
SH

∞

Project Report

Improvement of the Benchmarking Tool
BenRun

Tim van den Berg

MatrNr: xxxxxxxxxxxxxx

Email: tim.vandenberg@stud.uni-goettingen.de

Supervisor: Marcus Boden, Jonathan Decker

Georg-August-Universität Göttingen
Institute of Computer Science

Contents

1 Introduction 1

2 BenRun: A Problem Analysis 1
2.1 Architecture of BenRun . 1

2.1.1 GitLab Pages . 1
2.1.2 GitLab Runner . 3

2.2 Problems with BenRun and Scope of the Project 4

3 Implementation 4
3.1 Installation of BenRun . 4
3.2 Convert Plotting to Python . 5
3.3 Integration of a new Benchmark in BenRun 6

3.3.1 Development of a small "Toy Benchmark" 6
3.3.2 Implementation of the Benchmark 7

4 Summary 7

References 8

A Appendix A1
A.1 Source Code . A1

i

Improvement of the Benchmarking Tool BenRun

1 Introduction
For Data Center operators, it is essential to know the performance of different systems in
the Data Center. In order to obtain such measurements, benchmarks are used. A bench-
mark uses a performance indicator to produce a representative, comparable value that
describes the performance of a system in a certain performance dimension. These values
can then be used to make business decisions, e.g. the values can be used to compare the
system to a competitive system to decide if it is worth the investment, or compare the
system to itself to detect when the performance of the system declines.
When monitoring a system like this, it would of course be nice, to do this in an automated
way. Therefore, the benchmarking automation tool BenRun was developed. BenRun can
run benchmarks on a system and represent the results in a visually pleasing website, that
is hosted via GitLab pages. From this website, new benchmarks can be triggered with a
mouse click. The results are displayed on the website which makes the usage convenient.
In this project, the BenRun tool was installed, and adding a new benchmark was simpli-
fied a lot with pulling the plotting logic from the JavaScript code of the website to the
preprocessing script in python. Lastly, as a proof of concept, an example "toy" bench-
mark was developed and added to BenRun.
This report will describe the general architecture and functionality of BenRun and its
different components in chapter 2. Moreover, possible areas of improvement will be de-
scribed and the scope of the project will be defined. In chapter 3 a description of the
implementation is given and lastly a summary and outlook is given in the last chapter.

2 BenRun: A Problem Analysis
2.1 Architecture of BenRun

BenRun consists of two git repositories. The benchmark repository holds the benchmarks,
scripts to run them, the documentation of BenRun and configuration files for the CI/CD
pipeline. The repository is called "bench-dlr" for the DLR benchmarks and the forked
repository is called BenRun-fork.
The benchmark repository contains a link to the results repository. Here, one can find
the results of the benchmarks, a config file for the CI/CD pipeline and scripts to process
the benchmark results into an html file.
From the results repository, a GitLab page is hosted, that can be used to interact with
the system. How this works in detail will be explained in the next sections.

2.1.1 GitLab Pages

GitLab pages are static websites that can be published directly from a GitLab reposi-
tory[Git22a]. In the case of BenRun, GitLab pages is used to provide a convenient place
to see all benchmark runs (see Figure 3), visualize the results of the individual runs (see
Figure 4) and submit new benchmark runs (see Figure 2) while needing relatively little
work to set up (see Figure 1). In theory, even somebody who has no idea how BenRun
works internally should be able to use the GitLab page, as it is essentially self-explanatory.
The GitLab page is regenerated every time a new result is pushed to the results repository.
This is done by running the python script mangle.py. This script builds an index.html

Section 2 Tim van den Berg 1

Improvement of the Benchmarking Tool BenRun

file, that is then provided to the GitLab pages instance.
When submitting a benchmark (see Figure 2), an http request is send to a GitLab runner
(see next section), that will run the respective shell script. This script can, for example,
start a slurm session in which the benchmark is run.

Figure 1: Settings page of the BenRun GitLab page.

Figure 2: Submission page for a new benchmark run in BenRun. The "PyPerformance"
entry is a drop down menu, where the respective benchmark can be chosen.

Section 2 Tim van den Berg 2

Improvement of the Benchmarking Tool BenRun

Figure 3: Table of the reports page in Benrun. One row represents a single benchmark
run. One can click on a run and get to the results page (see Figure 4)

Figure 4: The results page of a PyPerformance benchmark run (see Chapter 3.3). One
can click on STDOUT and STDERR to get the respective logs in plain text form.

2.1.2 GitLab Runner

A GitLab-runner is "an application that works with GitLab CI/CD to run jobs in a pi-
pline."[Git22b]. The GitLab Runner is an open-source GO program that has no require-
ments; it can run as a single binary[Git22c]. GitLab Runners support different operating
systems and can run inside of Docker Containers or be deployed in a Kubernetes Cluster.
In the case of BenRun, the GitLab runner has to run on a system from where it is able
to start slurm jobs on the system that shall be benchmarked.
When a client requests a benchmark run via the BenRun GUI, HTTP requests are sent to

Section 2 Tim van den Berg 3

Improvement of the Benchmarking Tool BenRun

the GitLab runner which is linked to this BenRun instance. It will then start the respec-
tive slurm jobs. These slurm jobs are described in the respective sbatch slurm scripts for
each different benchmark respectively in the benchmarks folder of the benchmark reposi-
tory.
Generally, there is a job and a postjob script. The most important task of the postjob
script is to commit and push the results of the benchmark to the result repository.

2.2 Problems with BenRun and Scope of the Project

Benruns most obvious problem is its dependence on GitLab, using the GitLab runner
and GitLab Pages. This should make it a lot easier to set up in comparison to other
architectures, however, if GitLab decides to make the use of GitLab runners a premium
feature, this is a problem. An independent solution could be produced, however as I am
not a web developer, this is not my area of expertise.
Furthermore, the documentation of BenRun is limited and the setup instructions could
be refined. The tool can run in the user space and does not need administrator privileges.
To test the installation process by a user, a large part of this project was dedicated to
installing the tool using my user account.
Furthermore, including a new benchmark should, in the best case, be effortless. To test
this, a PyPerformance benchmark was constructed and included in BenRun. PyPerfor-
mance is python library to compare the performance between different python versions
against each other[22b]. The benchmark will be shown in detail in the next chapter.
The main problem, that was tackled with this project was the procedure for plotting
the results. The mangle.py script extracts the data from the results directory. It then
writes the data as a string directly into the JavaScript included in the index.html file.
When viewing the data, JavaScript generates the plots on the fly. Therefore, the scripts
are currently limited to one specific kind of line plot. Furthermore, when integrating a
new benchmark into BenRun, one has to change the Python code in mangle.py and the
JavaScript and CSS code in index.html. It is therefore not trivial to integrate a new
benchmark, as the user has to bring a broad skill set. Different possibilities to simplify
this approach were analyzed and the resulting solution will be presented in the following
chapter.

3 Implementation
3.1 Installation of BenRun

In this part of the project, BenRun was successfully installed in the user space. This part
of the project took far longer, than expected as a few problems appeared. The installa-
tion was necessary for all further tasks and blocked the project for some time, which was
frustrating. In the following some problems and possible solutions are discussed.
One major problem was GitLabs recent decision to rename the default branch from master
to main[Git21]. When forking the repository, the branch name was no longer master, but
main. This led to many problems with BenRun. The solution was to fix BenRun locally.
However, it would probably have saved a lot of debugging time to just rename the branch
to master. Here, the problem was that the repositories were not forked properly. This was

Section 3 Tim van den Berg 4

Improvement of the Benchmarking Tool BenRun

in part due to the fact, that the original repository is hosted in the "Community Edition"
instance of the GWDG GitLab instance (https://gitlab-ce.gwdg.de/) whereas the
fork was hosted in the "Ultimate" instance https://gitlab.gwdg.de/. Instead of using
the "fork" button in Gitlab, the repository was cloned, the .git directory deleted and then
reinitialized in the other gitlab instance. This led to the switch from "master" to "main"
branch. In hindsight, it should have been possible to use the community edition as no
features of the ultimate version were needed. A lot of work could have been prevented.
Furthermore, when forking the repositories, they were renamed to allow differentiation
between the forked and the original repositories. This led to further problems, as the orig-
inal repository name "bench-dlr" was hard coded at several places in the code. It would
probably be a good idea to include the repository name in a configuration file. In some
cases it is not possible to retrieve the repository path via "git rev-parse –show-toplevel"
as the results repository is referenced from the benchmark repository.
Moreover, some problems regarding Spack occurred[22a]. Spack is used to install the re-
quired software to run certain benchmarks. This installation process took several hours
and failed in the end. After a few tries, it worked on a different server.
Overall, the installation of BenRun only succeeded because Michael Langfermann, the
main developer and initializer of BenRun, helped a lot. This was necessary, because the
documentation is sparse and does not provide a lot of details. For a professional system
administrator the documentation is maybe sufficient, however, it could be more specific,
i.e. the documentation just states that the results repository has to be linked to the
benchmark repository, it does not provide instructions on how to do this. Furthermore,
there are some errors in the documentation. The installation would have been a good
opportunity to repair the documentation. However, we were busy fixing bugs and simply
forgot. This is something I learned for the future: good documentation is worth every
minute, as it will save a lot of time in the future.

3.2 Convert Plotting to Python

The major goal of this project was to change BenRun in such a way, that python plots
would be possible to use.
In the results repository, the mangle.py script is run to combine the data and write it as
a json string into the index.html file. Here, JavaScript is used to generate the plots. This
is not user friendly, as somebody who wants to insert a new benchmark into BenRun has
to understand and adapt the mangle.py script and the index.html file. This is further
complicated, as no documentation exists detailing how these files work. There is not a
single comment in the code, leaving the user without help.
The basic idea of this part of the project was to change the index.html file in a way, that
it does not generate the plots, but instead shows their already generated SVG represen-
tation. This way, users can use the programming language of their choice to plot the
graphs.
As I had no experience with HTML, CSS or JavaScript, it was a challenge to understand
the index.html. The solution I came up with was to just use the HTML tag,
including some padding. There is surely a more elegant solution; however, due to my in-
experience this solution has to suffice for the time being. The 118 lines of JavaScript code
used to create a line plot were deleted. There is probably some CSS that can be deleted
as well, but I did not understand all of the CSS and did not want to break anything.

Section 3 Tim van den Berg 5

https://gitlab-ce.gwdg.de/
https://gitlab.gwdg.de/

Improvement of the Benchmarking Tool BenRun

The mangle.py script was refactored and the lineplot creation and storage as an SVG file
in the newly created assets directory was implemented. Writing data into the index.html
file could not be avoided, as some pages of the BenRun GUI need metadata on the bench-
marks and the plots itselves are not sufficient (see Figure 3).
Overall, the new situation is much more convenient for a user, who wants to include new
benchmarks in BenRun. However, one functionality was lost due to the switch to static
SVG images. Before, it was possible to hover over the plots and the data points would
high light. Using the new architecture, this is no longer possible. In theory, one could
have produced much more interactive plots using JavaScript. However, this comes at the
penalty of a lot more work to display static simple plots. To achieve similar possibilities
using Python, PyScript could be used. PyScript is a framework, that allows the execution
of Python (including libraries!) in the browser[PyS22].
It was not clear to me at the time, but one main reason for the creation of BenRun was
to have everything in a single HTML file. This way, the results are portable and archive-
able. Nevertheless, pulling the plotting out of the html file is a good idea. Changing the
mangle.py script to insert the SVG data into the dictionary instead of paths to the files
should be an easy change.

3.3 Integration of a new Benchmark in BenRun

3.3.1 Development of a small "Toy Benchmark"

As a proof of concept, a small "toy benchmark" was developed using the PyPerformance
library. The benchmark measures the startup times of python using different file systems.
This works by using local conda environments on the different file systems. The bench-
mark does not provide a lot of information. One can see, that in contrast to the other file
systems, the scratch file systems are not cached and have therefore longer startup times.

Figure 5: Startup times of python on the scientific compute cluster using different file
systems. python_startup_no_site does not load site specific files and is therefore faster.
One can see that the scratch file systems are slower and the variance of measured startup
times is higher. This is due to the fact that scratch is not cached, in contrast to the other
file systems.

However, one has to point out, that the startup times of the first few startups are ig-
nored, this leads to cached startup times, that do not necessarily represent a real world
application, e.g. starting python 16 times before actually using it is not typical behavior.

Section 3 Tim van den Berg 6

Improvement of the Benchmarking Tool BenRun

Nevertheless, since this is just a proof of concept, this can be ignored.
One goal of this proof of concept was to show that even exotic libraries can be used for
benchmarking and plotting. Therefore, seaborn was used to plot the graphs shown in
figure 5 and pyperformance was used for the benchmark.

3.3.2 Implementation of the Benchmark

A job.sh and postjob.sh sbatch file were created for the benchmark using the existing
benchmarks as a blueprint.
To be able to use the respective plotting libraries, installation commands were added to
the before_script section in the .gitlab-ci.yml file in the results repository.
The logic for generating and saving the plots was added to the mangle.py script. The
resulting page can be seen in Figure 5.

4 Summary
With this project, a few goals were reached. The benchmarking automation platform Ben-
Run was installed using a user account. Here, some problems were encountered. These
problems were mainly caused by bad documentation and hard coded links within the code.
This lead to problems when changing the name of the repositories and forking them not
correctly.
Secondly, the main part of this project was to enable the usage of Python for the plots of
BenRun. Here, the plotting logic was moved from the index.html (JavaScript) to man-
gle.py. Mangle.py was refactored and has now better code quality as before. As I hold no
expertise in JavaScript, HTML and CSS, only small changes were made to the index.html
file. The current solution saves the generated SVG files in an assets folder. However, I
learned later, that having everything in one file is a key feature of BenRun. This problem
should be easily repairable by inlining the SVGs.
Lastly, as a proof of concept, a new benchmark was appended to BenRun.
In future work, one could add an automatic comparison feature to BenRun. As of now,
BenRun only starts benchmarks and shows their results. However, one can only see one
benchmark run at a time. It would be convenient and a selling point to combine plots of
different runs, given the use case of BenRun.
As it is possible to schedule automatic benchmark runs with the GitLab CI/CD function-
alities, an automated alarm system for system misbehavior could be implemented using
BenRun.
Furthermore, the installation process must be simplified and the documentation updated
in order for people to use BenRun.
However, BenRun could become an important tool as it is intuitive to use after the initial
setup. This is proven by the usage of BenRun by the GWDG to try to minimize energy
usage until November 1st to cut the energy bill. Hopefully some parts of the presented
work can be useful in this endeavour, and it succeeds.

Section 4 Tim van den Berg 7

Improvement of the Benchmarking Tool BenRun

References
[22a] Spack Documentation. 2022. url: https: / /spack .readthedocs. io/ en/

latest/.

[22b] The Python Performance Benchmark suite. 2022. url: https://pyperformance.
readthedocs.io/.

[Git21] GitLab. The new git default branch name. Mar. 2021. url: https://about.
gitlab.com/blog/2021/03/10/new-git-default-branch-name/.

[Git22a] GitLab.org. Gitlab pages documentation. 2022. url: https://docs.gitlab.
com/ee/user/project/pages/.

[Git22b] GitLab.org. Gitlab Runner Docs. 2022. url: https://docs.gitlab.com/
runner/.

[Git22c] GitLab.org. Gitlab Runner Repository. 2022. url: https: / /gitlab. com /
gitlab-org/gitlab-runner.

[PyS22] Anaconda PyScript. 2022. url: https://pyscript.net/.

Section Tim van den Berg 8

https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://pyperformance.readthedocs.io/
https://pyperformance.readthedocs.io/
https://about.gitlab.com/blog/2021/03/10/new-git-default-branch-name/
https://about.gitlab.com/blog/2021/03/10/new-git-default-branch-name/
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/ee/user/project/pages/
https://docs.gitlab.com/runner/
https://docs.gitlab.com/runner/
https://gitlab.com/gitlab-org/gitlab-runner
https://gitlab.com/gitlab-org/gitlab-runner
https://pyscript.net/

Improvement of the Benchmarking Tool BenRun

A Appendix
A.1 Source Code

The original Source Code of Benrun can be found at https://gitlab-ce.gwdg.de/
hpc-team/bench-dlr and https://gitlab-ce.gwdg.de/hpc-team/scc/bench-dlr-results.
The changed fork can be found at https://gitlab.gwdg.de/tim.vandenberg/benrun-fork
and https://gitlab.gwdg.de/tim.vandenberg/benrun-fork-results. Since these repos-
itories are not public, access has to be granted. If you are interested, please ask.

Section A Tim van den Berg A1

https://gitlab-ce.gwdg.de/hpc-team/bench-dlr
https://gitlab-ce.gwdg.de/hpc-team/bench-dlr
https://gitlab-ce.gwdg.de/hpc-team/scc/bench-dlr-results
https://gitlab.gwdg.de/tim.vandenberg/benrun-fork
https://gitlab.gwdg.de/tim.vandenberg/benrun-fork-results

	Contents
	Introduction
	BenRun: A Problem Analysis
	Architecture of BenRun
	GitLab Pages
	GitLab Runner

	Problems with BenRun and Scope of the Project

	Implementation
	Installation of BenRun
	Convert Plotting to Python
	Integration of a new Benchmark in BenRun
	Development of a small "Toy Benchmark"
	Implementation of the Benchmark

	Summary
	References
	Appendix
	Source Code

