
Name: Tien Duc Dinh
Betreuer: Olga Mordvinova, Julian Kunkel

Datum: 04-12-2007

Hadoop Performance Evaluation
Praktikum für Fortgeschrittene

2

Outline

1. Introduction
 Motivation

 Basic notations

1. HDFS Overview
 Architecture

 MapReduce

1. HDFS Performance
 Test Scenarios

 Write

 Read

 Comparison with local FS

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

3

What is Hadoop ?

 Hadoop is an open-source, Java-based programming
framework

– Apache project
 supports the processing of large data sets in a distributed

computing environment
 was inspired by Google MapReduce and Google File

System (GFS)
 currently used by many famous IT enterprises, e.g.

Google, Yahoo, IBM

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

4

Basic notations

 HDFS = Hadoop Distributed File System
 Distributed file system

– contains mechanisms for job scheduling/execution

– for instance allows to move jobs to data
 Job/Task = MapReduce job/task
 Metadata

– data, which consist of other data information

– e.g. file name, block location

 Block
– part of a logical file

– contiguous data stored on one server

– 64 MB default

– configurable

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

5

HDFS Overview

5

submit

 job
Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

XXXXXXXX

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

6

Client

- is an api of a HDFS application

- communicates with the Namenode because of metadata and directly runs the
operation on Datanodes

- if it’s a MapReduce operation, client creates an job and send it into the queue.
JobTracker handles this queue

submit

 job
Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

7

Namenode

- is the master server which manages all system metadata like the namespace,

access control information, mapping from files to chunks and chunk locations

executes file system namespace operations like opening, closing, renaming files

and directories

- gives instructions to the Datanodes to perform system operations, e.g. block

creation, deletion and replication

- having only one Namenode simplifies the design

submit

 job Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

8

Datanode

- one per node

- stores HDFS data in its local file system

- performs operations by clients and system operations upon instruction from the
Namenode

submit

 job
Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

9

Secondary Namenode

- modifications to the file system are stored as a log file by the Namenode

- while starting up, the Namenode reads the HDFS state from an image file

(fsimage) and then applies modifications from the log file

- after the Namenode finished writing the new HDFS state to the image file, it
empties the log file

- merges fsimage and the log file periodically and keeps the log size within a limit

submit

 job Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

10

TaskTracker

- is a node in the cluster that accepts MapReduce tasks from the JobTracker

- is configured with a set of slots, these indicate the number of tasks that it can
accept

- spawns a separate JVM processes to do the actual work, this helps to ensure that
 process failure does not take down the TaskTracker

- monitors the processes and reports their state to the JobTracker

- contacts to the JobTracker through heartbeat meassages

submit

 job Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

11

JobTracker (1)

- is the MapReduce master

- runs normally on a separate node

- uses a queue for the IO scheduling

- talks to the NameNode to determine the location of the data

- submits the work to the chosen TaskTracker nodes and monitors them through
heartbeat meassages in a time interval

submit

 job Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

12

JobTracker (2)

- if a task is failed, it may resubmitted elsewhere

- when the work is completed, the JobTracker updates its status

- Client applications can poll the JobTracker for information

- JobTracker is a single point of failure for the Map/Reduce infrastructure. If it goes
down, all running jobs are lost. The fileystem remains live

- there is currently no checkpointing or recovery within a single map/reduce job

submit

 job Metadata

metadata request

metadata response

Namenode

Queue Secondary

Namenode

Client

Filesystem

op-request
op-response

get job

Datanode

TaskTracker

JobTracker

Filesystem

Datanode

TaskTracker

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

13

MapReduce (1)

 Is a programming model and an associated implementation
for processing and generating large data sets

 Its functions map and reduce are supplied by the user

 Map
– process a key/value pair to generate a set of intermediate key/value pairs

– group together all intermediate values with the same key and pass them
to the Reducer

 Reduce

– XXXXXXXXXXXXXXX

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

14

MapReduce (2)

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

15

MapReduce (3)

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

16

Example: Word count occurences (1)

map(String key, String value):

 // key: document name (usually key isn’t used)

 // value: document contents

 for each word w in value:pair.

 EmitIntermediate(w, ”1”);

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(AsString(result));

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

17

Example: Word count occurences (2)

 the folder “data” contains 2 files a and b with the following
contents:
– a: Hello World Bye World

– b: Hello Hadoop Goodbye Hadoop

 the following command will solve this problem

> perl -p -e ’s/s+/n/g’ data/* | sort | uniq -c

 the output looks like
1 Bye

1 Goodbye

2 Hadoop

2 Hello

2 World

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

18

Example: Word count occurences (3)

 with MapReduce and e.g. with 2 map and reduce tasks we
have for:

Map

Reduce

Map 1 Map 2Hello → <Hello,1>
World → <World,1>

Bye → <Bye,1>
World → <World,1>

 Hello → <Hello,1>
Hadoop → <Hadoop,1>

Goodbye → <Goodbye,1>
Hadoop → <Hadoop,1>

G&S 1 G&S 2
 Goodbye → <Goodbye,1>

 Hadoop → <Hadoop,1,1>

Bye → <Bye,1>
 Hello → <Hello,1,1>
 World → <World,1,1>

Reduce 1 Reduce 2
Goodbye → <Goodbye,1>

Hadoop → <Hadoop,2>
Bye → <Bye,1>

Hello → <Hello,1>
World → <World,1>

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

19

Practise with HDFS Streaming

 copy the folder “data” onto the HDFS

> hadoop-0.18.3/bin/hadoop fs -put data /

 create and run the job with our defined mapper/reducer

> hadoop-0.18.3/bin/hadoop jar hadoop-0.18.3/contrib/streaming/hadoop-
0.18.3-streaming.jar -input /data -output /out -mapper “perl -p -e ‘s/\s+/\n/g’ ”
-reducer “uniq -c”

 with 2 reduce tasks we will end up with 2 reduce output files

> hadoop-0.18.3/bin/hadoop fs -cat /out/part-00000

 1 Goodbye

 2 Hadoop

 > hadoop-0.18.3/bin/hadoop fs -cat /out/part-00001

 1 Bye

 2 Hello

 2 World

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

20

Test scenarios

 write/read 512 MB with blocksize 64/128 MB

 write/read 2 GB with blocksize 64/128 MB

 write/read 4 GB with blocksize 64/128 MB

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

21

Write

0

5

10

15

20

25

30

35

40

45

50

34,145 33,076

23,770

32,842 33,106

23,510

32,205 32,044

23,579

Write, Blocksize 64 MB

512 MB, nrFiles = 1, rep =
1
512 MB, nrFiles = 5, rep =
1
512 MB, nrFiles = 1, rep =
3
2 GB, nrFiles = 1, rep = 1
2 GB, nrFiles = 5, rep = 1
2 GB, nrFiles = 1, rep = 3
4 GB, nrFiles = 1, rep = 1
4 GB, nrFiles = 5, rep = 1
4 GB, nrFiles = 1, rep = 3

M
B

/s

0

5

10

15

20

25

30

35

40

45

50

34,346 34,420

24,920

34,267 34,007

23,839

33,181 33,561

24,368

Write, Blocksize 128 MB

512 MB, nrFiles = 1, rep =
1
512 MB, nrFiles = 5, rep =
1
512 MB, nrFiles = 1, rep =
3
2 GB, nrFiles = 1, rep = 1
2 GB, nrFiles = 5, rep = 1
2 GB, nrFiles = 1, rep = 3
4 GB, nrFiles = 1, rep = 1
4 GB, nrFiles = 5, rep = 1
4 GB, nrFiles = 1, rep = 3

M
B

/s

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

22

Read

0

10

20

30

40

50

60

70

80

90

63,054
60,294

70,207

47,147 45,770

67,458

47,384
45,219

53,026

Read, Blocksize 64 MB

512 MB, nrFiles = 1, rep =
1
512 MB, nrFiles = 5, rep =
1
512 MB, nrFiles = 1, rep =
3
2 GB, nrFiles = 1, rep = 1
2 GB, nrFiles = 5, rep = 1
2 GB, nrFiles = 1, rep = 3
4 GB, nrFiles = 1, rep = 1
4 GB, nrFiles = 5, rep = 1
4 GB, nrFiles = 1, rep = 3

M
B

/s

0

10

20

30

40

50

60

70

80

90

65,929
63,600

68,759

46,486 45,864

65,291

46,497 47,139

53,436

Read, Blocksize 128 MB

512 MB, nrFiles = 1, rep =
1
512 MB, nrFiles = 5, rep =
1
512 MB, nrFiles = 1, rep =
3
2 GB, nrFiles = 1, rep = 1
2 GB, nrFiles = 5, rep = 1
2 GB, nrFiles = 1, rep = 3
4 GB, nrFiles = 1, rep = 1
4 GB, nrFiles = 5, rep = 1
4 GB, nrFiles = 1, rep = 3

M
B

/s

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

23

Comparison (1)

 compare the HDFS with local FS performance (nrFiles = 1,
rep = 1, Blocksize = 64 MB)

 test on the cluster with 9 nodes, each node has 1 GB RAM

HDFS 512 MB 4 GB

write 34.145 32.205

read 63.054 47.384

local FS 512 MB 4 GB

write 47.812 43.122

read 461.375 53.655

compare 512 MB 4 GB

write -28,6% -25,3%

read -86,3% -11.8%

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

24

Comparison (2)

 the HDFS reading performance is much lower than the local
FS for the small data set, because each node on the testing
cluster has 1 GB RAM and the small data set (512 MB) is fit
within the Ram

 HDFS is designed for huge data sets, so in this case the
HDFS writing/reading performance is lower circa -25,3% /
-11.8% than the local FS

 HDFS performance losing because of the HDFS
management and maybe Java IO overhead

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

25

Summary

Hadoop Architecture

MapReduceJava

I/O Performance is not too bad

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

26

References

 http://labs.google.com/papers/mapreduce.html

 http://hadoop.apache.org/core/docs/current/hdfs_design.html

 http://hadoop.apache.org/core/docs/current/cluster_setup.html

 http://hadoop.apache.org/core/docs/current/quickstart.html

 http://wiki.apache.org/hadoop/JobTracker

 http://wiki.apache.org/hadoop/TaskTracker

 http://wiki.apache.org/hadoop/PoweredBy

http://labs.google.com/papers/mapreduce.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/cluster_setup.html
http://hadoop.apache.org/core/docs/current/quickstart.html
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/PoweredBy

1. Introduction

2. Overview

Outline

o Motivation

o Basic notations

o Architectur

o MapReduce

o Test scenarios

o Read

o Comparison with

 local FS

o Write

2. Performance

27

End

Danke für Eure Aufmerksamkeit !

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

