
Mrut - An Interface between Munin
and the PIOSimHD Tool Suite

Alexander Njemz
8njemz@informatik.uni-hamburg.de

Contents

1 Introduction 1
1.1 Munin . 1
1.2 Munin Plugins . 1

1.2.1 Wildcard Plugins . 2
1.3 RRDtool . 2
1.4 goals . 3

2 Implementation 5
2.1 Concept . 5
2.2 Architecture . 6
2.3 Usage . 7

2.3.1 Installation . 7

3 Summary 11
3.1 Conclusion . 11
3.2 Outlook . 11

Bibliography 13

iii

1 Introduction

The objective of this project is to provide a working prototype implementation to
trace resource utilization using Munin.

1.1 Munin

Munin [Devb] is a resource monitoring framework. It supports a wide range of
plugins which makes it attractive for this project. Munin itself is written in Perl.
The plugins are either written in Perl as well or are shell scripts. Munin can be
used in a network setting, it is implemented as a client-server architecture. In a
typical scenario there are several nodes which are to be monitored. These nodes
run the program munin-node. munin-node is a so called daemon. A daemon is
a program that runs as a background process, typically not spawned by the user
explicitly but rather by e.g. an init script.

These munin-node instances periodically collect information about the machine
on which munin-node is run. Configuration happens by way of a required munin-node.conf
file and optionally additional munin-node behaviour files, which are put in the
plugin.conf.d directory.

In addition to the several nodes running munin-node there is a monitoring server
which runs a program called munin.

1.2 Munin Plugins

Munin Plugins are quite numerous. For example, the directory for the munin
plugins on our system contains contains 235 plugins. This is the default package
installed using the system package manager. For reference, our system is running
Fedora Linux 16. Plugins written to be distributed alongside munin are expected
to generate useful output when called with the config option. Output values are
divided into global attributes and data source attributes.

Some notable global attributes are: graph_title and graph_vlabel. The graph_title
attribute is used as the title for the graph generated by the RRDTool. The
graph_vlabel specifies the label for the y-axis in the generated graph.

Data source attributes pertain to so called fieldnames. For example, the cpu
plugin uses fieldnames such as system, user, iowait etc. Interesting data source

1

1 Introduction

attributes are: label, type, min and max. label supplies the name of the data
source. type specifies the type (see below) of the data source. The attributes min
and max specify the minimum value, respectively the maximu value, allowed for a
data source.

1.2.1 Wildcard Plugins

So called wildcard plugins are just like ordinary plugins but have to be configured
before use, by executing munin-node-configure –shell, which generates the nec-
essary commands for creating symlinks. The names of wildcard plugins end in ’_’.
For example, there is the if_ plugin used to monitor the network interfaces avail-
able on the system. For each network interface the above command generates a
symlink from if_ to e.g. if_eth1 etc.

1.3 RRDtool

RRDtool [Devc] is a graphing and logging framework, it is written in C. ‘RRD’
stands for "Round Robin Database".
We may quote the explanation for the different data source types straight from

the rrdtool documentation.

GAUGE

is for things like temperatures or number of people in a room or the
value of a RedHat share.

COUNTER

is for continuous incrementing coutners like hte ifInOctets
counter in a router.

DERIVE

will store the derivative of the line going forme the last to
the current value of the data source. jThis can be useful
for gauges, for example, to measure the rate of people enter-
ing or leaving a room. Internally, derive works exactly like
COUNTER but without overflow checks. So if your counter
does not reset at 32 or 64 bit you might ant ot use DERIVE
and combine it with a MIN value of 0.

2

1.4 goals

ABSOLUTE

is for counters which get reset upon reading. This is used for
fast counters which tend to overflow. So instead of reading
them normally you reset them after every read to make sure
you have a maximum time available before the next overflow.

1.4 goals

This project aims to provide a library interface to use munin plugins
from C code. The code structure as well as basic usage instructions are
described in the next chapter.

3

2 Implementation

In this chapter we will describe firstly the high level concept for the pro-
gram to be implemented. Next, we will look at the software architecture,
i.e. how the functionality sketched in the first part is implemented. And
finally, we will describe comprehensively how to use the program.

2.1 Concept

The basic requirements for our tracing software may be stated as follows.
It should be possible:

• to provide configuration settings for the tracer in a file

• to provide configuration settings programmatically

• to enable/disable tracing selectively during program runs

The last two points provide the ability to use the tracer not only as a
standalone program but also as a library.

A sample program run, eschewing rigor, may be described as follows.
First the configuration file is parsed. The configuration file contains
entries comprising the absolute path to a plugin and a so called timestep,
determinig the time delta between two subsequent collections of the
information obtained through the plugin.

The tracer remembers these configuration data.

Next, the tracer runs the specified plugins with the config flag and
parses the output to set up its internal data structures for storing the
information obtained during plugin runs.

Now the tracer may perform its function. Typically, the trace data
are output in the format of the HDTraceWritingCLibrary. There are
functions for writing output to stdout as well as to files, which is the
default mode of operation. In the next section we will look at the
implementation details of the tracer.

5

2 Implementation

2.2 Architecture

The main operations performed by the tracer may be put under three
headings: parsing, spawning external processes, and threading.

Parsing There are three different parsing tasks. The parsing of the
configuration file for the tracer, the parsing of the config output of the
individual plugins, and the parsing of the actual plugin output.

For all of these tasks we use the functions from the Lexical Scanner
from GLib [Deva] which is a cross-platform utility library maintained
by the Gnome foundation.

The configuration file, as mentioned already, consists of entries compris-
ing the absolute path of the plugin to spawn and the timestep, which
gives the delay between subsequent runs of the respective plugin. Lines
beginning with a # character are treated as comments. The path and
the timestep may be separated by any number of tabs or spaces. Here
is an example configuration file:

/other/mrut/lib/munin/plugins/cpu 1.37
/other/mrut/lib/munin/plugins/memory 2.86

The timestep value is supplied in seconds.

The information obtained by parsing the configuration file is kept in the
following data structure.

struct plugin_info {
long timestamp;
long timestep;
gchar* filename;
gchar* graph_title;
gchar* unit;
GArray *values;
hdStatsGroup *stats_group;

}

The timestep field and the filename fields keep the aforementioned
parsed info. The timestamp is used to track the time when the plugin
was last executed. The value for the graph_title and unit fields is
obtained executing the plugin with the config option. The unit field
keeps the value of the attribute graph_vlabel. The array values is

6

2.3 Usage

used to store the actual plugin output values during plugin runs. The
stats_group field keeps the reference for the value of the stats group
for the HDTraceFile.

This is the central data structure for the tracer.

struct mrut {
GArray *infos;
pthread_t worker;
pthread_cond_t cond;
pthread_mutex_t mutex;
hdTopoNode *topoNode;
gboolean done;
GError **error;

};

infos simply keeps an array of plugin_info structs. The topoNode
member keeps a reference to the topoNode.

2.3 Usage

In this section we are going to describe, first of all, the installation,
next configuring and running the program and, last, how to visualize
the resulting output using HDJumpshot.

2.3.1 Installation

The installation instructions given have been tested on a Linux system
but should apply equally to other Unix-like operating systems.

As a dependency the HDTraceWritingCLibrary needs to be installed
first. It is assumed that this step has been completed successfully. In-
structions of how to install PIOsimHD and its subprojects can be ob-
tained from http://redmine.wr.informatik.uni-hamburg.de/projects/
piosimhd.

We will suppose that the HDTraceWritingCLibrary is installed in
/opt/lib/HDTraceWritingCLibrary

The first step to configure the package is:

[user@linux: mrut]$./waf configure \
--with-hdtrace=/opt/lib/HDTraceWritingCLibrary/

7

http://redmine.wr.informatik.uni-hamburg.de/projects/piosimhd
http://redmine.wr.informatik.uni-hamburg.de/projects/piosimhd

2 Implementation

Please note that is advisable to choose a sensible prefix. The default is
/usr/local/ which may not be what you want. If no errors occurred
the output should be similar to the following.

Check for program gcc or cc : /usr/bin/gcc
Check for program cpp : /usr/bin/cpp
Check for program ar : /usr/bin/ar
Check for program ranlib : /usr/bin/ranlib
Checking for library pthread : ok
Checking for glib-2.0 >= 2.16 : ok
Checking for library hdTracing : ok
’configure’ finished successfully (0.285s)

The next step is to run:

[user@hostname mrut]$./waf install

Note that we assume that the installation directory is writable by the
current user. If not, the command is to be executed using sudo or as
the user root

The output should be as follows:

Waf: Entering directory ‘/home/user/build/mrut/build’

entering generate conf dir

/opt/mrut
[1/4] cc: src/mrut.c -> build/default/src/mrut_1.o
../src/mrut.c: In function ’helper’:
../src/mrut.c:1000:25: warning: initialization from incompatibl
e pointer type [enabled by default]
[3/4] static_link: build/default/src/mrut_1.o -> build/default/
src/libhdMrut.a
[4/4] cc_link: build/default/tools/mrut-tracer_1.o -> build/def
ault/tools/mrut-tracer
* installing include/mrut.h as /opt/mrut/include/mrut.h
* installing munin/lib/plugins/plugin.sh as /opt/mrut/lib/munin
/plugins/plugin.sh
* installing munin/lib/plugins/cpu as /opt/mrut/lib/munin/plugi
ns/cpu
* installing munin/lib/plugins/cpuspeed as /opt/mrut/lib/munin/

8

2.3 Usage

plugins/cpuspeed
* installing munin/lib/plugins/memory as /opt/mrut/lib/munin/pl
ugins/memory
* installing build/default/src/libhdMrut.a as /opt/mrut/lib/lib
hdMrut.a
* installing build/default/tools/mrut-tracer as /opt/mrut/bin/m
rut-tracer
Waf: Leaving directory ‘/home/user/build/mrut/build’
’install’ finished successfully (0.303s)

If everything went well, we’re now ready to run mrut-tracer. First,
however, we have to write a config file. The format of the config is as
specified above.

The configuration file might look as follows.

/other/mrut/lib/munin/plugins/cpu 1.37
/other/mrut/lib/munin/plugins/memory 2.86

Before we can run mrut-tracer the environment variable MUNIN_LIBDIR
needs to be set. It has to point to the install directory of the munin plu-
gins, since the plugins rely on a file named plugin.sh, which contains
utility functions plugins may use. This is accomplished by the following
command:

[user@hostname ~]$ export MUNIN_LIBDIR=/opt/mrut/lib/munin/plug
ins/

If mrut-tracer is in our path, we may invoke it simply by:

[user@hostname ~]$ mrut-tracer <path-to-configuration-file>

if not, we might have to give the full path:

[user@hostname ~] /opt/mrut/bin/mrut-tracer <path-to-configurat
ion-file>

Note, that if the trace writing library is installed in a non-standard loca-
tion it might be necessary to modify the environment variable LD_LIBRARY_PATH.

Provided that no errors occurred while running mrut-tracer the output
should look similar to the following:

9

2 Implementation

==
file: /other/build/mrut/lib/munin/plugins/cpu
graph_title: CPU_usage
unit: %
vals:
internal: system human readable: system
min: 0 max: -1 type: TYPE_DERIVE
internal: user human readable: user
min: 0 max: -1 type: TYPE_DERIVE
internal: nice human readable: nice
min: 0 max: -1 type: TYPE_DERIVE
internal: idle human readable: idle
min: 0 max: -1 type: TYPE_DERIVE
internal: iowait human readable: iowait
min: 0 max: -1 type: TYPE_DERIVE
internal: irq human readable: irq
min: 0 max: -1 type: TYPE_DERIVE
internal: softirq human readable: softirq
min: 0 max: -1 type: TYPE_DERIVE
internal: steal human readable: steal
min: 0 max: -1 type: TYPE_DERIVE
internal: guest human readable: guest
min: 0 max: -1 type: TYPE_DERIVE
--
==

After the run of the tracer there are files generated in the directory
where mrut-tracer is executed with the file extension .proj. These
can be used for visualization using HDJumpShot.

10

3 Summary

3.1 Conclusion

The basic objectives as stated have been achieved. However, there are
a few fundamental problems, which impede usability.

The first of which shouldn’t be too hard to solve in praxis. Currently
overflow isn’t handled. Recall that munin works in conjunction with
RRDTool. In RRD everything is stored internally as type double. The
largest representable value for a double (IEEE 64-bit, that is) is roughly
1.7976931348623157 ∗ 10308. So if an integer counter overflows one can
simply add the maximum integer to the stored value. In our solution
this is not feasible, since we’re storing the values in the appropiate value
for HDTrace file format. There’s no easy way to simply store everything
as a double and supply some sort of conversion function.

The second problem is related to the first one. Munin plugins don’t
have a notion of data types one could map to C data types in a straight
forward way. As mentioned, there is a graph_vlabel field. But this is
mostly useful for a person interpreting the graphs generated by munin.
There’s no apparent way to emulate this interpretation in a simple way
to C code. Worse, plugin documentation in general is rather poor. To
really figure out the meaning of the numbers reported by a plugin one
has to read the plugin source code to figure out which kernel interfaces
are used and then consult the appropiate documentation.

3.2 Outlook

The first problem mentioned could be solved in various ways. Firstly, by
figuring out what the exact use case is for the plugin. E.g. do we want to
visualize traces using the HD infrastructure? If yes, it wouldn’t be much
work to supply the necessary conversion functions to the infrastructure
components in question.

11

3 Summary

The second problem appears generally unsolvable. One solution, if we
assume that only one operating system is used and the number of things
one wants to trace isn’t too big, would be to write the appropiate plugins
in C, talking to the kernel directly. This would have the added benefit
of obviating the need for any shell or Perl induced overhead.

12

Bibliography

[Deva] Gnome Developers. Glib. http://developer.gnome.org/
glib/. 6

[Devb] Munin Developers. Munin. http://munin-monitoring.org. 1

[Devc] RRDTool Developers. Rrdtool. http://oss.oetiker.ch/
rrdtool/. 2

13

http://developer.gnome.org/glib/
http://developer.gnome.org/glib/
http://munin-monitoring.org
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/

	Introduction
	Munin
	Munin Plugins
	Wildcard Plugins

	RRDtool
	goals

	Implementation
	Concept
	Architecture
	Usage
	Installation

	Summary
	Conclusion
	Outlook

	Bibliography

