
Evaluation of Distributed File Systems

Tim-Daniel Jacobi, Jan Lingemann
Department Informatik,
Universität Hamburg

9jacobi@informatik.uni-hamburg.de,
9lingema@informatik.uni-hamburg.de

October 22, 2012

Contents

1. Introduction 5
1.1. Objectives . 5
1.2. Problem definition . 5

1.2.1. Initial description . 6
1.3. Structure of this paper . 6

2. Fundamental definitions 7
2.1. File system . 7
2.2. Computer Cluster . 7
2.3. Cluster file system . 7

2.3.1. Shared disk file system . 8
2.3.2. Distributed file system . 8
2.3.3. Distributed parallel file system . 8

3. Market analysis 9
3.1. Requirements . 9
3.2. Market overview . 9

3.2.1. GFS (Global File System) . 9
3.2.2. OCFS2 (Oracle Cluster File System) 10
3.2.3. FHGFS (Fraunhofer Gesellschaft File System) 10
3.2.4. PVFS2 (Parallel Virtual File System) 10
3.2.5. GlusterFS . 11
3.2.6. Lustre . 11
3.2.7. HAMMER . 11
3.2.8. Hadoop . 12

3.3. Selection . 12

4. Installation 13
4.1. GlusterFS . 13

4.1.1. Hardware requirements . 13

2

4.1.2. Networking requirements . 13
4.1.3. Operating system requirements . 14
4.1.4. File system requirements . 14

4.2. Lustre . 14
4.3. HAMMER . 15
4.4. FHGFS . 15

5. Bash-script development 16
5.1. Environment . 16

5.1.1. Identify the actual environment . 16
5.1.2. Structure . 16
5.1.3. Hardware . 16
5.1.4. Software . 17

5.2. Building the test environment . 17
5.2.1. Structure . 17
5.2.2. Hardware . 17
5.2.3. Software . 18
5.2.4. Desctiption . 18

5.3. Scripts . 18
5.3.1. Requirements for the scripts . 18
5.3.2. Structure of scripts . 19
5.3.3. Details . 19
5.3.4. fs_master . 20
5.3.5. fs_config . 20
5.3.6. fs_setup . 20
5.3.7. fs_cleanup . 20
5.3.8. fs_execOn . 20

6. Testing 21
6.1. Software used . 21
6.2. Test configuration . 21
6.3. Cluster environment . 22
6.4. Cluster benchmarking . 22

7. Post-project matters 23
7.1. Conslusion . 23
7.2. Further work . 23

3

7.3. Final words . 23

Appendix 23

A. Scripts 24

B. File system set up protocols 25
B.1. HAMMER . 25
B.2. Lustre . 25
B.3. GlusterFS . 28

4

1. Introduction

Just like any other field of research climate research constantly develops towards a more
specific and exact process of gathering data and calculating results. The tools for data
gathering getting more precise and furthermore the process itself gets refined constantly.
While this on one hand means that we can expect better understanding of how the worlds
climate system works it also implies a constant growth of the amount of data to handle.
Sooner or later the question will arise how all this data can be stored and managed
advantageously in order to not only be able to use it for research whilst maintaining
decent processing times but also use the space to store the data efficiently without wasting
resources.

1.1. Objectives

In order to be able store the aforementioned amounts of data a file system is needed
that can handle not only the data but also comes up with some sort of communication
solution to have it running on the computer cluster. In this paper our research group
will examine the possibilities of storing, managing and working with large data amounts
with in a computer cluster.

1.2. Problem definition

The department of scientific computing at the University of Hamburg which is located
at the DKRZ (Deutsches Klimarechenzentrum, German climate data processing centre)
conducts research in the aforementioned areas. They instructed our student research
group to asses, setup and benchmark various parallel distributed file systems in order to
come up with at least one to run on the departments cluster.

5

1.2.1. Initial description

A parallel machine is a machine which is able execute applications in real parallelism.
Current Desktop machines are little parallel machines already as they have multiple
cores which allow for parallel application execution. Their high market share is the main
reason why the development of parallel programs and algorithms will gain momentum in
the future. Computer clusters combine multiple machines through fast networking to be
able to solve larger scaled problems. Currently existing super computers easily size up to
100.000 cores. An important aspect when dealing with super computers is the efficient
storage of large data amounts.

1.3. Structure of this paper

The paper starts with the problem definition you have just read. Subsequently it exposes
some fundamental definitions to prepare the reader with the basics on the treated topic.
Afterwards we give an overview of the market to gain an insight of what is available.
After we stated the selection we will dive into the installation and benchmarking of the
selected file systems. Therefore we explain the environment and software we used for the
benchmarks. Following we analyse the results to finally come up with a conclusion.

6

2. Fundamental definitions

2.1. File system

A file system organises data expected to be saved after a program terminates by providing
methods to store, retrieve and update data as well as manage the available space on the
device which contains it. A file system organises data in an efficient way. A tight coupling
usually exists between the operating system and the file system to extend performance.
Some file systems provide mechanisms to control access to the data and metadata. Some
file systems allow multiple programs to update the same file at nearly the same time.

2.2. Computer Cluster

A computer cluster consists of a set of connected computers that work together so that
they can be viewed as a single system. The components of a cluster are usually connected
to each other through fast local area networks like Ethernet or Infiniband where each node
runs its own instance of an operating system. Clusters are usually deployed to improve
performance and availability over that of a single computer, while typically being much
more cost-effective than single computers of comparable speed or availability. 1

2.3. Cluster file system

A clustered file system is a file system which is shared by being simultaneously mounted
on multiple servers. There are several approaches to clustering, but most of them do not
use a clustered file system. This lead to an increase of the underlying storage environment
as nodes are added to the cluster. Thus it is highly recommended to use a cluster
filesystem in cluster.

1http://en.wikipedia.org/wiki/Computer_cluster

7

http://en.wikipedia.org/wiki/Computer_cluster

2.3.1. Shared disk file system

One storage is accessed by many clients on block level

• Block Level Access

• OCFS2, GFS2, Xsan

– Many nodes access one storage (e.g. SAN over FibreChanel)

– Multiple Access managed by file system with shared metadata (e.g. locks,
rights)

2.3.2. Distributed file system

One storage is accessed by many clients on file

• the filesystem itself is clustered

– the data is split to several nodes

∗ usually storage and meta data

• the access is clustered as well across the storage nodes

• furthermore the data is striped to increase performance

2.3.3. Distributed parallel file system

• like distributed file systems

• provide more features including

– fast local access

• symmetric vs. asymmetric

8

3. Market analysis

3.1. Requirements

In order to meet the requirements of the department a suitable filesystem should be free
of charge, or better licensed under GPL. Furthermore it should be future-proof, thus it
should be in active development and have a long-term development plan. Since the nodes
mainly run on the LTS versions of Ubuntu it would be advantageous to use a filesystem
which runs under Ubuntu. Yet other file systems should be considered if their features
seem to be promising.

3.2. Market overview

3.2.1. GFS (Global File System)

Global File System 2 is a shared disk file system for computer clusters based on Linux.
GFS2 differs from distributed file systems because it allows all nodes to have direct and
concurrent access to the same block storage. GFS2 can also be used as a local running
filesystem. GFS has no disconnected operating-mode, and does not distinct between
client and server. All nodes function as peers. Using GFS in a cluster requires hardware
to allow access to the shared storage, and a lock manager to control access to the storage.
The lock manager operates as a separate module: thus GFS2 can use the Distributed
Lock Manager (DLM) for cluster configurations and the "nolock" lock manager for local
filesystems. GFS2 is free software, distributed under the terms of the GNU General
Public License.

9

3.2.2. OCFS2 (Oracle Cluster File System)

OCFS2 is a general-purpose shared-disk cluster file system for Linux capable of providing
both high performance and high availability. As it provides local file system semantics,
it can be used with almost all applications. Cluster-aware applications can make use of
cache-coherent parallel I/Os from multiple nodes to scale out applications easily. Other
applications can make use of the file system facilities to fail-over running application in the
event of a node failure. The file system is currently being used in virtualisation (Oracle
VM) in both the management domain, to host virtual machine images, and in the guest
domain, to allow Linux guests to share a file system. It is also being used in database
clusters (Oracle RAC), middleware clusters (Oracle E-Business Suite), appliances (SAP’s
Business Intelligence Accelerator), etc.

3.2.3. FHGFS (Fraunhofer Gesellschaft File System)

FraunhoferFS (short: FhGFS) is the high-performance parallel file system from the
Fraunhofer Competence Centre for High Performance Computing. The distributed meta-
data architecture of FhGFS has been designed to provide the scalability and flexibility
that is required to run today’s most demanding HPC applications. FhGFS is provided
free of charge.

FhGFS stripes file contents across multiple storage servers and distributes the file sys-
tem metadata across multiple metadata servers. File system nodes can serve Infiniband
and Ethernet (or any other TCP-enabled network) connections at the same time and
automatically switch to a redundant connection path in case any of them fails. FhGFS
requires no kernel patches (the client is a patch-less kernel module, the server components
are user-space daemons), comes with graphical cluster installation tools and allows you
to add more clients and servers to the running system at any given point of time. FHGFS
differentiates between Clients and Servers which can be run on the same machine where
it uses existing partitions, formatted with any of the standard Linux file systems, e.g.
XFS or ext4.

3.2.4. PVFS2 (Parallel Virtual File System)

The Parallel Virtual File System is an open source parallel file system. PVFS is designed
to provide high performance for parallel applications, where concurrent, large IO and

10

many file accesses are common. PVFS provides dynamic distribution of IO and meta-
data through avoidance of single points of data access. PVFS clients are stateless and
thus allowing for failure recovery and integration with high-availability systems. PVFS is
designed to support a number of access models. PVFS provides an object-based, state-
less client interface, leading to optimisations for metadata operations within MPI-IO. It
operates on a wide variety of systems, including IA32, IA64, Opteron, PowerPC, Alpha,
and MIPS. It is easily integrated into local or shared storage configurations, and provides
support for high-end networking fabrics, such as Infiniband or Myrinet.

3.2.5. GlusterFS

GlusterFS is an open source, distributed file system capable of scaling up to several
petabytes and handling thousands of clients. GlusterFS clusters together storage building
blocks over Infiniband RDMA or TCP/IP interconnect, aggregating disk and memory
resources and managing data in a single global namespace. GlusterFS is based on a
stackable user space design and can deliver exceptional performance for diverse workloads.

3.2.6. Lustre

Lustre is a parallel distributed file system, generally used for large scale cluster com-
puting. Lustre is available under the GNU GPL and provides a high performance file
system for computer clusters ranging in size from small workgroup clusters to large-scale,
multi-site clusters. Lustre file systems are scalable and can support tens of thousands
of client systems, tens of petabytes of storage, and hundreds of gigabytes per second of
aggregate I/O throughput.

3.2.7. HAMMER

HAMMER is a high-availability 64-bit file system for DragonFly BSD. Its major features
include infinite NFS-exportable snapshots, master-multislave operation, configurable his-
tory retention, fsckless-mount, and checksums to deal with data corruption. HAMMER
also supports data block deduplication — identical data blocks will only be stored once
on a file system.

11

3.2.8. Hadoop

Hadoop is a software library developed by Apache. The library is a framework that
allows for the distributed processing of large data sets across clusters of computers using
a simple programming model. It is designed to scale up from single servers to thousands
of machines, each offering local computation and storage. Rather than rely on hardware
to deliver high-availability, the library itself is designed to detect and handle failures
at the application layer, so delivering a highly-available service on top of a cluster of
computers, each of which may be prone to failures.

3.3. Selection

After the research phase and debate on the filesystems with the department we nominated
the following systems to be included in our further steps of examination.

• FHGFS

• GluserFS

• HAMMER

• Lustre

12

4. Installation

4.1. GlusterFS

GlusterFS is available for installation on RPM distributions and debian-based distribu-
tion as well as from source. It is possible to let GlusterFS run through InfiniBand. Yet it
comes with some hardware, networking, operating system and file system requirements
listed below.

4.1.1. Hardware requirements

• Processor: Intel/AMD x86 64-bit

• Disk: 8GB minimum using direct-attached-storage, RAID, Amazon EBS, and
FC/Infiniband/iSCSI SAN disk backends using SATA/SAS/FC disks

• Memory: 1GB minimum

4.1.2. Networking requirements

The following are the supported networks:

• Gigabit Ethernet

• 10 Gigabit Ethernet

• InfiniBand

13

4.1.3. Operating system requirements

GlusterFS works with other common Linux distribution like CentOS 5.1 or higher,
Ubuntu 8.04 or higher, and Fedora 11 or higher, but has not been tested extensively.

Ensure that the following packages are installed:

• Bison

• Automake/ Autoconf

• Flex

• libtool

• gcc

• Portmappper (for NFS)

• Fuse

4.1.4. File system requirements

Red Hat recommends XFS when formatting the disk sub-system. XFS supports metadata
journaling, which facilitates quicker crash recovery. The XFS file system can also be de-
fragmented and enlarged while mounted and active.

Any other POSIX compliant disk file system, such as Ext3, Ext4, ReiserFS may also
work, but has not been tested widely.

4.2. Lustre

Lustre is developed for Red Hat Enterprise Linux. Since Cent OS 5.5 aims to provide
a 100% binary compatible system with RHEL5 we can use it as well. Use the provided
install shell-script to install Lustre on your nodes. The script will patch the kernel, install
and activate it and setup a Lustre installation.

14

4.3. HAMMER

Fortunately HAMMER is standard filesystem of DragonFly BSD as of version 2.0. Thus
to install HAMMER you only need to setup DragonFly BSD on your nodes.

4.4. FHGFS

No specific enterprise Linux distribution or other special environment is required to
run FhGFS. FhGFS client and servers can even run on the same machine to enable
performance increases for small clusters or networks. FhGFS requires no dedicated file
system partition on the servers - It uses existing partitions, formatted with any of the
standard Linux file systems, e.g. XFS or ext4. For larger networks, it is also possible to
create several distinct FhGFS file system partitions with different configurations.

15

5. Bash-script development

5.1. Environment

5.1.1. Identify the actual environment

After we have obtained detailed information form the department of scientific computing
on how the cluster works we concluded that there are three relevant topics in general.
Structure, hardware and used software.

5.1.2. Structure

The structure describes how machine in the cluster are used. In this case there are
distinct machines for keeping the storage and others for computational purposes. On
top there is one machine which is called the master. This machine is responsible for
the initiation of jobs and is accessible to users. In the scope of this paper we call it
controller, due to historical work. Furthermore there are compute and storage nodes
that are responsible for holding the data to store and perform computations on the data
as their names suggest.

5.1.3. Hardware

The present machines in the cluster are all based on the x86_64 instruction set. The
differences on the hardware side between the compute and the storage nodes are process-
ing power, ram and disk space. Though none of these criteria is relevant for building the
scripts.

16

5.1.4. Software

All machines run Ubuntu Server 12.04 LTS 64-bit as operation system. The cluster is
managed by a variety of different applications. In first place there is SSH activated
on every client for basic management. Moreover there is SLURM installed for batch
processing and job distributions. Both SSH and SLURM can be used by some parallel
distributed shell systems for remote management. A module manager is responsible for
the script management.

The actual software system is in fact a little bit more complicated. Operating System
images are rolled out and auto configured by a bootp-server which enables the user to
use different operating systems.

5.2. Building the test environment

The test environment should be as close to the actual cluster to avoid compatibility
errors. It should how ever also be easy to set up and to maintain. The whole test
environment is build up on virtual machines on one machine. In this case we use Virtual
Box to host a set of virtual machines and to maintain snapshots to be able to easily
revert configuration mistakes.

5.2.1. Structure

The structure is pretty much the same as in the real cluster, but with less machines. So we
have four storage nodes (nodes[]01-04]), two compute nodes (node[05-06]) and a master
node called controller. On top of it there is a router based on for easier management of
ip addresses and hostnames.

5.2.2. Hardware

Since the virtual host is a x86_64-bit machine, all virtual guests inherit this architecture.
It is however recommended to have a processor with multiple cores, VT-x/AMD-V and
Nested Paging. Also a lot of RAM is needed.

17

5.2.3. Software

We made any effort to achieve a foundational software system which is as similar as
possible to the actual cluster. We used the same Ubuntu Server Version and tried to use
the same software stack.

5.2.4. Desctiption

The /opt directory is shared via NFS from textitcontroller and mounted via auto-fs on the
nodes. SLURM runs with different partitions. The NTP server runs on the controller, all
nodes query PDSH as parallel distributed shell using SSH with server packages installed.
All nodes posses the public key of the controller installed

We used a router for IP assignment and auto DNS configuration. In this case it is
OpenWRT which includes DDNSmasq. This requires that the hostname is set correctly
in the node and also sent to the DHCP server. In our first tests we had to tell Ubuntu
10.04 to do it. Ubuntu 12.04 is able to do it automatically.

5.3. Scripts

5.3.1. Requirements for the scripts

If it is planned to use the delivered scripts there are several requirements to take into
account. They are listed as following.

• Select a proper hostname layout

– e.g. xyz[000-099], io-node[01-06], compute-node [01-10], ...

• All hosts have to be resolvable, so the DNS structure has to be in a functional state

• Keyless SSH authentication via SSL certificates is needed, at least from controller
to nodes

• The operating system has to be up to date

• Root has to be enabled and SSH accessible on all machines in the cluster

18

5.3.2. Structure of scripts

5.3.2.1. fs_master

This is the main script in which the SLURM commands can be run

5.3.2.2. fs_config

This script contains all the config stuff, some of these should be set by the user

5.3.2.3. fs_setup

This script installs the required packages and sets up the volume on the io-nodes, fur-
thermore it mounts the volume on the compute-node and the controller

5.3.2.4. fs_cleanup

This script reverses all the steps of fs_setup

5.3.2.5. fs_execOn

This script contains the wrapper functions for the used parallel distributed shell

5.3.2.6. create_environment

Here are some useful chunks of code to create a managed cluster with Ubuntu 12.04, it is
not a script you canshould execute but supposed to help you out with the aforementioned
matters.

5.3.3. Details

The scripts are connected via the source command. Except for fs_master there are no
commands which are not wrapped into a function. For the sake of readability and inter-

19

changeability we encapsulated the command for distributed parallel command execution.
Also there is one function (es) to output the status on the command line.

5.3.4. fs_master

This master script is a sample script and looks a lot like a later user script. It allows you
to use the function fs_setup to indeed setup the distributed file system and fs_cleanup
to destroy it. As for the early release cycle, always use these both function in correct
order and always use both.

5.3.5. fs_config

In this script there are only assignments to deliver the shared configuration to the other
scripts. It is pretty straight forward. For next releases some of these configuration
should be settable via the master script and the machines and their names should be
auto discovered.

5.3.6. fs_setup

Here is all the logic to create a pool of potential io-nodes and to subsequently create a
volume which later is mounted by the compute nodes. In the test environment only a
subfolder on / is used for the storage pool. It is highly recommended to use a separate
hard drive formatted with XFS for better peformance.

5.3.7. fs_cleanup

Reverses all the steps made in fs_setup. This means it also destroys the Volume and
the contained files. If later in fs_setup whole hard disk will be used, the partition table
should be destroyed here also.

5.3.8. fs_execOn

Contains the wrapper scripts for PDSH. As described PDSH is interchangeable with
SLURM or clush. In fact you can use PDSH with SLURM.

20

6. Testing

6.1. Software used

The tests shall be run with Parabench. Patterns for testing can be downloaded here
fileop.pbl and mpiio.pbl are the ones to use. They are optimised by the department prior
to testing to fit their specific needs. The test will include a variation on the memory of
the nodes. To scale the amount of memory we will make use of the Memeater tool.

6.2. Test configuration

A test configuration is defined by three orthogonal parameters which include

• Amount of Memory

– with values 1, 12 GB

• Number of server nodes

– with values 1, 2, 5

• Number of client nodes

– with values 1, 2, 4, 8 for 1 and 2 server nodes

– with values 1, 2, 3, 4, 5, 10, 15 for 5 server nodes

21

6.3. Cluster environment

While conducting the product the cluster environment was changed by the department
of scientific computing. As per request these changes needed to be reflected in the install
scripts for the file systems.

6.4. Cluster benchmarking

Not conducted.

22

7. Post-project matters

7.1. Conslusion

The market of parallel distributed filesystem is very diverse. Each system comes up with
an own idea of handling the problems aimed to solve by the department of scientific
computing.

Due to the change in environment on the cluster to be used we decided to concentrate on
the delivery on a script that currently installs one of the chosen filesystems but is easy to
modify in order to be used with other filesystems. This way we were able to ensure the
quality of the script delivered. Unfortunately we could not conduct any benchmarks due
to the time consuming script modification needed which forced us to rethink the focus
of the project which resulted in quality assurance of the script.

7.2. Further work

Since the result of this project provides a sophisticated foundation to conduct benchmarks
on the cluster we recommend to use our achievements for further research.

7.3. Final words

During the project we had the chance to gain an insight of the work in a high performance
computing department which is an comprehensive but yet interesting field. We were able
to gain a lot of knowledge in a topic that we have never treated before. Parallel file
systems are an exciting research topic even though they sometimes come with unresolved
issues but a flourishing community which you can learn from.

23

A. Scripts

Please refer to the file attached to this document in order to obtain the scripts.

24

B. File system set up protocols

B.1. HAMMER

In order to install HAMMER the setup of DragonFly BSD on the desired machines is
needed. DragonFly BSD uses HAMMER as its filesystem. Thus there is no need for a
setup of the filesystem.

B.2. Lustre

25

Disclaimer
This guide was tested with Lustre version 1.8 under Cent OS 5.5. Other configurations may
work but are not supported.

Basic description
Lustre is a parallel distributed file system often used in supercomputers due to its high
performance abilities. It is highly scalable and is designed to deal even with a very large store in
the PiB area and with a really high throughput. The actual data in Lustre is saved in objects that
reside on node(s) which are very likely to be in a network.

Architecture
There are three different kinds of nodes in a Lustre configuration

● MDS - Metadata server
○ stores the namespaces metadata such as

■ filenames
■ directories
■ access permissions
■ file layout

○ on its MDT - metadata target
● OSS - object storage server

○ stores file data on one or more OST - object storage target
○ each OST manages one local filesystem
○ typically two to eight OSTs per OSS
○ capacity of Lustre file system is the sum of the capacity provided by the OSTs

● Client(s)
○ Accesses and uses the data using standard POSIX1 semantics
○ allows concurrent and coherent read/write access

Principle of operation
The MDT, OST and client can be installed on the same node or on single nodes and then
connected over a network. Their storage used for the file systems is partitioned and usually
formatted as ext4 but using an enhanced version called ldiskfs.The OSS and MDS read, write
and modify data which is held by theses nodes.
To address files Lustre uses inodes like normal unix file systems. These inodes are saved on
the MDS. Other than in conventional unix file systems the inodes point to one ore more OST
objects associated with a file on the OST rather than to data blocks.
Clients delegate the task of modifying a file to the OSS rather than modifying it directly on the
OST. This ensures scalability in larger environments.

Supported network interconnects

1 Portable Operating System Interface - provides an API to ensure software compatibility along different UNIX systems

● Infiniband
● TCP/IP over Ethernet (and other networks)
● Myrinet
● Quadrics
● etc.

Installation

Supported operating system, platform and interconnect

Configuration Component Linux Platform Architecture Interconnect

Server OEL2 5.4
RHEL3 5.4

x86_64

Client OEL 5.4
RHEL 5
SLES4 10,11
Scientific Linux 5 [New]
Fedora 12 (2.6.31) [New]

x86_64
ia64 (RHEL)
ppc64 (SLES)
i686

Server and Client TCP/IP
OFED

Since Cent OS 5.5 aims to provide a 100% binary compatible system with RHEL5 we can use it
as well.

Use the provided install shell-script to install Lustre on your machine. The script will patch the
kernel, install and activate it and setup a Lustre installation. Afterwards it cleans up the build
folder to save space on the volume.

Configuration
As per request we will provide configuration scripts for two entities. OSS-MDS nodes combined
acting as I/O-nodes and Lustre-Clients as Client nodes. On the I/O-nodes we need to partition
the block device in two parts since OSS and MDS both require to run on a independent file
system. Our script calculates the size of the block device and splits it evenly.

2 Oracle Enterprise Linux
3 Red Hat Enterprise Linux
4 Suse Linux Enterprise Server

B.3. GlusterFS

Since GlusterFS was used as reference implementation of the scripts it is unnecessary to
provide an additional installation guide.

28

	Introduction
	Objectives
	Problem definition
	Initial description

	Structure of this paper

	Fundamental definitions
	File system
	Computer Cluster
	Cluster file system
	Shared disk file system
	Distributed file system
	Distributed parallel file system

	Market analysis
	Requirements
	Market overview
	GFS (Global File System)
	OCFS2 (Oracle Cluster File System)
	FHGFS (Fraunhofer Gesellschaft File System)
	PVFS2 (Parallel Virtual File System)
	GlusterFS
	Lustre
	HAMMER
	Hadoop

	Selection

	Installation
	GlusterFS
	Hardware requirements
	Networking requirements
	Operating system requirements
	File system requirements

	Lustre
	HAMMER
	FHGFS

	Bash-script development
	Environment
	Identify the actual environment
	Structure
	Hardware
	Software

	Building the test environment
	Structure
	Hardware
	Software
	Desctiption

	Scripts
	Requirements for the scripts
	Structure of scripts
	Details
	fs_master
	fs_config
	fs_setup
	fs_cleanup
	fs_execOn

	Testing
	Software used
	Test configuration
	Cluster environment
	Cluster benchmarking

	Post-project matters
	Conslusion
	Further work
	Final words

	Appendix
	Scripts
	File system set up protocols
	HAMMER
	Lustre
	GlusterFS

