
Ruprecht-Karls Universität Heidelberg

Institute of Computer Science

Research Group Parallel and Distributed Systems

Internship Report

Community Platform
for Parabench

Name: Dennis Runz, Christian Seyda
Betreuer: Olga Mordvinova, Julian M. Kunkel

Sommersemester 10
1. April - 1. September 2010

Introduction

The main goal of this practical was the development of a community website for
Parabench [1,2], where users can share their IO patterns, their benchmark results

including visualizations and a description of their testing platform. To accomplish this,
we choosed Django [3] as our webframework to build upon, Highcharts [4] as visualization
tool and wrote a search interface based on machintags.

In the following we will introduce the basics of Django, Highcharts, how we produce
plots with both of them and how our search-backend is working.

Motivation

In addition to our formal practical about parabench, there was still the intention to
create a community around parabench, to provide real up to date patterns for the public
demand and to focus the development of parabench in a direction, where the community
needs it. Furthermore to lower the stress to gain good looking visualizations out of the
benchmark resulted data.

Figure 1: Paraweb preview

Contents

1 Django 3
1.1 Introduction . 3
1.2 Setup . 4
1.3 Templates . 6
1.4 Deployment . 7

2 Software Structure and Object Organization 8
2.1 Core . 8
2.2 Tagging . 9
2.3 Taxonomy . 10
2.4 Admin Panel . 10
2.5 User Control Panel . 10
2.6 News . 10
2.7 Rating . 11
2.8 Slider . 11

3 Highcharts 12
3.1 Introduction . 12
3.2 How we use it . 13

3.2.1 Processing . 15
3.2.2 Additional processing . 17
3.2.3 Plotting Templates Overview . 19
3.2.4 Exporting Module . 20

4 Search 21
4.1 Search Engine . 22
4.2 Triple Tags . 22

5 Future work 24
5.1 General . 24
5.2 Django . 24
5.3 Highcharts . 24

Chapter 1

Django

1.1 Introduction

Django [3] is a web framework written python. It offers many great features, is under
active development and open source (BSD license). As other frameworks (CakePHP,

Grails, Ruby on Rails, to mention a few) surly offer the same features—we have choosen
Django because of its great documentation and community, and we are are quite familiar
with python.
For a feature-list, please look at http://docs.djangoproject.com/en/1.2/. Worth
mentioning features are

• the automatic und customizable admin site (http://docs.djangoproject.com/
en/1.2/ref/contrib/admin/),

• build-in user management (http://docs.djangoproject.com/en/1.2/topics/
auth/), which we have extended by some fields and integrated an user-registration,
including the need of activating the user by pressing an email-send link,

• the comments-system (http://docs.djangoproject.com/en/1.2/ref/contrib/
comments/),

• the paginator (http://docs.djangoproject.com/en/1.2/topics/pagination/)
for splitting a page containing many elements into subpages containing a subset of
elements and links to the other subpages,

• the forms-API (http://docs.djangoproject.com/en/1.2/ref/forms/api/) for
HTML-forms creation and validating, and

• the caching-framework (http://docs.djangoproject.com/en/1.2/topics/cache/)
for reducing serverload and increasing response-time.

3

http://docs.djangoproject.com/en/1.2/
http://docs.djangoproject.com/en/1.2/ref/contrib/admin/
http://docs.djangoproject.com/en/1.2/ref/contrib/admin/
http://docs.djangoproject.com/en/1.2/topics/auth/
http://docs.djangoproject.com/en/1.2/topics/auth/
http://docs.djangoproject.com/en/1.2/ref/contrib/comments/
http://docs.djangoproject.com/en/1.2/ref/contrib/comments/
http://docs.djangoproject.com/en/1.2/topics/pagination/
http://docs.djangoproject.com/en/1.2/ref/forms/api/
http://docs.djangoproject.com/en/1.2/topics/cache/

CHAPTER 1. DJANGO 4

Django has a clear MVC-design—please don’t frighten as the names in Django are a
little different1 from what you are familiar with:

Model: models.py
“A model is the single, definitive source of data about your data. It contains the
essential fields and behaviours of the data you’re storing. Generally, each model
maps to a single database table.” (taken from http://docs.djangoproject.com/

en/1.2/topics/db/models/)

View: are the templates (introduced at 1.3)

Controller: view.py
“A view function, or view for short, is simply a Python function that takes a Web
request and returns a Web response. This response can be the HTML contents of
a Web page, or a redirect, or a 404 error, or an XML document, or an image . . . ”
(taken from http://docs.djangoproject.com/en/1.2/topics/http/views/)

URLconf
“To design URLs for an app, you create a Python module informally called a
URLconf (URL configuration). This module is pure Python code and is a simple
mapping between URL patterns (as simple regular expressions) to Python callback
functions (your views).” (taken from http://docs.djangoproject.com/en/1.2/

topics/http/urls/)

Furthermore, we have

settings.py, where global settings for the project are stored, such as the database-
configuration or the template path (http://docs.djangoproject.com/en/1.2/
ref/settings/), and

manage.py, which is Django’s commandline-tool for administrative tasks (http://docs.
djangoproject.com/en/1.2/ref/django-admin/).

1.2 Setup

Django

Installation of Django is very simple: set up your database of choice and either in-
stall it from your operating system’s repositories or get it from svn (http://docs.
djangoproject.com/en/dev/intro/install/).

Due to the excellent documentation and beginner tutorial, we won’t describe the
initial setup of a django project, as we would just repeat the tutorial http://docs.
djangoproject.com/en/dev/intro/tutorial01/.

1http://docs.djangoproject.com/en/dev/faq/general/#mtv

http://docs.djangoproject.com/en/1.2/topics/db/models/
http://docs.djangoproject.com/en/1.2/topics/db/models/
http://docs.djangoproject.com/en/1.2/topics/http/views/
http://docs.djangoproject.com/en/1.2/topics/http/urls/
http://docs.djangoproject.com/en/1.2/topics/http/urls/
http://docs.djangoproject.com/en/1.2/ref/settings/
http://docs.djangoproject.com/en/1.2/ref/settings/
http://docs.djangoproject.com/en/1.2/ref/django-admin/
http://docs.djangoproject.com/en/1.2/ref/django-admin/
http://docs.djangoproject.com/en/dev/intro/install/
http://docs.djangoproject.com/en/dev/intro/install/
http://docs.djangoproject.com/en/dev/intro/tutorial01/
http://docs.djangoproject.com/en/dev/intro/tutorial01/
http://docs.djangoproject.com/en/dev/faq/general/#mtv

CHAPTER 1. DJANGO 5

In order to not depend on the documentation on the internet, there is the possibility
to get it for offline reading: http://docs.djangoproject.com/en/1.2/internals/

documentation/#internals-documentation.
When initially creating the database scheme with python manage.py syncdb a

superuser will be created interactively. But since we have an own auth backend for
PortalUser, the authentification will not work yet for the admin panel. To fix this,
an entry in the database table core_portaluser needs to be added manually (id=1,
timezone=’Europe/Berlin’).

Searchbackend

Our search is based on Haystack http://haystacksearch.org/ providing an API to
some searchbackends focusing on different work environments.

1. Install Haystack:

sudo apt -get install python_setuptools python_pip

sudo pip install haystack

2. Install Whoosh search engine (used for dev purpose):

sudo pip install whoosh

sudo mkdir -p /var/whoosh/paraweb_index

sudo chmod 777 -R /var/whoosh/

Alternatives and setup instructions can be found at http://docs.haystacksearch.
org/dev/installing_search_engines.html.

3. Add haystack settings to settings.py:

Haystack Search Settings:

HAYSTACK_SITECONF = ’paraweb.search_sites ’

HAYSTACK_SEARCH_ENGINE = ’whoosh ’

HAYSTACK_WHOOSH_PATH = ’/var/whoosh/paraweb_index ’

4. Create initial search indexes: python manage.py rebuild_index

5. Later you can update the indexes with: python manage.py update_index

Email

In order to send emails, you have to set the appropriate settings to your settings.py

(http://docs.djangoproject.com/en/1.2/topics/email/).
For testing purposes, add

EMAIL_HOST = ’localhost ’

EMAIL_PORT = 1025

http://docs.djangoproject.com/en/1.2/internals/documentation/#internals-documentation
http://docs.djangoproject.com/en/1.2/internals/documentation/#internals-documentation
http://haystacksearch.org/
http://docs.haystacksearch.org/dev/installing_search_engines.html
http://docs.haystacksearch.org/dev/installing_search_engines.html
http://docs.djangoproject.com/en/1.2/topics/email/

CHAPTER 1. DJANGO 6

and start with python -m smtpd -n -c DebuggingServer localhost:1025 a test
email-server at your localhost at port 1025 (http://docs.djangoproject.com/en/1.2/
topics/email/#testing-e-mail-sending).

We will now focus on a few things that will be needed later and at the end we give some
examples of where you can find some Django-features in our code.

1.3 Templates

Normally a website consists of a layout/design that hardly changes, only the content and
minor things should alter. So, in early days, you had your many .html-files which all
had to be modified in order to get a corporate-design—there is CSS for the visuals and
layout, but think about menus or some header-definitions. In Django you just change
your main layout-file to spread changes across your whole web-appearance. A very basic
main-file (call it main.html) with a menu-sidebar and a content-area could look like:

Listing 1.1: Django template

<head><link rel="stylesheet" href="style.css" />

<title>{% block title %}My amazing site{% endblock %}<

/title>

</head>

<body>

<div id="sidebar">

{% block sidebar %}

Home

Blog

{% endblock %}

</div>

<div id="content">

{% block content %}{% endblock %}

</div>

</body></html>

Now comes Django’s template inheritance for easy and fast site maintaining; say we have
a page (stuff.html) containing some real content:

{% extends "main.html" %}

{% block title %}Cool Stuff {% endblock %}

{% block content %}

some content here.

{% endblock %}

http://docs.djangoproject.com/en/1.2/topics/email/#testing-e-mail-sending
http://docs.djangoproject.com/en/1.2/topics/email/#testing-e-mail-sending

CHAPTER 1. DJANGO 7

With the extend-keyword, we say Django have to grab main.html and replace the right
blocks from it with my new wrote in stuff.html.

You can also insert variables with {{ variable }} or loop through a list with

Listing 1.2: Django template loop

{% for entry in my_list %}

<h2>{{ entry.title }}</h2>

<p>{{ entry.body }}</p>

{% endfor %}

given by the view-function.

For paraweb we use a two-layer template-inheritance:

• global base.html

• section based template inheriting base.html (for example r_base.html)

• task based template inheriting r_base.html (for example r_edit.html)

This way, we can offer good working breadcrumbs too.

1.4 Deployment

Djangos documentation even covers the deployment of a website (http://docs.
djangoproject.com/en/1.2/howto/deployment/). The recommended way is

• mod_wsgi (http://docs.djangoproject.com/en/1.2/howto/deployment/modwsgi/),
but the documentation also covers

• mod_python (http://docs.djangoproject.com/en/1.2/howto/deployment/modpython/)
and

• FastCGI, SCGI or AJP (http://docs.djangoproject.com/en/1.2/howto/deployment/
fastcgi/).

For development, we just let Django handle static files (http://docs.djangoproject.
com/en/1.2/howto/static-files/).

But this is not recommended for a productive website, though Apache, lighttp, . . . are
specialized on this (http://docs.djangoproject.com/en/1.2/howto/deployment/modpython/
#serving-media-files).

http://docs.djangoproject.com/en/1.2/howto/deployment/
http://docs.djangoproject.com/en/1.2/howto/deployment/
http://docs.djangoproject.com/en/1.2/howto/deployment/modwsgi/
http://docs.djangoproject.com/en/1.2/howto/deployment/modpython/
http://docs.djangoproject.com/en/1.2/howto/deployment/fastcgi/
http://docs.djangoproject.com/en/1.2/howto/deployment/fastcgi/
http://docs.djangoproject.com/en/1.2/howto/static-files/
http://docs.djangoproject.com/en/1.2/howto/static-files/
http://docs.djangoproject.com/en/1.2/howto/deployment/modpython/#serving-media-files
http://docs.djangoproject.com/en/1.2/howto/deployment/modpython/#serving-media-files

Chapter 2

Software Structure and Object
Organization

Django projects are organized as collection of apps and the following introduces the apps
that were used and developed to realize the community for Parabench.

2.1 Core

The core app manages core functionality and data models such as kernels or experiments.
It provides functionality to create, manage and view those objects and their relations.

Kernel: Kernels represent I/O access patterns formed in the Parabench Programming
Language (PPL) where each instance is associated with a ppl file that can be
downloaded by users. Every kernel is owned by one user and can be tagged and
classified by the owner. Additional meta attributes such as revision, which is
increased every time a kernel is modified, and a published state can also be set.
Kernels have a special type (KernelType) where the set of available types can be
defined in the admin panel. This can be MPI, POSIX, or even other types since
Parabench allows to define modules that can even be MPI send commands instead
of I/O specific commands.

Configuration: There are two configuration types, HardwareConfig and SoftwareConfig.
The former describes the pure hardware informations about the tested hardware
and the latter all informations about the software setup used which can be file
system, operating system and more. Configurations have static and dynamic fields,
where the static ones include the number of nodes, number of data and metadata
servers and so on. This is required since they are referenced within several other
apps in order to allow statistical informations such as a cluster map with file system
and client node mapping. Dynamic fields are represented by Setups. Like kernels,
configurations have an owner.

8

CHAPTER 2. SOFTWARE STRUCTURE AND OBJECT ORGANIZATION 9

Setups: Setups allow to dynamically define configuration properties without requiring
changes in python code. A SetupType defines the type – whether it is a software
or a hardware setup – and the name together with a slug of a type. Examples for
types can be vendor, file system, operating system and so on. For each type, values
can be defined which are represented by SetupValue. All setup relevant data can
be managed in the admin panel and are available for user choices immediately.

Run: Runs represent the actual execution of a benchmark run on a computer system.
Each run depends on a kernel and two configurations that can be set independently
for hardware and software. Each run is evaluated by the plotting functionality
independently which allows to have a quick overview over the results of a single
run. Also runs are owned by a user.

Experiment: Experiments are the complete set of runs that have been executed. In fact,
experiments can consist of several runs that have been executed on the same and/or
different kernels as well as the same and/or different configurations, there is no
limitation for combinations. Evaluation of experiments is done on all available runs
within an experiment. Depending on the used kernel and configurations, different
plots are shown with a different focus. This is described in a more detailed way in
chapter 3. Together with kernels, configurations and runs, also experiments have a
specific owner.

2.2 Tagging

The complete user space object classification and taxonomy feature is based on the tagging
app which is based on django-tagging http://code.google.com/p/django-tagging/

but has been modified in several places in order to serve required features. The original
and official django-tagging app doesn’t provide triple tag support. Instead, only single
keywords can be used for tagging, which doesn’t allow any classification of heterogeneous
objects. A fork of this project could be found on Launchpad https://code.launchpad.

net/~gregor-muellegger/django-tagging/machinetags/, which has been used as ba-
sis for further adjustments.

To ease entering of tags and classifications, an autocomplete feature has been imple-
mented that is based on http://code.google.com/p/django-tagging-autocomplete/.
When entering text, strings such as : and = trigger predicates and values from the tag
database and offer a preselection of matching strings to the already entered string part.
This has also been developed in order to increase classification quality in the object
universe. Since users may invent new or type slightly different words which all have
the same meaning and could therefore be treated as the same category—respectively
namespace, predicate or value—autocompletion increases the probability to maintain
a more consistent taxonomy and likewise may provide a lower maintenance effort for
administrators.

http://code.google.com/p/django-tagging/
https://code.launchpad.net/~gregor-muellegger/django-tagging/machinetags/
https://code.launchpad.net/~gregor-muellegger/django-tagging/machinetags/
http://code.google.com/p/django-tagging-autocomplete/

CHAPTER 2. SOFTWARE STRUCTURE AND OBJECT ORGANIZATION 10

2.3 Taxonomy

Additional features and helper routines for the tagging app are implemented in the
taxonomy app in order to prevent too close coupling. This was necessary because the
tagging fork was not yet official and is still pending to be integrated in the django-tagging
app. In case of later merging with the latest official revision of this app, a separate app
has been written that provides additional functionality that is:

Taxonomy View: The taxonomy view shows a universe of classified objects and is
structured in three levels. Those levels are directly derived from the triple tag
concept which is described in section 4.2.

Cloud Utils: Helper functions that are necessary to build the taxonomy tag clusters
and clouds.

2.4 Admin Panel

The administration panel is the central management place for administrators and moder-
ators. All objects that live in django can be managed, which also means users can be
created, deleted and privileges can be edited in a fine grain level. It is also possible to
create user groups which are for example able to only manage kernels. That means in
general, object permission can be set on app level, object level and operation level. The
latter includes creating, deleting and editing.

2.5 User Control Panel

In order to provide a seamless user experience when working with objects, a user control
panel was developed. It allows to create, edit and delete core objects which are kernels,
experiments, runs and configurations. The user only sees its own objects and is able to
manage his own results. Certain informations which are not meant to be edited by users
are hidden, which wouldn’t easily be possible in the admin panel.

2.6 News

The front page is able to show basic news posts, for example to make announcements
about updates or important events to the community.

NewsPost: Represents a post whose fields include a title, a short abstract which is
shown on the front page that doesn’t allow HTML code and a body text which is
full HTML capable and is only shown in the detail view.

CHAPTER 2. SOFTWARE STRUCTURE AND OBJECT ORGANIZATION 11

2.7 Rating

To provide a basic kind of quality management, next to the possibility to comment on
significant objects—such as kernels and experiments—objects can also be rated in a five
star system. This gives a quick feedback to both the object owner and the community
to judge about an object’s quality, may it be the evaluation, the richness and quality of
the describing text or the relevance of the experiment or kernel itself. Object rating is
handled in the rating app for which rabid ratings http://msteigerwalt.com/widgets/
ratings/v1.5/ is used.

2.8 Slider

Another feature to increase usability of the website is provided by the slider, also placed
on the front page. It can be used to announce and introduce new and important features
of the website in a prominent and eye catching way.

Slide: The model which represents a slide consisting of a title, a HTML capable body
text and some meta informations. An admin for slides is available in the admin
panel.

http://msteigerwalt.com/widgets/ratings/v1.5/
http://msteigerwalt.com/widgets/ratings/v1.5/

Chapter 3

Highcharts

3.1 Introduction

We choose Highcharts [4] as our plotting library, because it is written in pure JS
enabling us to even render big plots in modern browsers. It offers many different

plot types and an easy interface, is visual appealing and uses complete svg support, which
will be used for export to PNG, JPEG, PDF and SVG (see 3.2.4).

(a) basic column (b) stacked column

Figure 3.1: Plot examples

As said above, usage is generally very easy and described well at http://www.

highcharts.com/documentation/how-to-use. A short description:

1. Include the right .js in the header of the website, that should show a plot. Highcharts
uses jQuery [5] or Mootools for common tasks—as we use jQuery for processing
the result files, we let Highchats use jQuery too.

12

http://www.highcharts.com/documentation/how-to-use
http://www.highcharts.com/documentation/how-to-use

CHAPTER 3. HIGHCHARTS 13

Listing 3.1: Highcharts Initialisation

<script src="http :// ajax.googleapis.com/ajax/libs/

jquery /1.3.2/ jquery.min.js" type="text/javascript">

</script >

<script src="/highcharts/highcharts.js" type="text/

javascript"></script >

<script src="/highcharts/exporting.js" type="text/

javascript"></script >

<script src="/highcharts/plots.src.js" type="text/

javascript"></script >

2. Create a JSON1 structure containing the options for our plot to use.

Listing 3.2: Highcharts JSON

var options = {

chart: {

renderTo: ’chart -container ’,

defaultSeriesType: ’bar’

},

some more options here . . .

series: [{

name: ’Jane’,

data: [1, 0, 4]

}]

};

3. Let Highcharts render the plot. var chart = new Highcharts.Chart(options);

3.2 How we use it

We put all plot-related functions into a single .js-file: plots.src.js. Besides the main
plot-generating functions, there are a few helper ones:

• function Plot_options(container):
the general chart options,

• function calculate_offset(options):
the logic to set up the legend.

1JavaScriptObjectNotation: http://www.json.org/

http://www.json.org/

CHAPTER 3. HIGHCHARTS 14

• function round_values(series):
for rounding all plot values up to the second decimal place.

• function check_undefined(series):
for clearing all undefined values (see 3.2.2).

Right now, the steps for creating a plot are:

1. A Django view collects the needed runs—static by given address or dynamic by
given option array—and gives those, together with a plot-template, to the template
system.

2. The template system

• merges our different html-files,

• writes the run-addresses in an array and

• send the resulting website to the client.

3. The browser fetches the run-xmls with jQuery/AJAX and processes the files with
JavaScript:

• reading result-values, their rank, id and name,

• saving those to arrays, in order to create rank-, id-, kernel-, . . . aware plots.

• Those arrays will be written to our options-object and

• we make some finishing calculations:

– if needed, merge and normalize some values.

– sanity check for undefined-values.

– get the right margin for the legend.

4. Then, let Highcharts do his magic.

Chart Options

Here are the general settings, which should apply to all plots on paraweb. Right now we
have general settings without much modification. A short overview of the most changed
settings:

• options.title.text defines the title of the chart.

• options.plotOptions.column.stacking defines the stacking behaviour.

• options.series[i].data[] contains our values.
options.series[i].name is the name of the dataset.

• options.xAxis.categories[] contains the labels for the x-axis.
options.yAxis.title.text defines the label of the y-axis.

For a comprehensive list of all possible options, please refer http://www.highcharts.

com/ref.

http://www.highcharts.com/ref
http://www.highcharts.com/ref

CHAPTER 3. HIGHCHARTS 15

Calculate Offset

We have to calculate an offset for the legend, because in general, there are too many labels
for Highcharts standard floating behaviour. So we take the legend and set it beneath the
plot. To be able to estimate the offset, we count

• the letters in the legend,

• the maximum length of a label,

• the number of categories and

• the maximum length of a series name.

Together with some empiric constants we compute how much lines the legend will need,
and having the count of those lines, we finally have the height of our legend.

3.2.1 Processing

As for now, the processing part is not really generic like the other parts above. We
mainly have one template for every different plot (see 3.2.3). Future work will focus
on writing a generic processing backend, so that user can individually build and save
their plot-generics. So in this part, we will mainly describe the repeating parts and some
approaches for advanced processing.

The processing flow consists of:

run-addresses: the template-system will write all given run-addresses in var runs[].
For some tasks, it can be useful to store their names in var run_names[]:

var runs = [

{% for run in selected_runs %}

"{{ run.get_absolute_url }} download/"

{% if not forloop.last %},{% endif %}

{% endfor %}];

chart options: new Plot_options("{{ container }}") includes our general options-
file. After that, you should alter some values, for example the charts-name or
type.

loading and processing: the first statement just tells, that we wait with processing
until the page and pictures are fully loaded. We really do not want to crash the
browser while loading the page. Second half just says to commit synchronous
AJAX-calls for every address in our runs[]. Synchronous, because we do not want
different threads/processes to write concurrent to the same arrays. In some cases
we even have 2-dimensional arrays (with different kernels or configurations).

CHAPTER 3. HIGHCHARTS 16

Listing 3.3: jQuery AJAX

jQuery(document).ready(function () {

for (var i = 0; i < runs.length; i++){

jQuery.ajax({

url: runs[i],

async: false ,

success: function(data) {

var helperarray = {

data: []

};

Next part will be to declare some helper arrays—for logging different ranks, ids,
names, . . . —and to write in those the extracted data. As written above, we use
jQuery for XML-processing. This makes it easy to filter the relevant information.

Listing 3.4: jQuery XML

jQuery(data).find("Eventlist").each(function () {

var $eventlist = $j(this);

var type = $eventlist.attr("type");

if (type == "CoreTime") {

jQuery(data).find("Event").each(function () {

var $event = $j(this);

var rank = $event.attr("rank");

var id = $event.attr("id");

var label = $event.attr("name");

var $tp = $event.find("Throughput");

var avg = $tp.attr("avg");

var value = parseFloat(avg)/1024/1024;

if (isNaN(value)){ value = 0; }

helperarray.data.push(value);

});

options.series.push(series);

}

});

jQuery traverses the file, until it finds an Event-leaf, gives us this leaf and we can
grab the needed attributes. Then we just have to bring the float-value into the
right dimension (MB) and check, if it is still an usable value—JavaScript can’t
handle values too small. We add the value to our helperarray[] and finally add
the values in the right order into our options-object.

The right order depends on the type of plot used. The best resource here is the

CHAPTER 3. HIGHCHARTS 17

great demo gallery, together with its code examples: http://www.highcharts.

com/demo/.

postprocessing: include our calculate_offset-and round_values-routines, change
the size of the DOM2-object containing our plot and the offset in the plot and at
the end: plot it.

check_undefined(options.series);

round_values(options.series);

calculate_offset(options);

var chart = new Highcharts.Chart(options);

};// ready

3.2.2 Additional processing

undefined-Check

We have some situations, where we have undeclared variables. We can check this
in JavaScript with the value- and type-check ===. So we check for undefined with
value === "undefined". Avoid comparing with ==! If the value is null we get for
value == "undefined" as result true.

Listing 3.5: undefined-check

for (var i=0; i<options.series.length; i++){

for (var j=0; j<options.series[i].data.length; j++){

if (typeof options.series[i].data[j] === "undefined"){

options.series[i].data[j] = 0;

}

}

}

Tow nested loops for all data-“points” and a comparison.

rank-awarness

For stacking or dividing by ranks, we have in the easiest case an array var ranks = []

where we keep all found ranks. In the processing-part, we check if the rank exists.

Listing 3.6: Processing: check rank

var rank_exists = false;

for (var r_count=0; r_count < ranks.length; r_count++){

2Document Object Model: http://en.wikipedia.org/wiki/Document_Object_Model

http://www.highcharts.com/demo/
http://www.highcharts.com/demo/
http://en.wikipedia.org/wiki/Document_Object_Model

CHAPTER 3. HIGHCHARTS 18

if (ranks[r_count] == rank){

rank_exists = true;

break;

}

}

Otherwise, we create a new object in our columns for the rankname and the data.

if (!rank_exists){

options.series[rank] = {};

options.series[rank].name = ’rank’ + rank;

options.series[rank].data = [];

ranks.push(rank);

}

We continue with pushing the labels and category-names.

Merging columns

Merging columns is not that hard, but in combination of some processing-cases it can be
hard to overlook. So we focus on a simple case as a start-point for more complex plots.

First, we need temporary array. While processing, we have to decide weather our value
is initial or has to be added to some other values.

Listing 3.7: Highcharts merging columns

if (j==0){

series.data.push(rounded);

} else {

series.data[counter] += rounded;

}

This decision can be build of the iteration-count, already seen labels or ranks. After
processing the actual run and before beginning with the new one, we normalize our values
and save them to our options-array.

for (var k = 0; k < series.data.length; k++){

series.data[k] = series.data[k] / runs[i]. length;

}

options.series.push(series);

In more complex graphs you can save your normalized results in another temporary array,
or have enough arrays for all iterations and spread the values afterwards.

CHAPTER 3. HIGHCHARTS 19

3.2.3 Plotting Templates Overview

Here is an overview of our processing functions (located at plots.src.js) with a short
description of what they are intended to do.

used in r_detail.html for processing one run

• function graph(options, url)

Simple graph displays all found values as column.
(x: labels, y: data)

• function run_stacked_graph(options, url)

Graph displays ranks stacked by all found values as column.
(x: ranks, y-stacked: values/labels)

used in r_compare.html for processing many runs with the same configuration
and kernel

The runs are present in one array.

• function extended_graph(options, url, names)

Graph displaying the values as columns by run, sorted by label.
(x: runs by labels, y: values)

• function stacked_graph(options, url)

Graph displaying the runs stacked by all found values as column.
(x: runs, y-stacked: values/labels)

used in e_detail.html for processing many runs with the same kernel, even
with different configurations

The runs are present in a three-dimensional array, for example structured like

[//same kernel , but different configurations:

[// same kernel , same configurations:

runA , runB , ...],

[...], [...]

]

• function experiment_graph(options, url, names)

Graph displaying the different values as columns, ordered by configuration. A big
version of graph.html
(x: label, y: values)

• function experiment_graph_label(options, url, names)

Graph displaying the average value of the different labels between runs and ranks.
(x: labels, y: average values)

CHAPTER 3. HIGHCHARTS 20

• function experiment_graph_rank(options, url, names)

Graph displaying the average of all runs of the same configurations stacked by rank
and ordered by label-name.
Containing a small workaround for partitioning of the x-axes: due to the inability
of Highcharts to generate ranked columns in a partitioned x-axes (will be released
in the future), we move our columns on order to label one column for partitioning.
(x: configurations by label, y-stacked: ranks)

3.2.4 Exporting Module

With Version 2.0 of Highcharts comes a new feature: printing and chart-export as PNG,
JPEG, PDF and SVG. This is based on a server-side application for image-conversion.
By default, Highcharts will send the SVG to http://export.highcharts.com, where it
will be converted. A tutorial on how to run your own conversion-server can be found at
http://highcharts.com/documentation/how-to-use at the very end.

http://highcharts.com/documentation/how-to-use

Chapter 4

Search

As described before, the search functionality is based on Haystack, a framework that
provides an abstraction layer for search in python. Each object that needs to be searchable
is represented by a document that stores all search relevant informations. Acting like a
template, all available object attributes and even attributes of related objects can be
used. This is useful to provide search result in a wider context, e.g. when searching for
GPFS, not only configurations with GPFS are listed in results, but also experiments that
were executed on configurations that use GPFS as file system are listed. Listing 4.1 shows
the document template for a kernel. For related attributes, django template tags are
used. In this example, informations about related runs, experiments and configurations
of a kernel are included in the document. To increase search hit ratio, different flavours
or setup types are used. For example the plain text version, a version with a slugified
type name, and the slug version that can be set by users.

Slugs are abbreviated strings for a more complex string. To give an example, a
slug for operating system could be os. Furthermore, a slugified version of operating
system would be operating-system.

Listing 4.1: Kernel index document

{{ object.name }}

{{ object.owner }}

{{ object.owner.org }}

{{ object.type }}

{{ object.description }}

{{ object.etags|join:", " }}

{% for run in object.run_set.all %}

{{ run.name }}

{{ run.description }}

{% for experiment in run.experiment_set.all %}

{{ experiment.name }}

21

CHAPTER 4. SEARCH 22

{{ experiment.description }}

{{ experiment.etags|join:", " }}

{% endfor %}

{{ run.config.name }}

{{ run.config.description }}

{% for setup in run.config.setups.all %}

{{ setup }}

{{ setup.type.name|slugify }}={{ setup.value }}

{{ setup.type.slug }}={{ setup.value }}

{% endfor %}

{% endfor %}

4.1 Search Engine

The recommended search engine for production usage is solr. It provides advanced search
technologies and high performance with optionally setting up a search cluster for high
load demands.

4.2 Triple Tags

We use a form of triple tags to store additional information useful for storing and searching.
This kind of tag is standardized by W3C1, was first devised in 2004 as an experiment in
using del.icio.us as a collaborative geo-annotation database2 and was adopted by flickr
who used the term machine tags when referring to triple tags3.

Basically, a triple tag is a normal tag with a particular structure:

<namespace>:<predicate>=<value>.

In order to allow a clean separation between objects, the triple tag concept is used in
three different ways to allow fine grain object classification. Basically, the following three
types are used:

Classification: Object classification – including kernels and experiments – uses all three
fields of a triple tag to allow fine grain classifications without too high complexity.
Objects can be classified by adding triple tags in the classification field of objects
that support it. Object classifications are represented by tag clusters which are a
list of tag clouds. Each namespace has a cloud of predicates whose entries appear
bigger if there are more objects available that are classified with that particular

1called RDF: http://www.w3c.org/RDF/
2http://www.brainoff.com/weblog/2004/11/05/124/
3http://www.flickr.com/groups/api/discuss/72157594497877875/

http://www.w3c.org/RDF/
http://www.brainoff.com/weblog/2004/11/05/124/
http://www.flickr.com/groups/api/discuss/72157594497877875/

CHAPTER 4. SEARCH 23

namespace and predicate, this is the first level called object universe. The second
level is represented by a tag cluster in a specific namespace where each tag cloud
consists of predicate entries. The third and last level is a tag cloud in a specific
namespace with a specific predicate and consists of value entries of different font
sizes to indicate popularity.

Properties: For object properties, the namespace property is reserved, while predicates
and values can be freely set by users. This allows to add additional informations
to objects such as configurations. If there are no predefined fields available to
appropriately describe an object – e.g. to provide high probability to regain objects
from search – it is possible to add custom properties. A separate property field is
available by objects that support it.

Tags: The most simple way to classify objects is to tag them. Tags use the reserved
namespace tag and allow to set only the predicate of a triple tag. This coarse grain
object classification is represented by tag clouds and is supported by kernels and
experiments. Objects can be tagged using the tag field.

Examples are given below which show all three kinds of triple tags that are used. Queries
can be done by also using wildcards in any part of the tags:

hydrodynamics:weather=* to get a list of objects that have been classified with hydro-
dynamics and weather but can have any value

:inmemory= to find any item with the predicate inmemory in any namespace and
with any value

behaviour=static to find any object with a static behaviour as property, where the
internal representation would be property:behaviour=static

posix to get a list of objects that have been tagged with posix. Internally this is
represented as tag:posix

We hope this is a good way to find all relevant information searching for and with easy
extensibility while maintaining low complexity for the end user.

Chapter 5

Future work

Generally a popular website always evolves, especially it’s a community website with
demanding people. So we can’t proclaim what will be important and what not.

Saying that, we describe what in our view are some points needing to adjust/evolve.
Because of the modular design, we split this in some parts too.

5.1 General

• add FAQ

• Add forum

5.2 Django

• Update to 1.2

• Verify Uploads as XML/PBL

5.3 Highcharts

• generalize processing to that point, where user can stick their own graph together

• test with big result files

• add possibility to process more values of the xml (min/max, coretime)

24

Listings

1.1 Django template . 6
1.2 Django template loop . 7
3.1 Highcharts Initialisation . 12
3.2 Highcharts JSON . 13
3.3 jQuery AJAX . 16
3.4 jQuery XML . 16
3.5 undefined-check . 17
3.6 Processing: check rank . 17
3.7 Highcharts merging columns . 18
4.1 Kernel index document . 21

25

Bibliography

[1] Olga Mordvinova, Dennis Runz, Julian M. Kunkel, and Thomas Ludwig. I/O
performance evaluation with Parabench – programmable I/O benchmark. Procedia
Computer Science, 1(1):2119 – 2128, 2010. ICCS 2010.

[2] Dennis Runz and Christian Seyda. Programmable I/O-pattern benchmark for cluster
file systems. http://www.?, september 2009.

[3] Django Software Foundation. Django Homepage. http://www.djangoproject.com,
june 2010.

[4] Highslide Software. Highcharts Homepage. http://www.highcharts.com, june 2010.

[5] jQuery Project. jQuery Homepage. http://jquery.com, june 2010.

26

http://www.?
http://www.djangoproject.com
http://www.highcharts.com
http://jquery.com

	Django
	Introduction
	Setup
	Templates
	Deployment

	Software Structure and Object Organization
	Core
	Tagging
	Taxonomy
	Admin Panel
	User Control Panel
	News
	Rating
	Slider

	Highcharts
	Introduction
	How we use it
	Processing
	Additional processing
	Plotting Templates Overview
	Exporting Module

	Search
	Search Engine
	Triple Tags

	Future work
	General
	Django
	Highcharts

