel adaptive meshes
with various element types[...]” [Hol+22], which is suitable for use in High-Performance
Computing (HPC) applications like numeric simulations. The adaptive meshes are man-
aged in a forest, which is a hierarchical data structure. t8code recently gained support
for exporting these forests as a Network Common Data Form (NetCDF)2 file3. NetCDF
is a popular self-describing scientific file format that supports large datasets [22].

According to Behzad et al.“scalability of applications is often limited by poorly per-
forming parallel I/O” and “I/O can be a significant bottleneck on HPC application per-
formance.” [Beh+19]. The costs incurred by this in terms of execution time, energy, and,
therefore, money are amplified by the scale of HPC systems, making performance and file
Input / Output (IO) a larger concern than in non-HPC applications.

1.1 Goals

The goal of this research training is to shed light on specifically the t8code NetCDF IO
performance by:

• Collecting benchmark data to support any efforts in optimizing the t8code NetCDF
writing performance.

• Creating a benchmark suite that models common use-cases for t8code and NetCDF
to allow the reproducible creation of benchmark data. The suite should be open
to anyone as it may be useful to others in their optimization efforts. This will be
achieved by making the repository public under a permissive license.

• Using the created benchmark data to create actionable guidelines for t8code use
depending on use-case arguments and ideally make concrete improvements to the
writing implementation in t8code or provide more options, like file-per-process mode,
if they prove a significant advantage in some use-cases.

1.2 Contributions

To achieve these goals I developed a benchmark suite to perform comprehensive bench-
marks on the NetCDF writing functionality and contributed a pull request to the t8code
project that extends a NetCDF routine to allow for more customization of performance
related parameters. In addition, I implement a different writing mode that lets each pro-
cess write only its process local data into its own NetCDF file. This is commonly referred
to as file-per-process IO. I also evaluate the performance of using ESDM as a NetCDF
library replacement. ESDM is introduced in section 2.3.

1t8code source, Accessed on 10 November 2022 : https://github.com/DLR-AMR/t8code
2NetCDF, Accessed on 10 November 2022 : https://www.unidata.ucar.edu/software/netcdf/
3t8code NetCDF pull-request, Accessed on 10 November 2022 : https://github.com/DLR-AMR/

t8code/pull/191

Section 1 Jakob Hördt 1

https://github.com/DLR-AMR/t8code
https://www.unidata.ucar.edu/software/netcdf/
https://github.com/DLR-AMR/t8code/pull/191
https://github.com/DLR-AMR/t8code/pull/191

Exploring the Performance of NetCDF Writing Routines in t8code

1.3 Outline

Firstly, this report covers technical background information in section 2. In section 3, the
changes made to t8code, including the benchmark program I added, are explained. Next,
the benchmark methodology and approach is explained in section 4. The specification for
the t8cdfmark benchmark suite is found in section 5. Lastly, I will present and discuss the
benchmark results in section 6 and section 7, and draw conclusions and give an outlook
on future work in section 8.

2 Background
2.1 t8code

Dr. Johannes Holke developed t8code [Hol+22] as part of his dissertation on “Scalable Al-
gorithms for Parallel Tree-based Adaptive Mesh Refinement with General Element Types”
[Joh18].

Adaptive Mesh Refinement (AMR) is a common optimization in simulations that
aims to refine simulation space where it is required to keep up the numeric simulation
accuracy, or colloquially, where a lot is happening, and coarsen simulation space, where
doing so does not relinquish too much accuracy, to save computational power. In t8code,
simulation space is modeled by a so called coarse mesh, which is a collection of primitives.
A primitive is one of the atomic shapes t8code supports, like hexahedra, tetrahedra,
prisms, and pyramids. A coarse mesh can be turned into a forest, where its primitives
become trees. The primitives are referred to as trees, because each acts as a root for
AMR. An element is a primitive that is a leaf node of a tree. When an element is refined,
the finer elements are the children of the original parent element. The term forest stems
from it being a collection of trees.

As Dr. Johannes Holke explains in this work, for representing a tree in t8code, a
Space-filling Curve (SFC) is used. A space-filling curve index is a function from the
refinement space into the natural numbers with some additional properties. For example,
the indices of descendants of an element are between the index of the ancestor element and
any element with a higher index. This means that refining an element does not change
indices outside of the element, making it a local operation. The index imposes an ordering
on the multi-dimensional elements that allows efficient storage in an array format. In his
work the author also develops efficient algorithms for finding the children, parent, or face-
neighbors of simplex elements in this SFC based representation. Furthermore, the author
shows that SFC based indices can be extended to order the elements of multiple trees.
This is visualized in fig. 1.

One of the key innovations explained in the dissertation is to develop a novel SFC
index, the Tetrahedral Morton Space-filling Curve (TM-SFC), which also encodes the
primitive type of an element. This allows the t8code library to be generic over various
element types, like hexahedra, tetrahedra, prisms, and pyramids, and use mixed element
types in the same mesh. This is called a hybrid mesh.

Since t8code aims to tackle large problem sizes, it is designed to run on HPC systems.
HPC systems typically consist of a multitude of computers connected via a network in-
terconnect. In such a setting, shared memory parallelism is difficult to implement since
fast memory shared by all computers is not naturally available. A distributed mem-

Section 2 Jakob Hördt 2

Exploring the Performance of NetCDF Writing Routines in t8code

Figure 1: From [Joh18, Figure 3.5]. This figure shows a forest of two trees k0 and k1.
On the right, the corresponding mesh is displayed. On the left, the corresponding tree
data structure is visualized. The elements, shown as boxes on the left and as triangles on
the right, are distributed into equal parts among the processes p0, p1, and p2. The color
indicates the process number. The figure also shows how an SFC index can be extended
to multiple trees by simply connecting multiple SFCs according to a predetermined order.

ory paradigm like message passing is better suited in this case. Message Passing Inter-
face (MPI) is such a standardized Application Programming Interface (API) specification
that enables process communication through message passing4. t8code uses MPI for its
parallelism. Note that MPI implementations can use shared memory for faster com-
munication if available, for example when two MPI processes run on the same Central
Processing Unit (CPU).

To achieve parallelism on a cluster, it is necessary to distribute the workload across the
computers, which is called load balancing or (re-)partitioning in t8code’s terms. During
simulation, a mesh is often dynamically adapted, which may lead to unbalanced tasks
by changing the number of elements each process owns. The SFC based ordering enables
repartitioning the elements in linear time by splitting the ordered element list into roughly
equally sized chunks.

2.2 NetCDF

NetCDF is one of the scientific file formats that t8code can export to, which is the step
that is benchmarked in this work. NetCDF is an international standard by the Open
Geospatial Consortium (OGC). The NetCDF format is designed to be self-describing,
meaning that machine readable metadata describing the semantics and structure of the
data is part of the file, making the data portable and accessible. A NetCDF file can always
be opened by means of the standard NetCDF APIs. NetCDF is also platform independent,
meaning NetCDF files written on one platform can be accessed on any other.

The NetCDF specification and libraries have been continuously developed and today
several supported versions of the NetCDF format exist. Three of those versions are con-
sidered classic. The default format, also called CDF-1, the CDF-2 format enabled by the
NC_64BIT_OFFSET flag during creation, and the CDF-5 format enabled by the NC_64BIT_-
DATA flag. The newest supported format is called netCDF-4/HDF5. This is the format
used by t8code when I started my work. As the name implies, netCDF-4/HDF5 is built on
top of the Hierarchical Data Format (HDF)5 format5. A netCDF-4/HDF5 file is always a
valid HDF5 file. HDF5, similar to NetCDF, is a file format to store large amounts of data

4MPI home page, Accessed on 10 November 2022 : https://www.mpi-forum.org/
5HDF5 website, Accessed on 10 November 2022 : https://www.hdfgroup.org/solutions/hdf5/

Section 2 Jakob Hördt 3

https://www.mpi-forum.org/
https://www.hdfgroup.org/solutions/hdf5/

Exploring the Performance of NetCDF Writing Routines in t8code

in a portable and self-describing fashion. NetCDF supports only restricted functionality
compared to HDF5. Non hierarchical group structures and references for example are
disallowed in NetCDF6. NetCDF strives to hide HDF5’s complexity behind its APIs7.

Every NetCDF file has a header containing metadata as well as a data part containing
the actual data8. Notably, the variables and dimensions of the file are declared in the
header. Each variable is a multidimensional array of only one type like double, integer,
or a custom one. A dimension in NetCDF is simply a named integer that can be used as
dimensions for variables. This data model is flexible and translates directly to many use-
cases, like for example data sets on a uniform three-dimensional grid. For t8code, whose
data model is an adaptively refined mesh, the NetCDF data model does not translate
directly. To represent the t8code mesh in NetCDF’s data model, t8code uses the UGRID
Conventions9. Specifically, for two and three dimensional data, the conventions for a
2D flexible mesh, and for a fully 3D unstructured mesh topology are used respectively.
Data of different dimensionality cannot be exported from t8code as NetCDF. In these
conventions, a mesh consists of volumes, which are a set of connected nodes. Nodes are
simple vertices with a single set of coordinates. In NetCDF, volumes are mainly described
by a variable called Mesh3D_vol_nodes, which, for each volume, lists the indices of the
associated nodes. The nodes are described by multiple variables, one for each coordinate
dimension.

NetCDF supports parallel IO on all four formats listed above. For the classic formats
parallel IO is supported by the PnetCDF10 library, which was originally an independently
developed NetCDF interface [Li+03] and is now part of NetCDF. Since netCDF-4/HDF5
files are based on HDF5, parallel IO on this format is supported by parallel HDF5 im-
plementations11. Both PnetCDF and parallel HDF5 are implemented using MPI-IO, a
part of MPI-2 and later, that specifies parallel file IO[Mes09]. To create or open a file
in parallel, NetCDF offers the nc_create_par and nc_open_par functions respectively.
In addition, the nc_var_par_access function is used to specify the access mode. When
using HDF5, the function applies to each NetCDF variable individually, while, when using
PnetCDF, the function always applies to all variables.12. The access mode can be either
collective or independent. In collective mode, all MPI processes wait for each other in the
call and then perform the access together in a coordinated fashion. This introduces syn-
chronisation overhead but enables certain optimizations like combining IO operations to
reduce the amount of IO calls. In independent mode, processes do not need to cooperate
or wait for others, reducing synchronisation overhead over collective mode but preventing
other optimizations. NetCDF generally recommends collective mode13. Another way to

6Interoperability with HDF5, Accessed on 14 November 2022 : https://docs.unidata.ucar.edu/
netcdf-c/current/interoperability_hdf5.html

7What NetCDF users should know about HDF5?, Accessed on 14 November 2022 : https://www.
unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf

8The Components of a NetCDF Data Set, Accessed on 26 July 2022 : https://docs.unidata.ucar.
edu/nug/current/netcdf_data_set_components.html

9UGRID Conventions (v1.0), Accessed on 31 August 2022 : https://ugrid-conventions.github.
io/ugrid-conventions/

10PnetCDF website, Accessed on 10 November 2022 : https://parallel-netcdf.github.io/
11Parallel HDF5, Accessed on 10 November 2022 : https://www.hdfgroup.org/2015/08/

parallel-io-with-hdf5/
12nc_var_par_access docs, Accessed on 10 November 2022 : https://docs.unidata.ucar.edu/

netcdf-c/current/group__datasets.html#ga6dc46e4ab82584360518db5cb0cad841
13NetCDF collective mode, Accessed on 10 November 2022 : https://docs.unidata.ucar.edu/

netcdf-c/current/group__datasets.html#ga6dc46e4ab82584360518db5cb0cad841

Section 2 Jakob Hördt 4

https://docs.unidata.ucar.edu/netcdf-c/current/interoperability_hdf5.html
https://docs.unidata.ucar.edu/netcdf-c/current/interoperability_hdf5.html
https://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf
https://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf
https://docs.unidata.ucar.edu/nug/current/netcdf_data_set_components.html
https://docs.unidata.ucar.edu/nug/current/netcdf_data_set_components.html
https://ugrid-conventions.github.io/ugrid-conventions/
https://ugrid-conventions.github.io/ugrid-conventions/
https://parallel-netcdf.github.io/
https://www.hdfgroup.org/2015/08/parallel-io-with-hdf5/
https://www.hdfgroup.org/2015/08/parallel-io-with-hdf5/
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga6dc46e4ab82584360518db5cb0cad841
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga6dc46e4ab82584360518db5cb0cad841
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga6dc46e4ab82584360518db5cb0cad841
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga6dc46e4ab82584360518db5cb0cad841

Exploring the Performance of NetCDF Writing Routines in t8code

parallelize file IO that does not rely on MPI-IO is described in section 3.1.
For the described parallel IO facilities to yield any speedup over serial IO, the under-

lying file system must also support parallel IO. One such file system is briefly described
in section 4.1.

The t8code interface to write NetCDF files consists of the two functions t8_forest_-
write_netcdf and t8_forest_write_netcdf_ext. t8_forest_write_netcdf has less
paramters, is implemented in terms of t8_forest_write_netcdf_ext, and specifies de-
fault arguments. t8_forest_write_netcdf_ext is supposed to be an advanced function.
Both take a forest, a file name, a title, and optionally, element-wise data variables. The
*_ext function additionally takes the MPI access mode described above, and the stor-
age mode, also known as data layout. NetCDF can write in contiguous, or in chunked
mode. In contiguous mode the data is written contigously, while in chunked mode, the
data is written in hyperslab shaped chunks14. The contributed parameter changes to
t8_forest_write_netcdf_ext are described in section 3.

2.3 ESDM

ESDM15 is a comprehensive software system for improving IO performance in HPC work-
flows. It achieves this by:

• Utilizing structural information exposed by data description formats like HDF5 and
NetCDF.16

• Enabling the transparent use of heterogeneous storage architectures. It is common
for HPC systems to have multiple storage partitions with different characteristics.
In a typical example, a fast scratch partition with low failure protection and reg-
ular cleanup, a persistent but slower home or work partition, and very fast node
local storage is available. Additionally, non filesystem storage technologies such as
Seagate Motr or Amazon Simple Storage Service (S3) may want to be used. ESDM
provides backends for the above, and more, storage targets. File systems are sup-
ported by a Portable Operating System Interface (POSIX) based backend. ESDM
consumes a configuration file describing the aforementioned characteristics. This
information is used to prioritise IO targets and distribute data efficiently across
them[KP20, Section 4.1]

• Utilizing workflow information. Users of ESDM may provide a workflow file specify-
ing input and output datasets and corresponding information like lifetime, frequency
of the output, or expected size of the datasets. ESDM can use this information to
automatically decide where to put datasets and optimize workflow schedules.[KP20,
Section 4.1-4.3]

ESDM provides a library enabling it to act as a replacement for the NetCDF C library.
Since t8code uses NetCDF, it is possible to use t8code with ESDM as well. In this work,
the performance of this approach will be evaluated with the POSIX ESDM backend. In

14information on chunking, Accessed on 10 November 2022 : https://docs.unidata.ucar.edu/nug/
current/netcdf_perf_chunking.html

15ESDM, Accessed on 17 January 2023 : https://hps.vi4io.org/products/esdm
16ESDM may use HDF5 and NetCDF information, Accessed on 29 January 2023 : https:

//github.com/ESiWACE/esdm/blob/e49a9d9ed08f25a6f31eac9b2c632a262282f91a/README.md#
earth-system-data-middleware

Section 2 Jakob Hördt 5

https://docs.unidata.ucar.edu/nug/current/netcdf_perf_chunking.html
https://docs.unidata.ucar.edu/nug/current/netcdf_perf_chunking.html
https://hps.vi4io.org/products/esdm
https://github.com/ESiWACE/esdm/blob/e49a9d9ed08f25a6f31eac9b2c632a262282f91a/README.md#earth-system-data-middleware
https://github.com/ESiWACE/esdm/blob/e49a9d9ed08f25a6f31eac9b2c632a262282f91a/README.md#earth-system-data-middleware
https://github.com/ESiWACE/esdm/blob/e49a9d9ed08f25a6f31eac9b2c632a262282f91a/README.md#earth-system-data-middleware

Exploring the Performance of NetCDF Writing Routines in t8code

ESDM, data sets are split into so called fragments, which hold a continuous sub-domain
of the data and are stored on one storage target each17. Of the aforementioned ESDM
features and performance advantages, only the performance of the splitting into fragments
and their mapping into the POSIX back end are considered here.

3 t8code Contribution
As stated in section 1, as part of this research training, I contributed a pull-request to
the t8code repository18. The pull-request includes the implementation of file-per-process
mode described in section 3.1, as well as a Command Line Interface (CLI) program,
elaborated on in section 3.2, to benchmark various writing configurations without re-
compilation. Furthermore, the pull-request extends the t8_forest_write_netcdf_ext
function to allow customizing more parameters.

Namely, the creation mode parameter of the NetCDF nc_create19 and nc_create_-
par functions can now be customized. Only NC_CLOBBER is added to the creation mode
before it is passed to nc_create(_par). Supported arguments are NC_NETCDF4, which
creates a netCDF4/HDF5 file, or NC_64BIT_DATA, which creates a CDF5 file. Other
versions are non trivial to support because t8code uses 64 bit integers, denoted by NC_-
INT64 in NetCDF, for example to represent node indices, which are not available in earlier
NetCDF versions. Therefore, other versions are not implemented in the pull-request.
CDF5 was implemented because there was interest in the performance of a NetCDF
format not backed by HDF5.

The fill mode in NetCDF can be NC_FILL or NC_NOFILL. It can also be customized us-
ing t8_forest_write_netcdf_ext now. With fill turned on NetCDF prefills all variables
with so called fill values to indicate that no value is present. This allows NetCDF to detect
accesses to data that has not yet been written. For creating a fresh NetCDF dataset, it
is recommended to disable fill mode to avoid duplicate writes to increase performance20.
This was contributed because it can help debugging writing NetCDF files.

Another contribution is that in chunked storage mode, the chunksize for the, depend-
ing on the dimension, two or three coordinate variables can be specified, which may
improve performance. For the other variables, and for the coordinate variables, if the
given chunksize is nullptr, the NetCDF default chunksizes are used in chunked mode.

The difference between the signatures of t8_forest_write_netcdf_ext before and
after the contribution is shown in listing 1.

17Progress of WP4: Data at Scale, Fragment definition, Accessed on 29 January 2023 : https://hps.
vi4io.org/_media/research/talks/2020/2020-05-27-progress_of_wp4_data_at_scale.pdf

18Contribution to t8code, Accessed on 10 November 2022 : https://github.com/DLR-AMR/t8code/
pull/279

19nc_create docs, Accessed on 10 November 2022 : https://docs.unidata.ucar.edu/netcdf-c/
current/group__datasets.html#ga427f5a0b24f1d426a99bcc37b8a39cac

20nc_set_fill docs, Accessed on 10 November 2022 : https://docs.unidata.ucar.edu/netcdf-c/
current/group__datasets.html#ga610e6fadb14a51f294b322a1b8ac1bec

Section 3 Jakob Hördt 6

https://hps.vi4io.org/_media/research/talks/2020/2020-05-27-progress_of_wp4_data_at_scale.pdf
https://hps.vi4io.org/_media/research/talks/2020/2020-05-27-progress_of_wp4_data_at_scale.pdf
https://github.com/DLR-AMR/t8code/pull/279
https://github.com/DLR-AMR/t8code/pull/279
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga427f5a0b24f1d426a99bcc37b8a39cac
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga427f5a0b24f1d426a99bcc37b8a39cac
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga610e6fadb14a51f294b322a1b8ac1bec
https://docs.unidata.ucar.edu/netcdf-c/current/group__datasets.html#ga610e6fadb14a51f294b322a1b8ac1bec

Exploring the Performance of NetCDF Writing Routines in t8code

void t8_forest_write_netcdf_ext (t8_forest_t forest,
const char *file_prefix,
const char *file_title,
int dim,
int num_extern_netcdf_vars,
t8_netcdf_variable_t *
ext_variables[],
sc_MPI_Comm comm,
int netcdf_var_storage_mode,

- int netcdf_var_mpi_access);
+ const size_t
+ *coordinate_chunksize,
+ int netcdf_var_mpi_access,
+ int fill_mode, int cmode,
+ bool file_per_process_mode);

Listing 1: Contribution to t8_forest_write_netcdf_ext

3.1 file-per-process mode

Historically, parallel IO has been achieved with the aptly named file-per-process model.
In this model, each parallel process accesses a different file21. The parallel execution of all
the independent IO requests is left completely to the parallel filesystem. The advantage
of this approach is that it is conceptually simpler than single-file parallel IO and easy to
implement on the user side. A parallel IO library like MPI-IO is not required. Further-
more, the approach promises good performance, due to requiring little synchronisation
overall. Unfortunately, in reality file-per-process often suffers from file system contention
on larger process counts. Another drawback is that you end up with as many files as
processes which cannot be read as easily as a single file.

Nevertheless, to compare its performance characteristics to the parallel IO facilities
built into NetCDF, I implemented file-per-process as an optional writing mode. This is
done by modifying the t8_forest_write_netcdf_ext function to accept an additional
boolean parameter that indicates whether file-per-process mode is desired. If that is the
case, the function generates a filename unique to each process and creates a NetCDF file
at the resulting path using nc_create instead of nc_create_par. That way, each process
can write to its own, independent, serial NetCDF file. In single file mode, each process
calculates the offset at which it writes to the shared file, for each variable. This is set to
zero in file-per-process mode. Furthermore, in file-per-process mode, the MPI rank and
the MPI size are written to each process’ files in the form of global NetCDF attributes.
This is all the information needed to attach the files back together correctly. The function
branches in a few more places, for example to prevent nc_var_par_access from being
called in file-per-process mode.

21file-per-process, slide 14, Accessed on 10 November 2022 : https://www.olcf.ornl.gov/
wp-content/uploads/2011/10/Fall_IO.pdf

Section 3 Jakob Hördt 7

https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

Exploring the Performance of NetCDF Writing Routines in t8code

srun ./t8_write_forest_netcdf 100000000000 NC_NOFILL netcdf4_hdf5
NC_CONTIGUOUS NC_COLLECTIVE↪→

Listing 2: Example usage of the CLI contributed to t8code

3.2 Benchmark CLI

The CLI program contributed to t8code creates a single forest and times the export of the
forest as NetCDF. This program forms the basis for the main CLI that is now part of the
t8cdfmark project specified in section 5. The various parameters of the NetCDF writing
functionality can be customized via the CLI. For example you can specify that the export
should be done in file-per-process mode. The CLI has a reduced feature set compared to
the one from t8cdfmark. Namely, neither does this program allow creating element-wise
data variables, nor are different forest models supported. This CLI uses only the pseudo
random model described in section 5.1. This allows the program to take a hint for the
written storage. The forest is created in a way that it roughly occupies the given storage.
For details on how this is achieved consult section 5.1. The example shown in listing 2
creates a NetCDF file roughly 100GB in size. A small manual for the CLI is part of the
pull-request to t8code.

4 Methodology
As discussed in section 1, one of the goals of this work is to produce benchmark data
and draw conclusions and recommendations from them. One of the general questions this
work attempts to answer is how the different writing configurations scale with the number
of nodes or the number of processes per node. Unfortunately, the many combinations of
arguments, like node counts, processes per node, written storage, number of element-
wise variables, and the arguments to t8_forest_write_netcdf_ext make it infeasible to
perform a complete grid search over the large parameter space. Instead the benchmarks
need to be focused on specific questions and a few arguments at a time.

Here, the search space is reduced by focusing on a strong scaling series and a weak
scaling series. During strong scaling, the parallelism is increased on a fixed problem
size. Ideally, the time to complete the task should decrease proportional to the paral-
lelism. During weak scaling, the parallelism is increased proportionally in lockstep with
the problem size. Ideally, the time should stay constant. The benchmark results presented
here stray far from those ideals but pursuing them is not the main goal here. In tradi-
tional scaling tests, a common question is how much parallelism to allocate for a program
for a given problem size. However, since this work inspects only the writing performance
of t8code and not the program as a whole, the goal is instead to answer the question of
how to maximize the throughput with the given parallelism. In practice the allocated
parallelism would be estimated with an analysis on t8code as a whole. With this in mind
I decided against showing speedup diagrams and instead to just plot the throughput over
the parallelism in logarithmic scale. This is a better visualization for answering the posed
questions. Nonetheless, strong and weak scaling sets of benchmarks allow us to judge
a configurations performance not only by its absolute timing, but also by its behaviour
when scaling up.

The strong scaling test is further split up by increasing the parallelism through the

Section 4 Jakob Hördt 8

Exploring the Performance of NetCDF Writing Routines in t8code

tasks per node and the node count, while the respective other is fixed. The tasks per
node and the node count are scaled up independently firstly to see the effects of them
separately. A possible finding could have been that it makes sense in certain configura-
tions to run t8code on more nodes with less tasks per node than available to get more
storage bandwidth without increasing the total process count. Secondly, scaling the two
parameters independently was done in an attempt to make the resulting data easier to
interpret. Scaling up just the total tasks naively would result in unaccounted jumps in
the node count to fulfill the task requirement, complicating the analysis.

In the weak scaling series, the tasks per node count is fixed and the node count is scaled
up. Scaling up only the tasks per node and problem size would not be a realistic scenario
for a weakly scaling application and is therefore not considered. In this experiment, the
problem size grows from roughly 15GB on one node to writing roughly 1TB on 64 nodes.
Five tasks per node was chosen to be able to test up to 64 nodes while using appropriate
parallelism for the problem sizes and still keeping the benchmark runtime manageable.

These three benchmark series are repeated with all possibilities for the storage mode,
the MPI access mode, and the NetCDF version. Notably, the contributed file-per-process
mode described in section 3.1 is among the storage modes. All of this is repeated with
ESDM to assess its performance in this use-case.

The benchmarks are facilitated by the custom-made t8cdfmark benchmark suite spec-
ified in section 5, which includes a CLI that executes a single writing benchmark with
the given arguments. This is described in detail in section 5.1. It derives from the CLI
contributed to t8code, see section 3.2, but also allows supports customizing the element-
wise variables to a more realistic value. A script is used to schedule multiple runs of the
benchmark CLI with different arguments and also allows repeating the same benchmarks.
Here, all benchmarks are repeated three times to gain some statistical confidence. This
facility is explained in section 5.2. The resulting data is collected in a separate step using
another tool that is part of t8cdfmark, see section 5.3.

4.1 SCC

The benchmarks are executed on the Scientific Compute Cluster (SCC)22, which is a
modern HPC cluster operated by the GWDG23. The SCC has a shared filesystem called
scratch, where the files for our benchmarks are written. For our purposes, at most 96
nodes have access to it. The filesystem powering scratch is BeeGFS24, which is a clustered
parallel filesystem, meaning it can be mounted and run on multiple servers. The meta-
data and data servers are separate components in BeeGFS allowing them to be scaled
independently onto many computers25. At the GWDG, scratch is backed by two server
blades, each with two metadata and two data service instances. The approximately 220
storage drives are distributed across three separate external enclosures. Theoretically, all
of them can write data simultaneously. For job scheduling, the SCC uses the Slurm26

scheduler.
22SCC, Accessed on 10 November 2022 : https://www.gwdg.de/web/guest/hpc-on-campus/scc
23GWDG website, Accessed on 15 February 2023 : https://www.gwdg.de/
24BeeGFS, Accessed on 1 September 2022 : https://www.beegfs.io/c/
25How BeeGFS Works, Accessed on 1 September 2022 : https://www.beegfs.io/c/home/

how-beegfs-works/
26Slurm, Accessed on 10 November 2022 : https://slurm.schedmd.com/

Section 4 Jakob Hördt 9

https://www.gwdg.de/web/guest/hpc-on-campus/scc
https://www.gwdg.de/
https://www.beegfs.io/c/
https://www.beegfs.io/c/home/how-beegfs-works/
https://www.beegfs.io/c/home/how-beegfs-works/
https://slurm.schedmd.com/

Exploring the Performance of NetCDF Writing Routines in t8code

4.2 Benchmark configurations

For the benchmarks, the t8cdfmark CLI from commit b5cea7c27 was compiled with Open
MPI version 4.1.128 and GNU Compiler Collection (GCC) version 9.3.029 and run with
netcdf-c version 4.8.130 and HDF5 version 1.10.731.

In real world simulations, between one and hundreds of variables per element are used.
Since this value is not expected to have a big performance impact by itself, all benchmarks
use ten variables per element. For the strong scaling benchmarks, the size hint is fixed at
100GB resulting in about 85GB of actually written data. Again, this is a plausible value
for research with t8code. In practice, bigger datasets appear, but this is big enough to
compare throughputs on up to 64 nodes. In the weak scaling series, the problem size is
grown from 13GB to 845GB, which is a relatively big, but still realistic problem size.

def configurations():
for repetition in range(3):

for comm_mode in ["NC_INDEPENDENT", "NC_COLLECTIVE",
"file_per_process"]:↪→

for storage_mode in ["NC_CONTIGUOUS", "NC_CHUNKED"]:
for cmode in ["netcdf4_hdf5", "cdf5"]:

if cmode == "cdf5" and comm_mode != "file_per_process":
continue

for nodes in [1,4,16,64]:
yield Config(repetition=repetition, nodes=nodes,

tasks_per_node=5, storage_mode=storage_mode, cmode=cmode,
comm_mode=comm_mode, num_element_wise_variables=10,
bytes_hint=100000000000)

↪→

↪→

↪→

for tasks_per_node in [1,10,20]:
yield Config(repetition=repetition, nodes=16,

tasks_per_node=tasks_per_node, storage_mode=storage_mode,
cmode=cmode, comm_mode=comm_mode,
num_element_wise_variables=10, bytes_hint=100000000000)

↪→

↪→

↪→

Listing 3: Configuration for strong scaling benchmarks

The exact config files ingested by the t8cdfmark tools described in section 5.2 and
section 5.3 used for strong and weak scaling are shown in listing 3 and listing 4 respectively.
For the benchmarks using ESDM, a separately compiled t8cdfmark binary with ESDM
support is used. The used ESDM config file is suitable for the SCC and is part of the
supplement in section 8.

27Commit b5cea7c of t8cdfmark, Accessed on 17 January 2023 : https://github.com/neoq/
t8cdfmark/tree/b5cea7caaa305c8cf154ced6d0cc6c2d435eb949

28Open MPI version 4.1, Accessed on 17 January 2023 : https://www.open-mpi.org/software/ompi/
v4.1/

29GCC 9, Accessed on 17 January 2023 : https://www.gnu.org/software/gcc/gcc-9/
30netcdf-c version 4.8.1, Accessed on 17 January 2023 : https://github.com/Unidata/netcdf-c/

releases/tag/v4.8.1
31HDF5 version 1.10.7, Accessed on 17 January 2023 : https://www.hdfgroup.org/2020/09/

release-of-hdf5-1-10-7-newsletter-175/

Section 5 Jakob Hördt 10

https://github.com/neoq/t8cdfmark/tree/b5cea7caaa305c8cf154ced6d0cc6c2d435eb949
https://github.com/neoq/t8cdfmark/tree/b5cea7caaa305c8cf154ced6d0cc6c2d435eb949
https://www.open-mpi.org/software/ompi/v4.1/
https://www.open-mpi.org/software/ompi/v4.1/
https://www.gnu.org/software/gcc/gcc-9/
https://github.com/Unidata/netcdf-c/releases/tag/v4.8.1
https://github.com/Unidata/netcdf-c/releases/tag/v4.8.1
https://www.hdfgroup.org/2020/09/release-of-hdf5-1-10-7-newsletter-175/
https://www.hdfgroup.org/2020/09/release-of-hdf5-1-10-7-newsletter-175/

Exploring the Performance of NetCDF Writing Routines in t8code

def configurations():
for repetition in range(3):

for comm_mode in ["NC_INDEPENDENT", "NC_COLLECTIVE",
"file_per_process"]:↪→

for storage_mode in ["NC_CONTIGUOUS", "NC_CHUNKED"]:
for cmode in ["netcdf4_hdf5", "cdf5"]:

if cmode == "cdf5" and comm_mode != "file_per_process":
continue

for nodes in [1,4,16,64]:
yield Config(repetition=repetition, nodes=nodes,

tasks_per_node=5, storage_mode=storage_mode, cmode=cmode,
comm_mode=comm_mode, num_element_wise_variables=10,
bytes_hint=1000000000000//64*nodes)

↪→

↪→

↪→

Listing 4: Configuration for weak scaling benchmarks

5 t8cdfmark
As part of this research training I designed an additional benchmark suite that is not
part of t8code but rather depends on it. In this section, t8cdfmark will be specified for
documentation purposes but also to guide the implementation. The goal of t8cdfmark is to
model real-world use cases with t8code and benchmark the NetCDF writing functionality.
Benchmarking t8code functionality besides NetCDF writing is an explicit non-goal. Only
the time the writing takes will be measured. The following use-cases are supported by
the design:

• As a t8code user, I want to use t8cdfmark to find writing parameters that suit my
use-case well, by picking a t8cdfmark scenario that resembles my use-case.

• As a researcher, I want to use t8cdfmark to evaluate writing parameters to give
recommendations to t8code users and improve t8code defaults.

• As a researcher, I want to use t8cdfmark to evaluate modifications to the t8code
writing routines for performance.

Nevertheless, t8cdfmark is not designed to be used as a benchmark for the underlying
hardware. t8cdfmark includes an executable that benchmarks a single configuration, as
opposed to multiple, which is given via a CLI. Furthermore, t8cdfmark includes Python
scripts for launching t8cdfmark with many combinations of arguments and accumulating
the results in human, and machine readable form.

5.1 CLI specification

The t8cdfmark CLI is an MPI program that can be run in a user controlled MPI config-
uration. To benchmark a set of arguments, the CLI first constructs a forest by creating
a coarse mesh and refining it according to the selected model, all of which are described
below, and then partitioning it among the processes. The resulting forest is afterwards ex-
ported in NetCDF format using the functionality provided by t8code. This part is timed

Section 5 Jakob Hördt 11

Exploring the Performance of NetCDF Writing Routines in t8code

using two calls to MPI_Wtime before and after the operation respectively. The CLI offers
various models, which are different initial forests with a refinement scheme, to export.
The following models are supported:

• uniform, where every element is at the same level of refinement.

• pseudo-random, where elements of a uniformly refined forest are refined at most one
level according to a pseudo-random number generator.

• towers-of-hanoi shaped, where a uniformly refined forest is refined one level inside
of the specified radius. If more radii are given, under the condition that they are
monotonically decreasing, the forest is further refined one level in each of the given
radii.

• ring shaped, where a forest is refined strongly in proximity to the border of a sphere,
but not on the inside.

• A mesh that models a plane that is refined close to the border.

When choosing the uniform, or pseudo random models, the CLI accepts a storage size hint
parameter. The hint is used to calculate refinement arguments so that the resulting forest
consumes roughly the given size on disk. This is useful, because often, when benchmarking
storage, there is interest in specifying a rough benchmark size. The basis for both models
is a cube shaped coarse mesh created with t8_cmesh_new_hypercube_hybrid. The cube
consists of six tetrahedra, six triangular prisms, and four hexahedra32 for a total of sixteen
trees or initial elements without refinement.

Each of those primitive, when refined, is replaced by eight finer elements33. The
storage requirement for a single element in NetCDF form can be estimated upwards using
eq. (7), where num_element_wise_variables represents the number of element-wise data
variables, each assumed to occupy 8B per element. With nMaxMesh3D_vol_nodes = 8
and nMesh3D_node ≤ nMesh3D_vol ·nMaxMesh3D_vol_nodes, because the exact node
count is unknown in this estimate, we get:

storage ≤ nMesh3D_vol · (4 + 8 + 64 + 196 + num_element_wise_variables · 8) (1)
storage

nMesh3D_vol
= bytes_per_element ≤ 268 + num_element_wise_variables · 8 (2)

(3)

The number of elements to occupy the given storage is now estimated by:

nMesh3D_vol ≥ storage ÷ (268 + num_element_wise_variables · 8) (4)

Using this fact, the CLI calculates a lower bound for the number of elements that
the forest can have without occupying more storage in NetCDF form than the given
size. The CLI then calculates an initial refinement, which is applied uniformly to the
aforementioned coarse mesh by means of t8_forest_new_uniform, as well as a ratio

32t8_cmesh_new_hypercube_hybrid, Accessed on 10 November 2022 : https://github.com/
DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/src/t8_cmesh/t8_cmesh_
examples.h#L104

33refinement of different element types, Accessed on 10 November 2022 : https://github.com/
DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/README.md

Section 5 Jakob Hördt 12

https://github.com/DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/src/t8_cmesh/t8_cmesh_examples.h#L104
https://github.com/DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/src/t8_cmesh/t8_cmesh_examples.h#L104
https://github.com/DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/src/t8_cmesh/t8_cmesh_examples.h#L104
https://github.com/DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/README.md
https://github.com/DLR-AMR/t8code/blob/c28db8862b0877b3f1d407a7d7263343c89a08d6/README.md

Exploring the Performance of NetCDF Writing Routines in t8code

of additionally refined elements. Let i be the initial refinement, and a the additionally
refined ratio. Then

nMesh3D_vol = (1− a) 16 · 8i + a · 16 · 8(i+1) (5)

⇒

 i = initial refinement = ⌊log_8(nMesh3D_vol/16)⌋

a = additional refinement ratio =
nMesh3D_vol

7 · 16 · 8i
− 1

7

(6)

In pseudo random refinement mode, the CLI uses a pseudo random number generator
with a Bernoulli distribution to conditionally refine elements to get approximately the
previously calculated number of elements. In the uniform scenario, the additional adaption
step is not done. The other scenarios do not take a storage hint and the written forest
always has the same storage requirement.

As discussed above, elements can have less than eight nodes, reducing the storage size
of the forest. For this reason, the CLI also calculates the actual storage size, after the
forest is created, in every scenario, with the true number of vertices, according to eq. (7),
which is derived from the UGRID conventions34.

actual storage = nMesh3D_vol · 4 + nMesh3D_vol · 8+
nMesh3D_vol · nMaxMesh3D_vol_nodes · 8 + 3 · nMesh3D_node · 8+

num_element_wise_variables · nMesh3D_node · 8 (7)

The CLI prints this result immediately to give the user the opportunity to cancel the
benchmark, if the size is undesirable, for example, too small. The actual size is also part
of the output, as shown in listing 5, and is used for the throughput calculation. The
actual size is used because file-per-process mode has a certain storage overhead per file
which is not useful information and should not be counted towards throughput or written
storage.

The CLI allows configuring all writing arguments t8code exposes via the t8_forest_-
write_netcdf_ext function. These include the following:

• The IO mode, namely independent IO, collective IO, and the file-per-process mode
described in section 3.1.

• The storage mode, namely chunked vs contiguous IO.

• The fill mode, which is used to debug NetCDF writing but is always overhead.

• The NetCDF version. These were listed in section 2.2. Note that still only CDF5
and netCDF4/HDF5 file can be supported.

• If file-per-process mode is used.

• The chunksize for the coordinates.

Additionally, the CLI allows specifying the number of element-wise data variables. Storage
for the given number of variables is created and filled with pseudo random values. The
created variables are given to the t8_forest_write_netcdf_ext function and exported

34UGRID Conventions (v1.0), Accessed on 31 August 2022 : https://ugrid-conventions.github.
io/ugrid-conventions/

Section 5 Jakob Hördt 13

https://ugrid-conventions.github.io/ugrid-conventions/
https://ugrid-conventions.github.io/ugrid-conventions/

Exploring the Performance of NetCDF Writing Routines in t8code

as part of the NetCDF export. The number of element-wise data variables is also given to
the selected scenario’s forest creation routine in case it should influence the forest creation.
The pseudo random scenario, for example, accounts for the element-wise variables in its
size calculation to create a forest of roughly the given size independent of the number of
element-wise variables.

The element-wise variable data is only created after the forest is partitioned. This
way, it is known how many data points each process has to create for itself. Alternatively,
you could create variable data before partitioning the forest and then use t8_forest_-
partition_data to distribute the element-wise variable data. The measurements taken
by the CLI are unaffected by which data partitioning approach is used, as only the writing
is measured. The approach where the data is generated where needed is chosen because
it is strictly more efficient.

An example workflow using the CLI might look like the following depending on the
use-case: Alice wants to know whether collective or independent IO is faster when for
their use-case, which involves writing a 100GB forest on a supercomputer with 2 nodes
and a total of 96 CPU cores. They reserve a Slurm session with the following command:

salloc --nodes=2 --ntasks-per-node=48 --time=1:00:00 --constraint=scratch

Then they run the CLI with the following command:

srun ./t8cdfmark --num_element_wise_variables=10
--pseudo_random:bytes=100000000000 --netcdf_version=netcdf4_hdf5
--storage_mode=NC_CONTIGUOUS --mpi_access=NC_INDEPENDENT

↪→

↪→

The output is shown in listing 5 where throughput = actual_information_bytes ÷
seconds Alice repeats the benchmark, this time with NC_COLLECTIVE instead of NC_-

{"actual_information_bytes":79861115776,"seconds":2.546637235,
"throughput_B/s":31359439294.46237}↪→

Listing 5: Example results.json output of the CLI

INDEPENDENT. They see that the throughput is almost three times bigger and conclude
that they should use this setting in their use-case.

The following is an overview of the steps the CLI takes internally:

1. Parse CLI arguments

2. Create forest according to selected scenario

3. Partition forest

4. Create element-wise data variables

5. Print storage size of forest, disregarding NetCDF metadata like attributes.

6. Save current timestamp

7. Export the forest as NetCDF

8. Calculate the passed time and throughput.

Section 5 Jakob Hördt 14

Exploring the Performance of NetCDF Writing Routines in t8code

9. Print both as well and exit.

As for non-functional requirements, the CLI must have good performance since it will
be run on supercomputers where any inefficiencies incur large costs.

5.2 Benchmark orchestration

The benchmark CLI described in section 3.2, as well as the t8cdfmark CLI described
in section 5.1, that is used for all benchmarks presented here, executes one benchmark
with specific settings. For comprehensive benchmarking, benchmarks with many different
combinations of arguments need to be executed. To make this reproducible and scalable
a small Python35 script is created as part of t8cdfmark that ingests a configuration file, an
example of which is shown in listing 3, and schedules the listed benchmark configurations
by interfacing with Slurm. The benchmarks are prevented from interfering with each
other by running them strictly sequentially. The following implementation options are
available to achieve sequential behaviour:

• The Python subprocess module36 is used to spawn srun37 sub processes from the
script. srun, as well as subprocess.run block until the job is complete, making
the sequentialisation trivial. Making many small Slurm reservations like this how-
ever is discouraged by the GWDG’s Slurm admins, because Slurm does not get all
the scheduling information upfront. To mitigate this, salloc38 can be used to run
multiple srun invocations under the same Slurm reservation.

• The chosen implemented approach is to invoke sbatch39 from the script. This
way the benchmark runs are only scheduled in the script and it terminates almost
immediately. To sequentialise the execution, each job, except the first, gets attached
a dependency on the previous job. This approach is better, because Slurm gets the
job information for all benchmark runs as soon as possible, making its scheduling
tasks easier. Furthermore, individual jobs can be observed using the regular Slurm
tools. Even though sbatch is used, we can avoid managing sbatch scripts ourselves
by using the –wrap parameter and letting Slurm create virtual sbatch scripts as
shown in listing 6.

• Another possible approach is to create a job array40, which is suitable for executing
many similar jobs. This however makes specifying benchmark parameters more
complex and Slurm parameters would need to be specified separately.

For each benchmark run, the script creates a separate directory to contain the Slurm
log file and disk usage information that is recorded as part of each run. The path contains
all benchmark arguments. After each run, the created NetCDF files are immediately
deleted, since they are not needed and to avoid accumulating disk usage across multi-
ple runs. Additionally, only when the benchmark completed successfully, a file called

35python programming language, Accessed on 10 November 2022 : https://www.python.org/
36python subprocess module, Accessed on 10 November 2022 : https://docs.python.org/3/library/

subprocess.html
37srun command reference, Accessed on 10 November 2022 : https://slurm.schedmd.com/srun.html
38salloc, Accessed on 10 November 2022 : https://slurm.schedmd.com/salloc.html
39sbatch, Accessed on 10 November 2022 : https://slurm.schedmd.com/sbatch.html
40job arrays, Accessed on 10 November 2022 : https://docs.gwdg.de/doku.php?id=en:services:

application_services:high_performance_computing:running_jobs_slurm:job_arrays

Section 5 Jakob Hördt 15

https://www.python.org/
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://slurm.schedmd.com/srun.html
https://slurm.schedmd.com/salloc.html
https://slurm.schedmd.com/sbatch.html
https://docs.gwdg.de/doku.php?id=en:services:application_services:high_performance_computing:running_jobs_slurm:job_arrays
https://docs.gwdg.de/doku.php?id=en:services:application_services:high_performance_computing:running_jobs_slurm:job_arrays

Exploring the Performance of NetCDF Writing Routines in t8code

sbatch --parsable --nodes=5 --ntasks-per-node=5 --wrap="module load
netcdf-c openmpi; srun path/to/benchmark
--num_element_wise_variables=10 --pseudo_random:bytes=100000000000"

↪→

↪→

Listing 6: Example sbatch usage similar to how the Python script invokes it.

“success” is created in the mentioned directory. Before scheduling a benchmark the
script checks whether this file already exists and skips the benchmark if it does. This is
useful for repeating failed benchmarks in a set of configurations.

5.3 Data collection

After a set of benchmarks completes, the job outputs, especially the measured times we
are interested in, are still spread throughout the directory. A second script reproduces the
directory tree created by the launch script when given the same configurations, and then
walks this tree and extracts the measurements from the CLI’s output files. t8cdfmark
produces JavaScript Object Notation (JSON), which is parsed using Python’s standard
library. If the CLI contributed to t8code described in section 3.2 is used, the following
regular expression may be used to achieve the same. Example scripts demonstrating this
usage are part of the supplement in section 8.

The time elapsed to write the netCDF-4 File is: ([0-9]+\.[0-9]+)

While iterating the configurations the script outputs a CSV file with a header as shown
in listing 7, that associates a set of benchmark arguments, including the repetition and
the Slurm arguments, with the recorded time. The result is easy to parse for tools, for
example by pandas41, to allow data analysis and subsequently visualisation.

nodes,tasks_per_node,storage_mode,cmode,comm_mode,
num_element_wise_variables,repetition,actual_information_bytes,
seconds,throughput_B/s

↪→

↪→

Listing 7: CSV header of output from extract.py

6 Results
The results for strong scaling with respect to tasks_per_node and nodes are shown in
fig. 2 and fig. 3 respectively. Notice that file-per-process generally performs better than
non file-per-process. In both graphs there is no data for NC_INDEPENDENT with NC_-
CHUNKED because all corresponding experiments timed out after sixty minutes. Since they
had at most 100GB to write their throughput must have been less than 28MB/s. This
threshold is drawn in fig. 2 once for comparison. Preliminary experiments on smaller
scale indicated similar results. For NC_COLLECTIVE with NC_CHUNKED, most experiments
ran out of Random Access Memory (RAM), the cause of which remains to be investigated.

41pandas, Accessed on 10 November 2022 : https://pandas.pydata.org/

Section 6 Jakob Hördt 16

https://pandas.pydata.org/

Exploring the Performance of NetCDF Writing Routines in t8code

1 4 16 64
nodes

0

1

2

3

4

5

6

7

th
ro

ug
hp

ut
_B

/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE
file_per_process

storage_mode
NC_CONTIGUOUS
NC_CHUNKED

cmode
netcdf4_hdf5
cdf5
min measurable

Figure 2: Throughput over node count with five tasks per node in a strong scaling scenario
writing a forest roughly 85GB in size for various settings. The lines show the mean over
three repetitions and the error bands show the 95% confidence interval.

1 5 10 20
tasks_per_node

1

2

3

4

5

6

7

th
ro

ug
hp

ut
_B

/s

1e9

comm_mode
NC_INDEPENDENT
NC_COLLECTIVE
file_per_process

storage_mode
NC_CONTIGUOUS
NC_CHUNKED

cmode
netcdf4_hdf5
cdf5

Figure 3: Throughput over tasks per node on 16 nodes in a strong scaling scenario writing
a forest roughly 85GB in size for various settings. The lines show the mean over three
repetitions and the error bands show the 95% confidence interval.

Section 6 Jakob Hördt 17

Exploring the Performance of NetCDF Writing Routines in t8code

1 4 16 64
nodes

0

1

2

3

4

5

6

7
th

ro
ug

hp
ut

_B
/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE
file_per_process

storage_mode
NC_CONTIGUOUS
NC_CHUNKED

cmode
netcdf4_hdf5
cdf5

Figure 4: Throughput over node count with five tasks per node in a weak scaling scenario
writing a forest between roughly 13GB and 845GB in size for various settings. The
lines show the mean over three repetitions and the error bands show the 95% confidence
interval.

The weak scaling results are shown in fig. 4. Notice that from 16 to 64 nodes, the
file-per-process throughput notably decreases in most configurations. This may be due
to the aforementioned filesystem contention that file-per-process IO is prone to suffer
from for high process counts. A good writing configuration is expected to saturate at
some maximum throughput to which it should stay close for high parallelism. t8code is
expected to run with even more parallelism, where the throughput may quickly become
worse for example with file-per-process mode and CDF5 format, as indicated by the graph.
From the results so far you can also conclude that CDF5 is generally detrimental to file-
per-process throughput compared to netCDF4/HDF5.

A possible explanation for why collective IO outperforms independent IO here, as
opposed to in the previous strong scaling experiments, is that individual write calls are
smaller. At the four node mark, here each process writes roughly 2.6GB while in fig. 2
each process writes roughly 4.2GB. Collective IO may have a performance advantage over
independent IO when accumulating the smaller calls into larger writes.

6.1 Comparison with ESDM backend

The same sets of benchmarks were repeated with ESDM as a NetCDF backend. ESDM
commit e49a9d942 and esdm-netcdf-c commit 0c6e72243 was used for the ESDM bench-

42ESDM commit e49a9d9, Accessed on 17 January 2023 : https://github.com/ESiWACE/esdm/tree/
e49a9d9ed08f25a6f31eac9b2c632a262282f91a

43esdm-netcdf-c commit 0c6e722, Accessed on 17 January 2023 : https://github.com/ESiWACE/
esdm-netcdf-c/tree/0c6e722221c09cefbfe5f0fd5984f4388de29a36

Section 6 Jakob Hördt 18

https://github.com/ESiWACE/esdm/tree/e49a9d9ed08f25a6f31eac9b2c632a262282f91a
https://github.com/ESiWACE/esdm/tree/e49a9d9ed08f25a6f31eac9b2c632a262282f91a
https://github.com/ESiWACE/esdm-netcdf-c/tree/0c6e722221c09cefbfe5f0fd5984f4388de29a36
https://github.com/ESiWACE/esdm-netcdf-c/tree/0c6e722221c09cefbfe5f0fd5984f4388de29a36

Exploring the Performance of NetCDF Writing Routines in t8code

marks. The results are shown in fig. 5, fig. 6, and fig. 7, where the focus is on comparing
ESDM with the default NetCDF implementation. All experiments show the ESDM back-
end consistently outperforming the default NetCDF implementation. File-per-process
comes out on top sometimes, but in fig. 7 it slows down at 64 nodes while ESDM through-
put still rises. File-per-process is not expected to bring performance improvements in
combination with ESDM since it implements a similar optimisation itself. Additionally,
by using file-per-process, ESDM is deprived of context and information that may be useful
to it. The impact can be observed in all experiments.

1 4 16 64
nodes

1

2

3

4

5

6

7

th
ro

ug
hp

ut
_B

/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE
file_per_process

esdm
False
True

Figure 5: Throughput over node count with five tasks per node in a strong scaling scenario
writing a forest roughly 85GB in size. Only the communication mode and whether ESDM
was used is differentiated. All other measurements are aggregated. The lines show the
mean and the error bands show the 95% confidence interval.

6.2 ESDM settings comparison

Figure 8, fig. 9, and fig. 10 show the three sets of benchmarks as before, but this time,
various settings in combination with the ESDM backend are compared. File-per-process
is left out, because it was deemed uninteresting due to the reasons mentioned above.

7 Discussion
As for recommendations to t8code users, I would strongly advise against collective IO in
combination with the chunked storage mode, since the performance is abysmal. Both col-
lective and independent IO work similarly well with the contiguous storage mode. From
these, I slightly prefer collective IO since it performs a bit better on large files in the realm

Section 7 Jakob Hördt 19

Exploring the Performance of NetCDF Writing Routines in t8code

1 5 10 20
tasks_per_node

1

2

3

4

5

6

7

th
ro

ug
hp

ut
_B

/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE
file_per_process

esdm
False
True

Figure 6: Throughput over tasks per node with on 16 nodes in a strong scaling scenario
writing a forest roughly 85GB in size. Only the communication mode and whether ESDM
was used is differentiated. All other measurements are aggregated. The lines show the
mean and the error bands show the 95% confidence interval.

of t8code use cases. That said, t8code’s defaults, contiguous and independent44, are per-
fectly fine. If possible, try using ESDM, since I measured up to five times speedup and
consistently better throughput at little labor investment. It is hard to give a recommen-
dation to ESDM users due to the inconsistent measurements but collective, contiguous
IO appears to be a good default with no large shortcomings.

The implemented file-per-process performs well for the tested parallelism sizes but
is probably unusable in its current form in practice, since it does not produce a single
accessible NetCDF file like the other options.

7.1 Issues

There are few repetitions and a sparse grid coverage in the benchmarks. They are hard
to produce due to their runtime and the amount of possible parameter combinations.
Conducting these kinds of benchmarks require careful planning and cannot be iterated
upon easily. In retrospect a higher tasks per node count in the weak scaling benchmarks
would have been more realistic and therefore made for more representative benchmarks.
This work also produced little data on chunked IO. Furthermore, the underlying hardware
limitations were not sufficiently investigated in this work.

The fact that during the weak scaling benchmarks, the written storage is only a hint
complicates the interpretation of the results. The throughput is accurately calculated,
but the problem size is only approximately proportional to the parallelism.

44t8code NetCDF defaults, Accessed on 29 January 2023 : https://github.com/DLR-AMR/t8code/
blob/fd2f70168672ccaf6abdb5a1a598d5a97aa03914/src/t8_forest/t8_forest_netcdf.cxx#L1246

Section 7 Jakob Hördt 20

https://github.com/DLR-AMR/t8code/blob/fd2f70168672ccaf6abdb5a1a598d5a97aa03914/src/t8_forest/t8_forest_netcdf.cxx#L1246
https://github.com/DLR-AMR/t8code/blob/fd2f70168672ccaf6abdb5a1a598d5a97aa03914/src/t8_forest/t8_forest_netcdf.cxx#L1246

Exploring the Performance of NetCDF Writing Routines in t8code

1 4 16 64
nodes

0

1

2

3

4

5

6

7
th

ro
ug

hp
ut

_B
/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE
file_per_process

esdm
False
True

Figure 7: Throughput over node count with five tasks per node in a weak scaling scenario
writing a forest between roughly 13GB and 845GB in size. Only the communication mode
and whether ESDM was used is differentiated. All other measurements are aggregated.
The lines show the mean and the error bands show the 95% confidence interval.

More realistic t8code scenarios as described in section 5.1 were not implemented. The
benchmarks were solely conducted with the Open MPI - MPI-IO implementation. There
are many MPI-IO implementations which may give different or better results. Not much
consideration went into the ESDM configuration file. Its performance impact in this work
is therefore not well understood.

8 Conclusion
In this work I successfully implemented file-per-process as an output mode in t8code,
a contribution that was merged into a feature branch of t8code. A small configurable
benchmark program and accompanying documentation was also accepted.

The custom benchmark suite t8cdfmark was realised as described in section 5, barring
the refinement models apart from pseudo-random. Its usefulness was demonstrated by
using it to produce the benchmarks in this work. To the best of my knowledge, a bench-
mark suit like t8cdfmark did not exist before this work. t8cdfmark is flexibly configurable
and extensible to represent a variety of use-cases surrounding t8code. t8cdfmark and all
created benchmark data is openly available.

The conducted benchmarks show the performance advantages of file-per-process IO as
well as the ESDM backend. For example, ESDM shows a roughly a five times speedup
out of the box over plain NetCDF when writing a 845GB forest on 64 nodes. File-per-
process output is shown to have similar performance advantages but does not produce the
information in a useful format. Furthermore, I show that NetCDF’s chunked IO should

Section 8 Jakob Hördt 21

Exploring the Performance of NetCDF Writing Routines in t8code

be avoided and t8code has good default NetCDF settings.
In future work, t8cdfmark may be improved with an improved understanding of com-

mon t8code and other use-cases. More benchmark data with different foci may be col-
lected, possibly on a different HPC cluster. If I understand correctly, the t8code team
works on reducing the written information directly. The UGRID conventions do not ex-
ploit the inherent SFC structure t8code employs. Currently, a cube element for example
occupies 268Bytes only for its metadata. Most of this overhead is due to the node coordi-
nates being stored explicitly, even though they could be derived from the tree structure.
Such optimizations will be explored by the t8code team in future work and may bring
large IO performance improvements.

Appendix

1 4 16 64
nodes

1

2

3

4

5

6

7

th
ro

ug
hp

ut
_B

/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE

storage_mode
NC_CONTIGUOUS
NC_CHUNKED

cmode
netcdf4_hdf5

Figure 8: Throughput over node count with five tasks per node in a strong scaling scenario
writing a forest roughly 85GB in size for various settings using ESDM. The lines show
the mean over three repetitions and the error bands show the 95% confidence interval.

The attached supplement includes all measurements presented here, the Jupyter note-
book used to create the plots, the ESDM config file, and supplemental scripts that may
be useful with the t8code benchmark CLI from section 3.2. For t8cdfmark, please visit
https://github.com/neoq/t8cdfmark. To get the supplement, save the following link’s
target as a .tar.gz file: supplement.tar.gz

Section 8 Jakob Hördt 22

https://github.com/neoq/t8cdfmark
data:application/gzip;base64,H4sIAAAAAAAAA+19a28j17Wlv6Z/BUcZJO1MVfV5P3KhO8B1nLnBBE6AcQYD2A2hSBa7eS2RAknZ3WP4v9+1DiWKVWSzHlS37VwxgVsiqVNV++yzz1r77Mf67vb2urqpFptXn32sl8DLW8t/pbdi/9+H12fSaC+0Nlr5z4SU3pjPRvaj3dHe6269KVej0WeLanl76nttn/9KX+vH+VeFlIVST68HHeffSWOEVxLzr6zRz/P/KV5H5n+9WS0Xb55QDXrMvxQG70sjrHqe/0/x+vD8r+9ubsrV+2Ky/v7Ma3CCHQz68flXDrPeWP9Oedh/8SRP2PL6Lz7/i+W0Wmebcv3d+uq2Wl3x92y9Wa7KN9XVDX+ZbP+7vLnZ/r64u7mqtipz9cN8XV19X67m5fgaw6yq22oz38yXi6ycbO7K66v5YrZc3ZR862r8foPvrKvJcjHFJd+ulndv3t7eba7+7dX6hcls9tUXV1/87auv//K//vG3f/yfbFFtJtOZuXo7naWP/vLVn778+5f4z1dfZ1JkIgvGeG9EUCFkAcprovLeRolPVdBGKGMLq6KFtr2QbtD4ACQh6GAyp4tgjVcWl8ikVgoK6qUorPNa2PDCDbt/JaK3wDqZtYWX2nrlJca30irnnTeFsNLjS7x/OUQ+xgTN8Z0vbLDRahEwkjIxBKVsLLQNIjqXxhcDLiCddjYoPIDHAyjhnFYYymABSwcjXiiL5wgcXw0Zf19ASjsBlGgCBIQJdh6TW4QQIa09Af37P77631/+qZ90FO/em+h0dBkQqBdOS8xIdMHBGHVQzi/+9te/fvnF13/5v18e0U1RANtKY6PB3GJGsclpFQr8AG3toppHRt9pptcFzal2LqoMIzrMspOq8AGSM10U88joO7F7gXVlNdTEWOiN0BC2dLFQwWgpXBe9PCaaB8EHWRgveDmLWRXaBSwnA9FojQ0hdlLLI+PvtNLbQooAXkHRKB21sgErGYtMG9NJKU8Jx7kCPynsXBGygXLiSsIXyigtNSb2tORn8+sqmdzb1XJSrde78aNQKmrvMuMKDBWlkZhnGWSM2B0lLhpg4XybVn5w/J1iKihm9BhT+czgKhYTbFQRsbggrFbF/OAFdrqJNSSgPVhCTmfQSgljjItgAlTwvlU3P3iB3QwAsEQlffBRWehqwG1DtWB1QCE6WM0Pi+hBQWWECXYBgETozJhkGzDJBRRMOtmunx+8wk5FpS6cFBG6KVSGy/DZgIoKroQY23W0g5BUAaMQgLJ4BecCURY3BFg3dURLJ920M8rCYt1qpXXIotIqGhUxKk3QMeU8PeyjUvpCphVEa6klMKFTuNFCxCDMdtH2G3mnjVj5ChssLKWGUISEyKOE5YdYAozQMXU8PfKjIbAUhQMqkBriDsEFYbF6AUJo0o7pYYs0djuTL4wzLuJ/NoNxweVg2GGUHbYof1T/To/8qHeuUFFKH9PuDevilYKqYxePSh23jR2lAY32AWbR6wjRYDKFCKB/BR5BqEezeGyjbtc6K4qosTWIZHTxKJA0NA4zG7Ax6Z3e9Rr9UfkklM9bB1OV6Yg1g3lwAXsI3o2Pqtdr8H1riMkL0nKlWwM46bkRYfkDgz1qX6/B94UuoHXOY51k0BgBfbRRFxaPYNRpeNRBDWlnYfy0gNR1sFoGIu1CSEyKsnt62Gv8R2U0BZajhflzUA8YQKggLohVBVnZPWUcLhww0CR8CCdCUuCjwAbeBW50dcl3tH8eO70D/o/AQRktOLQbW1BhoJ9RNRWxq/WzhdbQbY2fteaQUBTIwQsdoj7QwI6WT/rCRQME5CFrXExyC3CmIEg/ULyuq9xAm53QYBI+A6qSABJYi3zTHupbV3PnoLAwS5AhbH9Q0AijiIKMBWY+VLOutg5Shb0UykULJgGggwkE+oF449aKqh7D1gydIG8IMBdO2gDWABtaWOuttv0praypgleFDjCZDjwNQAcrG+jVJC6BxxjAaGWd0boCcqBh00T23pFZGQn1CzTdAxitrO+JgHlcK1h3gPYaOzo0mVRIQunsEEYr64wWJgnUUoMKkpFjdgWkD/QKwG9CN+pw7AI7pXECjNNEz00S2k4CJ/BABYFyDHYIpa1LyAZiS8AGh70dowOgWRhtYHJghi3+7kNp6+IBK8FUeikD1lCmjZf0gygsTwA2v7dRdqU+deUMHhPJ/TEImUWHKwJIxMJglSl/FKR1GP1RN00hiCDwfxA3aAzwifYBgMVFQPH+pLYueIykubRgX7GysIKd4e5DBwa4eehPauuiBzyDgjhsCETJGvhHEbKp5H4ZwmkbegnDKxQ2CMBBCoeW3HKvBCjCHj2A1TbU0pHdGBuFpd7zH2dh7Z3DEh7EamVt39SYRzCbyDnNgJhhMmEusRYkncRmCK2t66YMhQe0j5a7PS5ssJ9gaoHiSOUG0VrZBHIwapgBrN3MErdgBeOqwpNKDKK19SngzXpJJxHgCvQoQosAwawG6DKDWG1dQ8FqbYhcUwCLhmQfmuNh+4lgOmjoB69QY7UwCSIaWGcAXIuli40dxMAr0cHz0kFGsG9E5YAydM9iBcNuwjwHg03B9KG1sgnrAiANAKinSyoYUBcHgYGIQktVH2JbV0s8PdAs5hI/Qf+NJqvF5CrwrV6stqGMgZbYEYUB9UMngZuS+XRC9qK0B+IFXAalhTRJ4hQJric9hL4f3b1bxLDbmECnoBoQNlY/zAD37YhpA9DB+u/HaBs6Z2i4opAJ5REbOOu9gCLCcPUjtAeyCCJgDw2SsiB4BAiLgP/Q6gP60NMcGswfFwpsBx7dg+0rnn/CRtKZ3pvPNnQObNmDFcrgoB7EvwY2EOrB3XoAoW2onsFqg5kSAhAPphWkHHptwbUAxQBRe1PaAytI7yogpAK8xhqESYfg6AlSyventA09lFAM7DlAReAa9CeIAChfEDAFdYRr9LWAhKKRPlsPC2hhoIAkrQA9BE0wAyjtgU4aoCEaD0BtawJPRFyBvUIr1ZnR1lUxqMIJoHNsyekQDdbVGsJgCdDoOjPahgpyN4Zdwg6DR46UA/lFARIure/OaOuqpwzIGyyyiQndGgvGjMELzx0hdOe0DaFig8JAHqsECxPsGI8Rgy4IQc3hGVN3iwfUSpcGf4kK9gOcheZDwMCaHqy2oWEgxgFGE3cXs+S7xxKMQIfADsH1YLUHy07BaPAojG4SF6FmhJwgua3g7JCVqDqndaA8ATxW8zgJYBsabCx9nGCHbgipVYfEQcPCadCSRBwsVZuAGehjCKlVdVLL8ypcDtaI2BvLgr4UR0cQpngAp1U1TfHgIEEJWiNP8Rhyfi0KLyz2MzWE06o6d8DcAkmSWYH5QFCO/ju6MUigu3GHkwLiQSp+4fFISMfA1gvwZlhVbsx9KW1dOspKni5wj4H0eSbpQB0MzJOQUNjejPZANbkNC6xPnisJOlBBGwqPhQD16k9p65oJzkl3iAUV5CR67MU2bQfYgyCt/pS2oZieAFVj8MizSMtjVGyTBZZXaGcMHxDNTi3pnYXa4EGwqggAIR+YcFyfBxwDGG1dKy1soQ3Yw0ykIwTaCeqDN40j/h5AaBuywV4BxKBACKn02OECbBCPbGDqjR3CaFUdwsHqREjaS4H7jzzVhxrBOvOgolUvPzj+PqGNpPvSks8aMjfYH+gTPc6D+GxdN8FnAwdXWkIWOtk3Fz0P+b1uN5ofvEBtS7FQeFiekBEnQuethtnRGqtsEKGta6hkyACwImwmFgBeoLX0wgJCC1lIAA1/nFp0u84+rfVglx6MMLEiPArQNSGpFX7gYa1q4jrop2QUBIkzrJ0XIRLtcFvrQ2vrOorpBPCKMDciZjDGEByEAx3SdIX1YbV13VRQE2xRoJ/GZVoC+DPkChzARsioF69tKGUoyAgFeBAm02Euua1gpVFW/Q5rDySsGQriLTZZB12HGYDd5x3jkXox28b+BDOmMXNABOD4YOIA+gHU1kDGvudZbUPtgAsEyYQDl8BtY3MFI8eOooxzx3ftrsKwhQOQppI5urJA58C2sBU6z0PJvtS2rnMWaA9Yw8OWMGYLtlzSzhQOwDqa3tS2oXgyLRTsGtAP+uK8pE+0wFwIK0x/bntgEwFdIqZO2cyChBryQo2dxMDQ9Ke2BwYxKG4S2oIbBnqWAH/pGMF6789sG3ooC16LcXEGknE8BMB80kjJeIRu9LWBPDiCCqZIPAvBWBgmUC9t7o/oevLag9WpsDyNAqdx9E9G7EXAj5Zuys68tmH7QEExg5GRFFnA7Tq6QgpsnvSRdaWKB3YPOwGsP/b9DNZaevoSYuEIfVV3WtvQOr89lMNgPjOR96wt+QtmMPagtQ2ZygLYR4AmY9fC6oie8BN7sqO/qTutPTB3mBLsKNF6mjssRtgRKDFIqDC+B61t6BfIJn5IaIEHy0D52lDp6BGXPWhtQwimoPMLLNnSWQUTAZvnfWEhZW1f/Nxx2D/Xaz/+33ykBKAB+T9O+ef8j0/xOjb/P1Tld0+pBL3yf7TG/Gtrn/O/Psnrg/P/dOk/Lfk/kjkUzfwfIZ7zfz7J65eS/9PihDn0DQqm4QhrY5Au8DyAcY7aRQmMxPgIzcNgslyQ9SHZRValkFgFrMgcCwc+7iPeyLxMsTQCXMAp4L4hXmuAE8k4YcXoQUIp8FqwUCwLxrHLwDBfcF0PiKnd0Owi5sUIp5RX4BsMPiVSY6BX5qLVxoWUHYE70B2k38yD2Bc+UGu0EahP01kIeuSDCxGY2zHUa0D2zL7sDSOulKCbOtCzycwQw0Am2ApAuSHpMzXZ4w4LEQLToOhqSxEFDpJjDAkY0wDPbEP2PH9g6Lrk2VcWAW6Y6AJb6/w2+vAEk2wRPAOZeHTsGUqDNyAPqWMKwYzD0k/2R7cF/cmeEs8YgAlJ+Ui5KB4IDks/2Z9Z3iij0QRdwPRYJ7c4j3fBWQdmn9SmlqJIEaTaxMwCUwihQOKx1Lym43do/sn+wtKiUJ4jS+0yGgmDnS2qQoO9xGOTcCK2tLamwNmwqDQzINJxRGDcBUNhgz3mUj4x7L7MSa9hVSBuZrpBcwIsgrJYqzyXdT2zK+rSDjx9VpLH0phPQTooI5MgGM7dO7tiT8iKZ+lGk9JHmzE8kufegXBF0nE1IKWgtoqKoCwXOxkrrKIBItGqcFRD4wdkFNQELgrBwzUGwuIDzywWS6XRgESuv5equXPA9MIARBiUzDNKPEYZaG/U4JyCfe2GFrqgkipjX7I0BlbYULiYIjA6B47XtmomhaW8CmcpESi007A1yjAoqkfcfEOvXZB0RMXk8xLGOcaK0IgfEXNnnYY5kgxdiCmIg44NGXjuzvDCQy9gV4WWASIUyVGsmFZGby5wisAyxKbcfiR1uN/LuvEwRYiGoSAmgxY7bMwMa6MnUA8AQ7JutmVBTcM+T/+MZ9KG3J7CKhOORrK1Dl/fkHnoKlMUlGE2FSfQ4CMGoMowBAzJJhiCVRKG6Uj01NPRxBA0zTSDIOOxlLi2+Nma8G2BfwknsN0HbD2EQbFQtAKxNWvzyOA1NOQKmOkUS8nlqQVjvFUoGOAazVH73TZ83Z5YhQsEI5iijLsHiI6CucrOQjLtKZtHxm/slwxcSuHWTkhsmMChDEQtDMPdTieHtcg9QO6OHj9toTZWe0ZxarrCXYytEPd4XEwdDkHGQM7K+YwnpY4mPB1Sa56SDgr6bewU+NXBhhmmuQFtMZ0ehhFLLA7Lxm1MrvFU+2hAuT0Do0G2Na5SaAahDjvnbU5v9AWwFWbSBAZQMToQV+ZJsvDHYsdPxCTV1hTwPk+poDO4CHZOUDwjqDUShr4XHmoI3YC6KCudDDHTKZmVvqrCppOHo9TuxMg1aYNCOOaZ8/61TXQFVq1gjJY9KuyT8Vl7QjbMPwYE0tg2GG9A/zhoHPTTQ0baDghIrcMhWC8YXc2UfK4nLCSwOUXfnO9/ateQN5O/HSMXPHPOedKBTQM2h3Hc+1lN3YevC53ISjHYzkJQTCfEQ1mGIAaWKxgUkVrTb8uwS6IX6zARsANJPoCnsAGhR9xlQ7v59NhRLbVbEeobMCHvgYnsgci7qraFakPlcPvMJZQM/KV5B77wInSHRE0J42Ej0Ru2Hug1UL7j2VSB28ZCMv1CL5taDeMdPLkslNpacB3FY3lgWdcfEqmmj0IzRxOKDSTrFMB+JLp1KWhqSFzjvqyZgCxTOLEKIPx0rwDjFuDh1nXgsseGr2/LxjLK34LvKMjNSZA4UC1mPcMixoFxjXvSh8ph90kVAQRzogQwC/BpZP0GgKIu4m+GYNUwP4+HLY/TU6Q4hAKhY1tQwesB9VUawlcMedWw4jLdeppdHsXysG8/yr378HVAyrhoZj/jvmMqsQLtNAFo3UlGNQyL3dsTvmfsIcMAmcGIz0OQoDAGqM5BfOp0GEaL5KOGOccPgOlYVoZxzIpJpLyYPlr+ocOBfcNRAXlglTIOA2LDQ+mgfYEfWKVnWPRbAxfhF2bMBEAYzgodjAB76j5fZMD4dVgkWfwHAFQzk1lYz1IZrGSBjWpglZLGBJMfBdgZa4VixocG3cAkQ63ACHrBItWkGk4zaATiT2fzYP+SeWIsCHRM9CfGrYmcKYAAuiBeQEU8q5GWsbAwmua4zE8M3ISgLiS6y0x03LgjpI7M2gJV6h3VVXMSAbjIlLflM8ZdOdb3YKoL1bA/KGosI8adRfzOQALAIwVhq3QAEOKAQKaG64J5p8GDajFHxwJIeOb8S4CMAYioIXFtmEYeAGcNAwpZDgKXYxwjA9SGBTLtqzYYSiCEdtiQsHqisQzewTSbbUh854iVhmIz8I8AAIqNBwE81CzyAcBl+4TsNLB+ICt3whO5GIt1YrVlOSjrZZ+QnbpKq0ISrxG/QQAY3NObyCMRVsnoF7RTU2gmS7CelwOo0ExDd9Zgn5aeOUXuaUJW9s5/q/X05qMUAR4S/+HF8/n/p3g15//Ji79+1jP+QznWf1XiOf7jk7w+MP9PGP3RFv9BGHoQ/wGm+hz/8Slev+L4j1oKDkgCMw4s49hBDHxg7p9ljqXwoku1k5PlZcFf6cpjyVQAYrofDc+QC9ZMHHTmUa/PpEQhNcCeZXwJAwXAuhXdmyYVrDy7uqxipS5BipwgJgBEVMAQwLRilxkzRDwPocAa9N5KVioSPgOAhcjAP1SqJSScPpr60OUCu5hgCMh7ydQnjft3vG3H+l1SkrSdX12W6cQMmmCJLCBmbVNUGpCzBy8/rBDWVzVZ0N7JECyRIxAe1MjwkMioPd91n8K1u8ywSF4JpK2Sv51h08YyqJkM5TAKvZ9Ssuabsjy9Z8k31r+g+5PxVG25/W3iZvIaJzPSoWIYRo9VJAyrLChjz6zlawrWscJArCG2DVuxLA9NB5FqyX5o00PJDHsmI8WgM54aONJCsmVQoLbkh1ap0A3OioxWprPmyBLHYPNeetEaznM0CqlWNlHwqD14puKAgodUMIDlAVPJo/MqHNM8OhejNCxbRx8BTJlg/JCOsUOK4vHh9+tMsEgW80OZYeyVTcf6DCNwHfITj49eK7YjMKeggTFz0RtlNGwM+LcH8Tq3wrGmVrOIb6RpNJgDZv2DHTJP0XayjKcKHBumVtt0w/TT028rvNkGhfjYrUjZKeGoWKQTVVbKy1RwKWPT0DfGWMVWw3hKJZmRRMIvofOpfDLrx/LQDFuT3Qsb7D70Th+1LLBFW8wlpULnZ+T+xPPh4FqCblp0kWm9gc1qAkk5bLrBuoIZxmes79BqF08Kmx42ZpSK4LcmN2jLrQ8YRrWXOD+lhqz4pFNRbdYJwubAEl8upKJkrTlhLTrIfDNHUIGtnrE3knVejeF5gnJtlU7aRIKlz4I7PmX5sawDy2xHepf1sEP9g83ZsF4xK3HgNjGdeA6Hi/LYVj5FjW3LGvuRpeVTRU9JCJmqSgvt2uM12mt7wvYKaxTrJMPasEgbHgLYK/IUZFgxsoZ9jCzDo+kk45Eq6yE4RlEC4AktdKuB7FD1U0E5FZG0BdTwmB2WvZCFgwneVl44bSPbC4ACK2LpG4atRR5qp4p2muXbWSulQ3uCdjGlhwAnYF4kHwLXxd1rJp3RVTi8zrZjdCYWAIbzLC5tBTNGmaLLB+mXYl1XHRAYHtUEGF/evw2wxtowBUSG42UQTw+8X/GGgSUs1sG6Z0wlhinGlgp2745veqdH3gdgKV+WWwRADQM0eUheGJZA6u/kb4CkyE2fvwCBSfAw4GqeNElsfjGcXVuaUfJSp2qWmRbMmtesGsgwWVjPc6tLa8sYWfbIUKAZmtE9rB5beIlNu6XySocZZSCVwvoJiq5zyIMgDBxGAVcPySmuT6t22xmk54fBVZ483jEUDbtWbNlCOqxNydKhdMvTRkam/0bGYHrGdh6qTdeFKQlLfWAAC4sBCRYMZ50Fp5kMO7QCtC4sC9NHR2Nog8Aax0UKkBgBbDe4BDTXCJ4W+w4DV7CC6MUAbuHZTc9I1kfBYt58Op4RXOgqphkUPlWZrcPbfgWbXapIErRk6TfYvERcWN6LFTHM8IrNQCXOYov3qfJriMCfjC4teCRmhwSZ1AuopVppRMlWR5YM1jIx6AL7v3LqWO3ILsPvVMMxj501HzBYxgIQKe6bjRxS/N65FaGZ0g7F06QQTGknewtMyAAPku5oF4NOt7+jQoyd0jyPo7Joz9J4AM24qHyoDXVWwWYWyuLRMiAzLCCHBn/j+NgngxziJKoXRgNWtLBRgWUyiBVZxtKwtgBMlTudhNCmOFYVHDcFH2QSu1uqwccAEGaTnM5BaNMaliXxLHjCWnzBRloRRT2V4fDQs5fC0KYw4snS7QebErFxmlTCwFot+7qIGlXoUkwdFigMK5Ytg8Gg5FxfNsiWEhltisjaD6wQzOijjLVgWP48xU+S8XdgQyfVcFt+GKhHw3ZhjmHGsKR8gX+OluXrJRaVEt8Uhg42S0XsAfkNo2NhfNsJ0QHbatS+VYlLgPko1p/D7stiVmwd5ljM5sya4Qzwcyz9Bxuz7fyXpdQpogpACai+tp2s2KnS4Yol1WAPFfbNzDAo3kfFpka4SrdMylO1sVWKUcRGL+mHDkC1PlXi0iwOe27dcDAeurYstBA6AlE5xjYblrnHrXfzop8qHI6bZz6f01JCMQXzqBxTqyC8e2BxVt1w6j0YuvGWvmj2LZAw9rD52h9WJO2jlSyMAx1ywdLmsOQuox5TD6aU3NPL49KwjaZQIOVU9AwaBGpuWOwyhOBMWzRyiyKyZpNSrKMWU82mdOQpWGSQXUh6+okOypTyiAXABVoI28LWE9hcWRfL9XUTNSwjCzGz/ZeEdWGaCRgh9ybLdKq2mrgt6seGQ4E7Gz0hJPspZpMVlfBLbzfRgVmMLOKFDcjhxpmD7DQZkQ9JJMMSGx5VULIEdIodxuRlnhcOMUhGVtGldn7NelbJxXYEYsUN22DbC8Ay9Nmbe3417AI7dbSOBC5lIzAOlCDGe6ZQhgCb8wQ16+kF9FJg9acOQcACjCAuEsYb2CitAe+4r3rJ5pV0dXvL2tOWGdCp/cRT1JTXsYjM+2B7Ix7VAY6Bm7NmM9D7sc31ZHD7npcxAjlKhgyy+6YXLPHEXBBIBkgp9ktfqW2prOeaFi9wI1gBG2MCMhapWHk8mhx/euRHd4JMLTgYS52xTRDJUuRJiROqX5xmQ8Q8+rDMtU/Zq4pnxhi00FID1ByvJXp66H0/NOvvWfZPYm6zY5cMTGnwD7IYWgCeTn+WxgN4ZjxsYKS/ZK8BF86u/86Sws6xI1XU9CIY1kd2zB3ANw7aSPU1K6x16I0LvG9uyF7QJ6SZFn9u9XeMHVngUKTKj5YVN9ixsGD57ChaTkI6yJxFTwW4ofTsmEDIiHmGyQVUV20MoL0ot3YFAIX2VrF6GVtD4TGwG0nm3B0pXtbTWJF28rTC8lwOVpdYmqHZns4+M6Sj2YG1FXTvsWkAI9ctm1S45JOPPTqaNVgoACJIHA0U4L8DrHBguYI5IDHowQXgQdrYLIUuNyByx4YayvPcResoeuRmN9QP5pPEE3hCkwnRigCPp3KWRvdLQ9qTK2AUzx+C43kTI0E0a1izEkaM8rAnU4sM9nAVu86xxTPWCgQAYOLtNoC8T0m7hi3VBR3r3kjNO6c7nCVFCpbDj+ZYsdgOSUF7lgn65FiDkQEJ7BMmiElk6pfJ9g5n1oLnAmcNgHRwxXwsahx2AhZ/c6JTYZeTteDpiGD3PMtwb8P2qpF9aEFShO5wMPaB4fdXYCpTRqmzVyRoM8/2C8nawHaAs6xRXdEXySBh3Wg640CoWCuBeRmwJedXgidPZoOHKCxXJVUdSwlWi4k23WpunxYPsxoM2SxPO7AovdBsOajJ8w8SJXvpJVPUA7PG6SFnqTDLFHU2WVCamd793E6quWEKDUXHJpxOUxlyHygrYMHaYVuPwfcdrAAnqTAKtmNsNBHziwXF7VK11JRtkzcPxiS7gEjFNAxmuwKyOp4JGd07pOqgoCyxWQAtSeVXJO43OJWKPj00F+3j0joobow90bO9ks2YkuFY8pmhCda5/jFVB2Jhgi6RBDgnVhPDfJisCbX3XepsHCksv1/fGFslcw+Ztsd4NsZs8MgXZl4MSWtsRA6wUC2wm8EKSsYrRQ5hS4KNObcfQarii6tp1i2ydFRoHuWxtziQyrntCDg6OQ7UgzVe2H4DZosxA+A9opN1PNWQABsfM45YZlaxLQQ7lAjPHGQr7qsY9fSUNVQyFhQ768hg61CBecNQHR6M66jcAFfZQS1a9gSMsDI6Y+gMW1+lfrT0vp4+xm7RSbo6sYbwi2MWdSCxYFCVjZjp03SiTR+BXnlqzT70KcGObe8wE6kDTWw5v27TRmYfA3jKlB/J+s+prjcPF9mArae37KDEOR+dhlex+StrKnuWNEkdSXu6y+p6CGEzLyuG1DOEoY4aK5bHRIyS7WAYTykh3bXQP838a2B8A4IC2+jYoolHLn0dZg2hxO2pIdv6sAMgHoj9MViBxKhBDrPD0u8mlVZmzw2KA8ufEX8QPQ3A2T0xGLHNytCBUTHc4ui1MY4bLHPjnqApBqyVCWynrdlYjzUxmFCACYEhfoKeGKTPVrMVoEz0mSWlQjDF9ujvKZpVMKsAsJ3VGRyzCjzDcyMgJEyk62DEOjwDVVQy8QJLiyoK7hzY6YbHGMN7VZjAgyL6RNhvBmuKHWFMigeTYS+wonezCp6oKsA5CZCbGToQ2QVCsnP6Wa0qiNUBa2XQDGe3nn54JmpS0ud0qrBMAmaBFMuG8YalyPACnbbe634OrUObaIiAJFvRW9akhBF3TLLQe8RxYNsHHmaTjkqGKfAwG5aF3bYjS8+f25gB60axnxy2SiJ0RTqEzZMHw9IM6tt3sPcz2Rhiytj1AXBaCp26NTjZdnrbYcUoFgJjc0ommgQBQJGQC10CwXYvqddYMJI9+jzLaviMRS+CTQX+PTven9GLADaJEavKZkypgPljXHzQWDiHtQU7al5qVAxYgtVCs4c9ATsmWwHxKLJH3/gGQ9HsXRt4vmSTUrDYEowpeyKLPh32GroAFiJZt8HwxNRpwE162BibxFOfoa0IALMtgBm7n9JvE4mJBcM8FRuBfNpWBM38z6eu/c5Xv/xf5n/iZ/mc//spXkfn/0mzf9vyfxW7cx/Uf9fuOf/3U7x+xfm/9eKMyc9rAAdSaCFLG0oFtA4Mdux8tXXwRtE6Qb8IrT8DLqxnCLQt8KkwcoCjulFlFng3YBvUwEqJ/SrePui2YdnEp6j+7gJj8pyNBmIGMmB4gcH9BxBK0epuOCl4ehiZDQ2YnjGME/ujY/lr7JmxNYfrtNQ1D80DJO+Tv4HBEWwhLwXD9frnttZFzqQWprKlUpiKPeMdNvhCsJCiG5TeWqv3xL7b7EfoQH9NNOSMmuwxxkGpnHWJA9SxQr2JbDaZQroSWaW7vX+MXkPoLDseU/8dBi/STlsPtgCYGvUAp2ND7HTdW8DHwENLaCLkwQxmLczRAuHtmWI1oTsGyUNHQERBwwJIHRQcuuhFz8Kyzfrg7IbnTeqK7blj0eFbEFvL0DP87EDFDZeMc1RxKKNkDh0mWHAltfSwa5U1fQngLJH1ZHUA4oRVgQ5GaGKMfkCmYqMQpmO8v7GMcoW08D82tQZcNu2O9Q717wU7OSs2gGVTOBFdOhYoHEiPHOQ/aog+MpKTLkwm/rkQIvPEeabhmKLzFO0HHOt5C2VZ1DJjQI5NVWDxCMwLeJr2A5A4eHYEC7Isrsbm1yYyYleCBPZMOqsbGZb3Ziy9BsdJLR/YCV5iwoM5lshwYtxGUVKmczKvjxGX0ThrHOPIYQyON/M4MXCz3K6Knp4ontxb1sVjEPC2Hd1Z7Qckg7dT3gk2afp3GNfBEB1W29P9m2Q2JQ1DwgNAOkojj0mYQ8ikCOCAc5sPsMRmCpx1jBaXJmUVGJYNZV3Zc5sPwMIohobEbb5yZH8Nz/BZlwponN1+gCVQHDsfa8usZckQCgZfFdCa4A7cVB1VO7DWuBApF4w5rfhJOc9DWC3NAWTpqtewHJ4NajX3TeElz3ZgTshpwvD+A4x3whCOMZQQAN2VAp8VjN/UPfpBHsEn2M5EKrQGfGIxdQaWAyaXI5/bfiD1IndpdCbbYv6AJphcpJhdcWb7ASKUVDUSZo4VJJ1gFmxqvCmOZ8O2Dt8E49F6G1kHl5A8+Y65WWCTHlKJp1lB2rICpgz0UDEunD0lhGeMaZAituKUk3JPvQG0hj6zMoyDWjtIjb70WpXdrkM3LYkhPw+OAUz4h+VJJLtWad8eKN8i8hR2awlmCcaxEURWUQRnCUHo3mD8iMRZYMan4qsWmJDHf+QoDpvPsT2yLfK8ruvccpggl1pJeeUZM19YHhXbc7s9JAbrWf6adY9YGlsw0LJwjKoZUFblUNWTcdUxQTjsN1bwrJimYEDfq6bcgccjmBqDGID3sXmyuHSIqbRsS2/pFqHTCc2k7FTwmS5qvy15wLQr1zshpNkPQDG+hX5kCIZ1pgzL0zJ9uHc+SF3aNmWXG4iBzmSW+YKeu4KRrbI9W+60rBlZpbHTEChnPAhh+jfAYWqbNqjK80GJeuzoDGvhyQBprEt9Ehgfjg3qCbpf+AL8QUGzeS6A62JnskzRZgmxDna9Q+V6mivLtjhWK2BP+hhZBi0Fk0Ux7Ez3QOdZqkgwsBhCMyx/hH2JBxEMRTyjAQY0ntSQp1Ek/Y4RnsDjgVGN5pj4T4zbsDDaM9mJ3VgMNgyeMBoeUtl4PKX4xMB16EL3DWvZ4FdyW2udl9tsX8b5n9H/Qqb+HJ4ni7jnIDVLwijwRXoqzm9+IXmUJtJpMRteEd3CJNLDdXbzC7ARLh2paF2Y2YNdDjfODgR2QC+wQ3NOCevUuYNJfVDxADgOo44t6vzeFz415mZlRUZFgZcbAAvBLuCA0H1izhvN1xx4Kys8Z/TVigiWzGITVh6Uxuuq04bF3gxbxjMyHP9jw0VVbJNjDmM4O2u0LBjKhl0sgXE2Gki9l6jZuseB6IHt5kEtoAiPRTK2WaL51qz6EtPxbf845brlMHQmM1aZR8MAENjxwSAgEuEHoHHVROOCPhoMxdCHSJ8b6HHqgKU7tV443fgCqkAvtY2a/WLYZF4RyIGtSfa4PLvvBZkQkQSrxJMJgStLllcoROob2TtOua7a9HGyFxJPkhkaShAB8hqiln1z+g9KmcPmiRT+xHwCplUyn0CmcJH2WLzTQifrZPlBmiqyTiYu0AnMx2H9/wGByjU8blNsGLmVzaxhDIqm24BmfAAebwpdpl4dLIgJ7gnZcEdj/IZiHPR5nUZYiDAFSCj2oXSA5dgn8DhYuwzcPLvTSCrcB64MbYEFh4nx6SSrYNqm6KTtJ/uM0NIwsMWwIGbGMhmWZfJEEbHjyZ4+8qbYmbHKGhPQQ6fZ4lKxra6Sh/2LekmcKILhTp7VcOi1IqZiywGmffaOOW3STrZGdKypxeKpKXzNw3ap1AF0QNBpY7cEjMV9sq0w3aae3n36mXyHSjPtLRICMFrqhoybp3YwP5FMBd+B/XqCtivsIurYgo4ZoHS/E8ECTZC/HA+X63CFZispSaIMawAr5jQPQlguhxnhA/vRNWcBDIKBv2DoNrLRZtD0GGlmEvtwbBZOhPA0bDsdIGJrZgCeGe6OhWSiOlrn58SwDXVPMex0q2QmVSfS7LBB34WOZ3VeAR7HzWKXY2QbF08E7mKOgUh5iue0XoFep0x17EIMRjMgz06yyCG7ebUw/XZRu4Kp6szUTJW9YRWNjoxUJu7oX5RNNc8jVGTrFcm+scZCygD8tIiWr7O7r9C15Yj0BfmgUtTswI7jiqXCWg7hOik4D7Jl6lic6uSwrodgZTI2JBnYfcVRU1ghR6eC1QyTZ52QQO/QYRm8rqoNSXsh2Wg9STqEtA0VrCZ5X0ay67CHJ/mBZXB0OshnFLgGPAJTMUd8h5112vOcILJ1bqT3SrPHuguyoFOVvqCfO3DniV578V/lorx+v56vi/nt+8X4Ca/R0v8BvN2m+C9Nz6Dy7P/hrHyO//oUrx9fjC4m1fX1+uKPo29ejEb4fbR952rz/rbCuxeT5bS6yNL71btqcpeCuSbLu8UGny7urq+3n82n/DKjXiZ+WuVuPDO5CXGaj0U5zidRmEmYyFLph8Fuqk05LTcl/uzHn7ZvLe82t3ebdC+vt++sl3erSXV/c7zKze1ytRndlotpuR7h/7fTbxfbAXcfLu5ubt/zs8XtwWfrqhwvVwt+ul6sDz6+KTe318vN9Xxc3L7nT+kS15vHL+KvinW1udq8xap5ud68v64uv7344e18U71ZzaffXnx+wS++xn/SQx0R6E25+m66/OF+yAfBSTeTfqxzHa3NjZ7M8rH3ZV5GM1VlOVWTyhwR3PamNuWbrdD460/HJffb3474R6P5YlN+V7XeZK9ZN4YthKcqn+hqlhtXTfLSYNbtDJazZK3pEM6ZdYamXm1b04wuMeXFqiqnV5P19y+/vfhA2xpMxOOk7f39N9u/+PbiNUb6enVX7U3t8QuQVhdKtV3jyPB/Lq/Xe+MztvZwdHM/fDPytjY4Pzw1dHrAo+Mfjeo9FM7BBT4smslyMSk3L7/ZvpeN9oT7+vNjT/vwB3zn/uv8cf/LzW89DFdslvfPUV5fb+88my+m1bvLJICBa21amYpZB/lMTWGkxARGaqpULsezKoqxHKuZPG+tjWg7NvPFm2E3KMahjOOpz2EQqtxMylkeSjPOebqoPRBeGafnGoOtiIfdH4BQ5Zyx+dSNRW7GWubjMIl5BcnBxltVTcoz7++3SVFG38OKwwrz56c1WWwEqOW0xI0r6ICb6byculkeZ5UENlfaTY89QmeTtRVviqdeYxncW4edkahHXKcldzmyr5srrvH321+L6Wp5+3KyvL67WawvMdiHgq2xWEbfXtxHXG9/+XD09vbzg/vaW6TjEt9/jNtu3NU3tV9wJf6LAS4v5Ws+cC3eG+8XN+W7lwf2c/fn69uqmt7dcoDGJwcjvWrc2NMqSmljVZpY5bifSW6khrGY2JD7KdjSzE6VOw/R3D/d5nZxRE0ehEjtkO5QPfb/ir98TNV4uJcuGoFb+WbvxyN61VMttqMcKsX96J9WJYKfVQYoJ3fTqQRWm8YcBkPmwEC+Cm7M6N1e5q+zlnCo2np4FNRsjr24fHdJuFqs78bcgdb7kizfcX4AX6/ni4qfvtwfjT9n7y5305y9vzyUa/b2jmh3lwxCxXiAwFvokOEOynfHrrrG7r6pVk924evqTbWYbnFAxl2qWuEb/+/oLRCxv3yHO8Cd/v56+eb3Rz7dzCffYcnIjIE8mTOvP/Cd63JcXX/oi5iEYl1+X+FfYJb9idpTxqsEgfAst1hg6+WiuJ3OuvCGnvubVKaMMhfTyRgYx2Gnk0Hm0yhmbhbjxEwnH19HsTyfXkObtuTTq+rQO/hoOmuTC0u06+yRLx7VWUzcE2jscaY7nmoxK10+GQNBmgBcOx4bkZcsXScl9lR5LtMF/i5X5c3o8Y6H3Wrl7XhqostDcD5nUGteTqLJlfVVFfRkakp/7q3+dpTsw7AbZMJ2EAEcYRY1/jO1IArC5k5GQ3QyVpNzicL2Drsh8ONCrGYiOKNz6ctpzmwxiFN7kJmpE9bYmY7H2NYHbuiH1XxTjcrN6Ga53ozG1+Uo4ZnRfDFy4ma+79ORewnGo3979dKJPzix/vxS+e2LBd8DPmiXfT90MAM6UBXY5VSr3FQzmccyKPxaTmegnrKM6gkA4wEUaALwey5/uTU3r385SGFy/8Z6/v/563626S8VQDTl8Y62FFs/rvVNTZ2y2m+vt0Nlyf5icOjn6KYq13cr4uqaF+YXB1IWy2T1zzL1sarUtPLjXFXTAO4kJnlwOuazajxzsAZWhdh96S+WeLRq9Hb5w6h5gjN6W65H31er96MFv4JPEt9Z4OdyMR1RqPPFm/85GoOkYL6Xo+ty9aYaJYaDLw10I01DZcvZOJ9JuhAqMkMzc7kMNkzDROuy6kcDjhvfp/d9VKZM3ZBy3KLLWfkRO/AYj6DibDaZsUviWe7anhZq9LvRy8Yne+v09ei/XYJ9NmccOvls0v7JONFZtqZSY1OpsspVaekzhZkpoee5n1TR8GgliB4wI608gOBh9wJga1V0VS6AeXLjx+M8TKfjvJrNSjuZiOCns08Iy/qd4M3K8WxSilw4IXPmgOfBzGw+noTK6JLxb8es2pksse4t+ujQ5WwK+bEW/OAb+9VSy6fAGZ5dZ8UESjqG4jLOK8dtYWMes9BUnNjJ7Hye9jF2Yh+dEhM/zb2T49zE8TSPEThCzfR4zDYU0h7z0nyMxba3C2/f/7n24H+6tfmrXZpnr0s1ddOJUzo30wnjAqDZwXif67F2VWUjQPL43HNMnhcPxO9MiZ9Vk3xajUHUbQQ7mYpxzhjpoMVkYqf2F36K6WeymsgJGNUUpgMCtnmIweSTsVZmrGAWqxOgp91+ULi7M0j+8ss5e3y8tW/2fux/7lj7470Dptr7n/iAicXyw3hW5aUOWDxe+TzoKuQs2An0aKalOguDpWdLNu7xKc835LtRP+050lmX/RUwpscp+lge+TJEOS6dzqWULmdliHwsAfmD91PhZiqCtfSiTk/kfi8nbAuiLOBQxTCTicqDhIGOM1vGUk6j0CdiND7ga/8YsSR+WmnhJtg5BLY5HSZgS3GWT6bO+ZkNcaaO0b2zlmvd6D05YXqatfxUSOy/5hJ/CmZkpjM7GYMPiTFggZmGmMdyFvLKTFWcli6Up9j80SX09OtnPFbTKZZ3Hi3QmNEzmZeVneAmbZAT6aazeFYsVuf1Qw5Ue/9TcaDn5fbzL7c+a62Xek/BMYSSKvfYvcAzXMjHY+y2szB2vjShnE7FMPVOt/hixPebFOUCcl9AILfV5IG0XEzn69vr8v3VorxJT/H395u3y8VIj17Ob99vv//5/Y1cl4s3d1Aefu02fe3+g4e/3b6pLx6EtPuLRAV2l6Sgbuar1XKV9OORPz2MM98ffXTxfbVaQ5b4RO8Rq7ToqnebanH/4UVx+/5BZHM8+f20bPCdV+/yEzf88OYYvATXwqy/Y+B/tTr4yu37N2Qq66trzPBq71Yf7OXjrV6wb2DhLrazwXvGBbZ8CJ+a/d+vbuaLJUezL376JeQQ7eX/bAIn62pyPYdQyhu8fbWerOa3m/WZBcE71v8G6dGsifGZYJkc/Vz/+1O8us0/ltUKRB+Lbsg1Tud/CSWEfZh/q4T8jLbSmuf8r0/xekiLAlTZ4pkXuwyrzdvr+fjh1+Xug/X79YsXt6v5YvPyon/18L0S4fe+oYvPX8A0jh4/YCjPCptJ9VJ//scXv+GHWw8U3v8G2zreS2/WL5s+lenD9On+XaTPLmrJzUBNF49poRfbv0t/OHn8i/1sXP7B5Lpcr+eTh29vv/7waLuL7JW/eLjKrlIA32giyN1wv5nP7q9+efl4sRTA8HgVgNDDER4G+A0kupkv7qoX92/8sAQnmK+Yh7Odz+Lv+PflbDtzP6b//pTXJflj/defXv2Ybuqn/Md9meLX3U3hK4/T9xMmdHvxx6ei8/Pl/b28uljfTdJdf17M11d8lpef7x5gq1izix/vv/3TaFbiG9PdoI+PeP/7b6GQRfVuvnkpGxfeABngyWfXy3Lz8lHDi9Xd4uXF6g3A/Ndvq1H6VnVd3q6r6WizHG0DzDb4BNP/xZ/+nJvRn3EHo/n6j6OX34g8vv4f3xbbfz//9mKUQwd+/9/l70fr67vVTf4HzPCkvN3craqrLXK7ZCYV3vxhenn/TPjlbTX57v6D9VsAy/Tz58V6M8UfNR5jJ5LtbGXN+cnq85LdT1e2Nz/Z/vxgADwyp+nhOj+3EXp+/Wyvbvv/dXm3mLwduP237f9sqbPb/7VR3P+F08/7/6d49dj/X4wrKAEZ/dWW8/Lo5orfg5G9eMUfXm2Wr8Z38+vpq3sNerXdQl/t/hRadpUs7BU2z2q9udp+4eLFi/9Yjq/mUwz11XKB/esZE/xTYoLlurgpv6tw/fXL3XaI3RuasNzuiJ8/Png3yNB8Pjr50w4+X4+my2p79DpZrlbVZHP9fjS5rsrF6O42G/3wtlqkjZ4Pl3DAeoTttxj9dbn8jiHmsIjTGbV2BA1k2CngwWz+7v46j8uBD80ZAda4wLPfAS0Ac0xHW13JJ6PlbbW4uZ3/y2gN7DH68YML6adRLWYdavLV3/78l7/+dXQv7lFd3KM9cY9+97tRNXm7HMnRv95L619G07sRrp7n5e1tuYKNz+kZxO/j6+Xku/TLpRx9Ha6+vLf3XyXEc/X3x/DZYjH5w+hfH/7+6v7yjyP3HWk3wOqm/esX95Jej8vN5O2emL95mPuL7UcX2e6NPMetrinR2puc3Ust/ihE7W3ozhrUFgDrEntdfagZPk+L4fJ+TTQ+Sksix5JI37psLpH6t39YlbeXPx6ozE8Pj/j6UevvDeF8q7i0hjtVrwuiwLRUi+lLjj+t+COGf39ZzjYVbOX7P/64Helx8W1W7xtD0QNcB8b1S/QDsw/Xqd5Nqtv9TaX4orwGiP/79rcv6Q5kYY2qAfurewAMi8CfqtVqh/oxR+sHyL/bKfg32/vdIeefez99fj2/nl/Pr+fX8+v59fx6fj2/nl/Pr+fX8+v59fx6fj2/fkmv/wSROzXrABgBAA==

Exploring the Performance of NetCDF Writing Routines in t8code

1 5 10 20
tasks_per_node

2

3

4

5

6
th

ro
ug

hp
ut

_B
/s

1e9
comm_mode

NC_INDEPENDENT
NC_COLLECTIVE

storage_mode
NC_CONTIGUOUS
NC_CHUNKED

cmode
netcdf4_hdf5

Figure 9: Throughput over tasks per node on 16 nodes in a strong scaling scenario writing
a forest roughly 85GB in size for various settings using ESDM. The lines show the mean
over three repetitions and the error bands show the 95% confidence interval.

References
[22] NetCDF. Nov. 2022. doi: https://doi.org/10.5065/D6H70CW6.

[Beh+19] Babak Behzad et al. “Optimizing I/O Performance of HPC Applications with
Autotuning”. In: ACM Trans. Parallel Comput. 5.4 (Mar. 2019). issn: 2329-
4949. doi: 10.1145/3309205. url: https://doi.org/10.1145/3309205.

[Hol+22] Johannes Holke et al. t8code. Version 0.10.0. July 2022. url: https : / /
github.com/holke/t8code.

[Joh18] Johannes Holke. “Scalable Algorithms for Parallel Tree-based Adaptive Mesh
Refinement with General Element Types”. PhD thesis. Rheinische Friedrich-
Wilhelms-Universität Bonn, Dec. 2018. url: https://hdl.handle.net/20.
500.11811/7661.

[KP20] Julian M. Kunkel and Luciana R. Pedro. “Potential of I/O Aware Workflows
in Climate and Weather”. In: Supercomputing Frontiers and Innovations 7.2
(July 2020). doi: 10.14529/jsfi200203. url: https://superfri.org/
index.php/superfri/article/view/309.

[Li+03] Jianwei Li et al. “Parallel NetCDF: A High-Performance Scientific I/O In-
terface”. In: Proceedings of the 2003 ACM/IEEE Conference on Supercom-
puting. SC ’03. Phoenix, AZ, USA: Association for Computing Machinery,
2003, p. 39. isbn: 1581136951. doi: 10.1145/1048935.1050189. url: https:
//doi.org/10.1145/1048935.1050189.

Section 8 Jakob Hördt 23

https://doi.org/https://doi.org/10.5065/D6H70CW6
https://doi.org/10.1145/3309205
https://doi.org/10.1145/3309205
https://github.com/holke/t8code
https://github.com/holke/t8code
https://hdl.handle.net/20.500.11811/7661
https://hdl.handle.net/20.500.11811/7661
https://doi.org/10.14529/jsfi200203
https://superfri.org/index.php/superfri/article/view/309
https://superfri.org/index.php/superfri/article/view/309
https://doi.org/10.1145/1048935.1050189
https://doi.org/10.1145/1048935.1050189
https://doi.org/10.1145/1048935.1050189

Exploring the Performance of NetCDF Writing Routines in t8code

1 4 16 64
nodes

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

th
ro

ug
hp

ut
_B

/s

1e9

comm_mode
NC_INDEPENDENT
NC_COLLECTIVE

storage_mode
NC_CONTIGUOUS
NC_CHUNKED

cmode
netcdf4_hdf5

Figure 10: Throughput over node count with five tasks per node in a weak scaling scenario
writing a forest between roughly 13GB and 845 GB in size for various settings using
ESDM. The lines show the mean over three repetitions and the error bands show the
95% confidence interval.

[Mes09] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard Version 2.2. Sept. 2009. url: https://www.mpi-forum.org/docs/mpi-
2.2/mpi22-report.pdf.

Section Jakob Hördt 24

https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

	Contents
	List of Figures
	Listings
	List of Abbreviations
	Introduction
	Goals
	Contributions
	Outline

	Background
	t8code
	NetCDF
	ESDM

	t8code Contribution
	file-per-process mode
	Benchmark CLI

	Methodology
	SCC
	Benchmark configurations

	t8cdfmark
	CLI specification
	Benchmark orchestration
	Data collection

	Results
	Comparison with ESDM backend
	ESDM settings comparison

	Discussion
	Issues

	Conclusion
	References

