Ruprecht-Karls Universitat Heidelberg
Institute of Computer Science

Research Group Parallel and Distributed Systems

Internship Report

Programmable 1/O-Pattern Benchmark
for Cluster File Systems

Name: Dennis Runz, Christian Seyda
Tutors: Olga Mordvinova, Julian M. Kunkel

Summer Term 09
April 1, 2009 - September 1, 2009

Contents

1 Introduction
1.1 Motivation

2 1/0-Pattern Benchmark

2.1 Design Goals e
2.2 Specification.
2.2.1 Basic Language Constructs
2.2.2 1/O Language Constructs
2.2.3 Parallel Language Constructs
2.3 Implementation Lo
2.3.1 Scanner Layer. e
2.3.2 Parser Layer
2.3.3 Interpreter Layer oo
2.4 Outlook & Future Work
3 Selected Cluster File Systems
3.1 Test Cluster e
3.2 Ceph o e
321 Overview e e e
3.22 Installation
3.3 GlusterFS e
3.3.1 Overview e e
3.3.2 Imstallation
4 Conclusion
List of Figures
List of Tables
Listings
Bibliography

13
13
13
13
14
18
18
19

22
23
24
25

26

1 Introduction

The main goal of this practical was to develop a benchmark for cluster file systems, where
custom I/O-patterns can be passed to. To accomplish this, we designed an interpreter
based benchmark. We use Flex [1] and Bison [2] to realize the scanner/parser layer
for this approach. We also installed two modern cluster file systems, GlusterF'S [3] and
Ceph [4], to keep up with current technologies.

This document should explain the structure of the benchmark enough to understand the
internals and to be able to work with the source code.

1.1 Motivation

Currently, there is still a lack of up to date benchmarks offering real I/O-patterns from
real applications. Either the tools use old or synthetic patterns for benchmarking, or
they didn’t serve all necessary features. To close this gap we developed an open source
benchmark tool, which satisfies those requirements. The decision for open source enables
the possibility to involve the community, which can also create and contribute 1/0O-
patterns of state-of-the-art applications.

The document is structured as follows: section 2 gives and overview of the benchmark,
with feature specification and implementation details. Section 3 describes the installation
of the file systems Ceph and GlusterF'S on the test cluster. Finally, we arrive at a
conclusion about our work.

2 1/0O-Pattern Benchmark

2.1 Design Goals

We decided to develop the benchmark in the C programming language as well as using
MPT for the parallel functionality, because the target was to make parallel I/O on cluster
like environments where C and MPI is widely spread.

Since we wanted to create a tool which enables a high range of flexibility, we decided to
design an own programming language. Thus, we needed a parsing and compiling layer.
For usability reasons we decided to use an interpreter model. Since efficient lexical
analysis and grammar processing are challenging, we decided to use Flex and Bison.
They are the open source implementations of Lex and Yacc [5]. Those tools generate
fast and reliable C code which does the lexical scanning and grammatical parsing !, each
takes a config file which describes keywords and grammar rules. Because of that we are
able to easily extend and modify the programming language grammar as well as increase
the feature richness of the benchmark. This concept made it possible to get a powerful
parsing layer with less effort.

Additionally, we needed efficient data structures to accomplish the interpreter model.
The Gnome Library (glib2) [6] offers a powerful API with lots of different data struc-
tures as well as - which is indeed the core application - a handy POSIX I/O API which
serves us for all sequential I/O needs. Next to this we also wanted to have real parallel
I/0O. To accomplish this, we use MPI I/0.

2.2 Specification

We differ three kinds of language constructs: basic control flow constructs, sequential
I/O constructs and parallel I/O constructs.

'LALR(1) - One token lookahead, left to right, right reduce to start symbol (shift/reduce, bottom up
parser)

2 I/O-Pattern Benchmark

2.2.1 Basic Language Constructs

Two basic keywords which play a important role are repeat, which is to execute code
blocks in a loop, and time, which allows time measurement of every command supported
by the programming language. These commands have a special syntactic role, because
they can be used as a prefix of every other command as well as using a code block.
Listing 2.1 gives an example.

Listing 2.1: Timing and Loops

time read(...);

time {
write(...);
read (...);

repeat 10 read(...);
repeat 10 {
write(...);
read (...);

Furthermore it is possible to use variables, both user defined and internal ones like
process rank or random numbers. In the following we list all basic keywords of the
programming language:

e time - Measurement of execution time
e repeat - Repeat a block of code several times
e print - Print text to stdout

e barrier - Force specified processes to synchronize

e group - Group block to limit code execution to certain processes
e define - Static defines of data structures

e groups - Data structure for groups

e pattern - Data structure for patterns

2 I/O-Pattern Benchmark

2.2.2 1/0 Language Constructs

For simple sequential 1/O benchmarking, we cover all necessary POSIX I1/O com-
mands:

e read - Read file content into memory and free
e write - Write given amount of bytes to a file

e append - Append given amount of bytes to a file
e create - Create a file

e lookup - Test if a file exists

e delete - Delete a file

e mkdir - Create a directory
e rmdir - Remove a directory
e stat - Read attributes from file or directory

e rename - Rename file or directory

We also support explicit file handles where an open and close needs to be issued manually.
Thus we defined the following commands, which all share an £ prefix for file handles:

e fopen - Open file and return a handle
e fclose - Close file from a handle
e fread - Read file content into memory and free (from a handle)

e furite - Write given amount of bytes to a file (from a handle)

Additionally, for true parallel I/O, we are using MPI I/O and support simple equal size
array splitting by using the MPI array type and individual file pointers. Figure 2.1 gives
an example with four processes, each gets an equal sized part of the file.

Figure 2.1: File Splitting with 4 Processes
B 0909090

2 I/O-Pattern Benchmark

The read and write commands expect a pattern as parameter. It describes how the
parallel I/O will be achieved. All parallel I/O commands share a p prefix:

e pread - Read file content into memory in parallel and free
e purite - Write given amount of bytes to a file in parallel

e pfopen - Collectively open file and return a handle

pfclose - Close file from a handle

e pfread - Read file content into memory in parallel and free (from a handle)

pfwrite - Write given amount of bytes to a file in parallel (from a handle)

2.2.3 Parallel Language Constructs

Another fundamental construct for creating more complex test programs is the grouping.
It is possible to assign different processes to different user-defined groups, where the
process to group mapping can be controlled by the test writer. Groups and mapping
rules are defined in the test program and the size of the groups can be set on command
line, when starting the program. To influence the mapping it is possible to set tags for
each group. This for example allows to have disjoint as well as unique process groups.

Listing 2.2: Grouping

define groups {"groupl", "group2"};
group "groupl" {

}

Parallel I/O will be accomplished by defining a pattern first, then passing it to parallel
I/O commands which expect it. A pattern is defined by an identifier name, the number
of iterations, the number of elements and the level of parallelism which can be:

e Level 0: Non-Collective Contiguous
e Level 1: Collective Contiguous
e Level 2: Non-Collective Non-Contiguous

e Level 3: Collective Non-Contiguous

2 I/O-Pattern Benchmark

In listing 2.3 we give an example of how to define patterns, each with 10 iterations and
1024 % 1024 elements per process. This causes that each process gets a 10MB part of the
file, since one element has the size of 1 byte. The total file size depends on the number
of processes N, participating in the read or write call. In this example the total file size
is N » 10MB.

Listing 2.3: Parallel I/O Patterns

define pattern {"patternO", 10, (1024 * 1024), 0}
define pattern {"patterni", 10, (1024 x* 1024), 1}

Figure 2.2 demonstrates the different levels of access, while a higher level achieves better
performance. The framed file-parts describe the way of how the whole file is read /written
by multiple processes.

Figure 2.2: Different Levels of Access with 3 Processes

File

— e e e e = — o

I<—'— Level 0 (Non-Collective Contiguous)

q

I
g "«—Level 1 (Collective Contiguous)

\
\
R
\
\
\

Level 2 (Non-Collective Non-Contiguous)

| —
SRRl
—

I - Level 3 (Collective Non-Contiguous)
I

L ¢ o o o B OB B |
A
\
\
\
A\
\

0 1 2 Process

The manual for this benchmark - attached to the source code - provides a detailed
explanation of the programming language.

2 I/O-Pattern Benchmark

2.3 Implementation

The benchmark has three layers, which are the scanning layer for lexical analysis, the
parsing layer for grammatical analysis and the intepreter layer.

2.3.1 Scanner Layer

To build the parser layer we are using Flex and Bison. First off we describe how we
create the Flex scanner by giving examples of the actually used lexer in the benchmark.
The Flex config file is split in three sections where %% is used as separation mark:

Listing 2.4: Flex Config Structure

hi

C definitions

h}

Flex definitions

%
Rules

hh

User-defined C routines

In the definitions section we include necessary header files and define data structures
as well as setting Flex options. Grammar rules are defined in the second section and
custom C code in the third. Listing 2.5 shows a simple example:

Listing 2.5: Flex Config Snippet

i

#include <stdio.h>
#include <glib.h>
#include "parser.h"

3

Dot

time return TTIME;

\{ return TEBRACEL;
\} return TEBRACER;

hh

gchar* strstrip(gchar *string) {...}

2 I/O-Pattern Benchmark

To define the Flex rules, we use regular expressions as well as simple keywords as shown
in listing 2.5. Once Flex recognizes a rule, the code following on the right (usually
separated by tab stops) will be executed. Since we want to use a Bison parser on top of
Flex, we simply return a keyword token to Bison by writing a return statement. Flex
generates the necessary tokens automatically, but we need to define it in Bison manually
(Listing 2.6). The custom strstrip function removes the leading and trailing quotes
(") from strings.

2.3.2 Parser Layer

The Bison config file has the same structure as Flex’s. Since Bison does the grammar
parsing, we need to define the keyword tokens that Flex returns to the Bison parser. We
also need to define grammar rules for each command, where the defined keyword tokens
and Bison rules can be used. Listing 2.6 gives an example.

Listing 2.6: Bison Config Snippet

%{

#include <stdio.h>

%}

%token TTIME TEBRACEL TEBRACER

hh
commands : /* empty */
| commands command

command : time
time : TTIME TEBRACEL {

commandList = g_slist_prepend(commandlList,
cmd_new (CMD_TIMESTART, NULL, NULL));

}
commands TEBRACER {
commandList = g_slist_prepend(commandList,
cmd_new (CMD_TIMESTOP, NULL, NULL));
b

hh

10

2 I/O-Pattern Benchmark

Due to the fact that the config files of Flex and Bison are similar, we concentrate on the
grammar section. The parser needs a root grammar definition which is, by default, the
first defined grammar rule. From here on, we build our grammar tree by defining other
grammar rules. For the commands rule we use left recursion since this is more efficient
then right recursion in Bison [7].

Every time Bison finds a match of a rule, the code between braces {...} is executed.
We use this feature to build a parse tree for the interpreter. But since there are still
only linear grammar constructs in the benchmark, we decided to compress the tree into
a list of commands to allow a less complex implementation.

For example, to implement the time command, we use a start and stop command. So the
interpreter knows when to issue and complete a timing measurement. We use a singly
linked list from the Gnome Library and prepend the commands on the beginning. This
creates an inverse list of commands and needs to be reversed once the source file has
been completely parsed. The reason for this is the complexity for appending on GSList

(O(n)) [8].

cmd_new creates a new command for the interpreter with the following parameters: the
command type, the command name and a pointer to a parameter struct, since some
commands need parameters.

Bison can be connected to Flex easily since they are adapted to work together. The entry
function of the Flex generated lexer is yylex(). Bison’s entry function is yyparse()
which in turn calls yylex() each time the next token is requested. To accomplish that
Flex passes the recognized tokens to Bison, we always return the token identifier in Flex
like in listing 2.5. When we are generating the Bison parser in the make file, it outputs
(-d) a header file parser.h ? with all necessary definitions which we need to include in
the Flex config file. As shown in listing 2.7 we create a case insensitive (-i) batch mode
(-B) Flex scanner with some optimizations (-CFr) (see [9]).

Listing 2.7: Generating the Lexer and Parser

flex -CFr -i -B -o scanner.c kulga.lex
bison -d -o parser.c kulga.yacc

2.3.3 Interpreter Layer

We use several structures from the Gnome Library to implement the interpreting of the
generated parse list. For example, we are using GHashTable hash tables to implement
user defined variables or process groups, GList as stacks to realize constructs like loops

2The default name y.tab.c can be changed with -o flag

11

2 I/O-Pattern Benchmark

or timing, and the Better String Library [10] to do the string processing for variable
value replacement.

2.4 QOutlook & Future Work

There are several points for improvements. The biggest limitation of the todays im-
plementation is the current parse tree structure. It is hold in a list, what allowed us
to have a less complex implementation. This especially leads to some restrictions: we
cannot efficiently handle conditional branches in the language since we are not able to
do forward branches in a list structure. To allow this we need to use a real abstract
syntax tree processing.

Furthermore, the language grammar needs to be improved likewise. This all goes in
common with the lack of true expression processing. Expressions would basically
enable all options for later more complex language constructs, like runtime expression
evaluation, functional programming paradigms and similar.

With those three improvements we would create a basis that can be easily extended.
That means it would be possible to add things like whole new programming paradigms,
conditional language constructs like if/else or while together with boolean expressions,
arithmetic expressions, string concatenation and more.

12

3 Selected Cluster File Systems

3.1 Test Cluster

The cluster, where we installed the file systems on, has one master which is acting as a
gateway to nine compute nodes. Each node is equipped with:

e Two Intel Xeon 2GHz CPUs

1GB DDR-RAM

e Four nodes with 0GB IDE HDD

Five nodes with 160GB SATAII RAIDO

1GBit Ethernet Interconnection

Ubuntu ”Gutsy Gibbon” 7.10 Server Edition

MPICH2 1.0.5p4 [11] and GCC 4.2.3 amongst others

3.2 Ceph

3.2.1 Overview

Ceph [12] is a new object based distributed file system, capable of managing many
petabytes of storage. It has been developed at the Storage Systems Research Center [13]
at the University of California, Santa Cruz. Ceph introduced several innovative con-
cepts, for example CRUSH [14], an algorithm for decentralized placement of replicated
data. The main goals are POSIX compliancy, performance and fault tolerance through
replication, thus offering no single point of failure [15]. The Ceph system consists of
three main components. A POSIX compliant client, a cluster of OSDs representing the

13

3 Selected Cluster File Systems

distributed data storage, and a metadata cluster managing the file system’s meta data
information.

Recently the Ceph developers released several new versions in a relatively short time
period. When we started this practical, the installation of Ceph required some manual
adaptions in some source files and scripts to make it work properly on our cluster. But
with the latest release this adaptions are no longer needed. We describe the installation
steps for Ceph 0.14.

3.2.2 Installation

Before installing Ceph, the packages 1ibboost-dev, libedit-dev and libssl-dev

should have been installed. The Ceph source can be downloaded at http://ceph
.newdream.net/download/ceph-0.14.tar.gz and should be extracted on a place of
your choice. We will reference this folder as <ceph-src> in the following.

Listing 3.1: Getting Ceph
sudo apt-get install libboost-dev libedit-dev libssl-dev

wget http://ceph.newdream.net/download/ceph-0.14.tar.gz
tar xzf ceph-0.14.tar.gz

Once extracted, we can build Ceph from sources. Optionally, you can define a custom
folder (--prefix) where Ceph will be installed. If not set, the default installation target
folder will be /usr. We assume that /<ceph-install> is a shared folder where every
node has access to, e.g. via NFS.

Listing 3.2: Compiling Ceph

./configure --prefix=/<ceph-install>
make
make install

Listing 3.3 is a sample configuration. It defines two nodes, each hosting a monitor
(MON), metadata server (MSD) and an object storage server (OSD). The ceph.conf
file is placed in the etc folder within the Ceph installation path /<ceph-install>.

14

3 Selected Cluster File Systems

Listing 3.3: Ceph Configuration File ceph.conf

[global]

pid file = /var/run/ceph/$name.pid
[mon]

mon data = /tmp/ceph/mon
[monO]

host = nodel

mon addr = 10.0.0.1:6789
[mon1]

host = node2

mon addr = 10.0.0.2:6789
[mds]
[mdsO]

host = nodel
[mds1]

host = node2
[osd]

sudo = true

osd data = /tmp/ceph/osd
[osd0]

host = nodel
[osd1]

host = node?2

[group everyone]

addr = 10.0.0.0/24
[mount /]

allow = Yeveryone

Next we need to create the underlaying file systems for the OSDs on all defined hosts.
For our installation, we used the ext3 file system with user xattr support. Initially,
we installed the Linux 2.6.30 kernel which is officially supporting the btrfs file system,
recommended for OSDs. But for some reason, ext3 performed much better than btrfs
on meta data operations. Therefore we decided not to use it for Ceph.

Table 3.1 shows the average meta data I/O performance of ext3 and btrfs on the test

cluster, determined with the fileop tool from the I0zone kit [16]. We only show certain
relevant commands measured by fileop -f 10 -s 1.

15

3 Selected Cluster File Systems

Table 3.1: Average Metadata-Performance of ext3 and btrfs [ops/sec]

FS mkdir | rmdir | create close stat | chmod link | unlink | delete
ext3 || 21213 | 28057 | 30053 | 157296 | 293945 | 122950 | 56764 | 81206 | 27521
btrfs 5699 | 4879 5331 | 119776 | 266018 | 22514 | 4185 7260 4414

To make the OSDs work properly, we need to do some additional cleaning of the created
and mounted ext3 partition. As listing 3.4 shows, Ceph data is placed in /tmp/ceph/
respectively on sda3 here as an example, but you can choose an arbitrary path and
partition.

Listing 3.4: Creating the Storage File System

mkdir -p /tmp/ceph/osd
mkdir -p /tmp/ceph/mds

sudo mkfs.ext3 /dev/sda3

sudo mount -t ext3 -o user_xattr /dev/sda3 /tmp/ceph/osd/
sudo rm -vRf /tmp/ceph/osd/*

sudo rm -vR /tmp/ceph/mon/

sudo chmod 777 /tmp/ceph/osd/

We create the distributed Ceph file system on all hosts defined in the config file with the
mkcephfs command:

Listing 3.5: Creating the Ceph File System
/<ceph-install>/sbin/mkcephfs --allhosts -v

sudo modprobe libcrc32c
sudo insmod /<ceph-src>/src/kernel/ceph.ko

This requires that you can login as root over SSH to all nodes defined. mkcephfs is not
yet capable to create the Ceph file system in parallel. This means it is necessary to run
the script with the --allhosts option to get a consistent file system. Additionally, a
running Ceph cluster can also be extended afterwards [17,18].

Together with this step we load the Ceph kernel module, which requires 1ibcrc32c to
be loaded first. Alternatively there is a Fuse client available, but we had some serious
problems using it with Ceph 0.14.

In case of successful installation, Ceph can be started on all hosts (-a) with the shipped

script like in listing 3.6. In the second step, we mount the distributed file system, by
giving the monitor’s IP address, to a local mount point /mnt/ceph.

16

3 Selected Cluster File Systems

Listing 3.6: Starting Ceph
/<ceph-install>/etc/init.d/ceph -a start

sudo mkdir /mnt/ceph
sudo mount -t ceph 10.0.0.1:/ /mnt/ceph

If root remote login over SSH is not possible, you need to run /<ceph-install>/etc/
init.d/ceph start on all nodes manually.

17

3 Selected Cluster File Systems

3.3 GlusterFS

3.3.1 Overview

GlusterFS [3] is developed by Gluster, formerly known as Z Research. The prototype
was delivered in early 2007 and version 2 came out in May of 2009. We tested it at
version 2.0.6 and meanwhile 2.0.7 has been released. GlusterFS provides a modular and
kernel-independent file system, thus making it capable of scaling to several petabytes
and easy to customize and install. It has a client/server-architecture and is set on
top of an existing, underlying file system. GlusterFS also provides POSIX-conformity
and minimizes dependencies since there is no extra meta-data server. The client uses
FUSE [19] to deliver a file system in user space.

Modularity and customizability is achieved by so called translators. They provide a lot
of optional features. The following different translator types are available:

e Performance-Translators are used, to adjust the filesystem to your workload.
Example: performance/write-behind aggregates multiple smaller write oper-
ations into fewer larger write operations and writes them in background (non-

blocking).

e Protocol-Translators determine which transport-protocol should be used. Ex-
ample: protocol/server and protocol/client implements TCP and Infiniband
amongst others.

e Cluster-Translators specify how the data should be organized on the servers.
Example: cluster/replicate stores identic copies on each of the selected server.

e Encryption-Translators offer an encrypted transmission of the data between
server and client. So far only the sample encryption encryption/rot-13 is imple-
mented.

e Feature-Translators are those translators, which don’t fit in the other cate-
gories. Example: By using features/locks you can get both, advisory locking
and mandatory locking support. This also implements more locking mechanisms
required for GlusterF'S itself.

With these translators it is possible to stack a customized distributed file system. You
can specify the appropriate translators in volume-files, which are loaded at the start by
server or client.

18

3 Selected Cluster File Systems

3.3.2 Installation

GlusterF'S is easy to install in single-user environment, since there are pre-built packages
for a lot of Unix based operating systems. For example CentOS, Debian, Fedora or
Ubuntu. In the multi-user environment, some adjustments have to be done.

Before installing GlusterF'S, the packages flex, bison, byacc should have been in-
stalled. The sources can be downloaded at http://ftp.gluster.com/pub/gluster/
glusterfs/2.0/LATEST/glusterfs-2.0.6.tar.gz and be extracted on a place of your
choice.

Listing 3.7: Getting GlusterF'S

mkdir gluster

wget http://ftp.gluster.com/pub/gluster/glusterfs/2.0/
LATEST/glusterfs-2.0.6.tar.gz

tar xzf glusterfs-2.0.6.tar.gz

Once extracted, we can build GlusterFS using the default compiler installed.

Listing 3.8: Compiling GlusterF'S

./configure --prefix=/<gluster-install> --with-
mountutildir=/<gluster-install>/sbin

make

During installation, we faced the problem that make install wants to copy the
start /stop-script into /etc/init.d. But as unprivileged user, we do not have the rights
to write in /etc. We modified the makefile /extras/init.d/Makefile to cause that
the init script is placed in the specified custom installation folder.

After replacement of the initdir entry initdir=/etc/init.d with
initdir=${prefix}/etc/init.d, we can install GlusterF'S as shown in Listing 3.9.

Listing 3.9: Installing GlusterF'S

make install

For better comparability, we use ext3 as underlying file system. In our sample config-
uration we use two nodes, a server and a client, where one volume-file per server and
client is needed. Using /mnt/server/ as destination-folder server-side and /mnt/client
/ client-side.

In the glusterfs-server.vol volume-file, we define the properties of the server (see
listing 3.10). First of all, we set the storage destination as statet in volume posix.

19

3 Selected Cluster File Systems

The next parts are wrapped around the layers previously defined, indicated by the
keyword subvolumes. We also add advisory locking and mandatory locking support in
volume locks. In volume brick, we have the performance-translator performance/io
-threads, to handle more requests at a time. In the last volume, we choose the network
protocol (TCP) and the access rights.

Listing 3.10: GlusterF'S Volume-File glusterfs-server.vol

file: /<gluster-install>/glusterfs-server.vol

volume posix

type storage/posix

option directory /mnt/server
end-volume

volume 1locks
type features/locks
subvolumes posix
end-volume

volume brick
type performance/io-threads
option thread-count 2
subvolumes locks

end-volume

volume server
type protocol/server
option transport-type tcp
option auth.addr.brick.allow *
subvolumes brick

end-volume

The volume-file glusterfs-client.vol for the client follows the same concept (see
listing 3.11). In volume remote, we again define the protocol to use. Additionally we
give the address of the server (IP or DNS name) and which volume we want to access
on server-side. In volume writebehind and volume cache, we use the performance
translators performance/write-behind and performance/io-cache. I/O cache helps
to reduce the load on the network and the server, when the client is accessing files
for reading. Performance improvedments can be expected as long as the files are not
modified on the server between reads.

20

3 Selected Cluster File Systems

Listing 3.11: GlusterF'S Volume-File glusterfs-client.vol

file: /<gluster-install>/glusterfs-client.vol
volume remote
type protocol/client
option transport-type tcp/client
option remote-host 192.168.0.3 # IP address of the
remote brick

option remote-subvolume brick
end-volume

volume writebehind
type performance/write-behind
option cache-size 1MB
subvolumes remote

end-volume

volume cache
type performance/io-cache
option cache-size 512MB
subvolumes writebehind
end-volume

Starting the Server is the only part where root rights are required. This is because of
the low-level I/O control in ClusterFS:

Listing 3.12: Starting GlusterFS Server

sudo /<gluster-install>/glusterfsd -f /<gluster-install>/
glusterfs-server.vol

Finally we can start the client:

Listing 3.13: Starting GlusterFS Client

/<gluster-install>/sbin/glusterfs -f /<gluster-install>/
glusterfs-client.vol /mnt/client

Alternatively, you can use the init.d script. Because of the previously described install
problem, we had to slightly adjust the lines with SCRIPTNAME and CONFIGFILE in order
to use them.

21

4 Conclusion

We developed a programmable benchmark which is able to test different I/O-patterns
defined in an own programming language. These patterns, which can be defined by using
sequential as well as parallel I/O commands, can be passed into the benchmark. Even
in an advanced stage of implementation, the benchmark has potential for improvements
as described above.

Furthermore we learned the ropes of two modern distributed file systems - Ceph and
GlusterFS - by installing them on a test cluster. We presented its installation and
some challenges, which we faced to. Ceph is not yet capable for productive usage, but
GlusterFS is already used in productive environments by several institutions [20].

22

List of Figures

2.1 File Splitting with 4 Processes
2.2 Different Levels of Access with 3 Processes

23

List of Tables

3.1 Average Metadata-Performance of ext3 and btrfs [ops/sec]

24

Listings

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Timing and Loops L 5
Grouping e e 7
Parallel I/O Patterns 8
Flex Config Structure L 9
Flex Config Snippet 9
Bison Config Snippet 10
Generating the Lexer and Parser 11
Getting Ceph oL 14
Compiling Ceph 14
Ceph Configuration File ceph.conf 15
Creating the Storage File System 16
Creating the Ceph File System 16
Starting Ceph e 17
Getting GlusterF'S 19
Compiling GlusterFS 19
Installing GlusterF'S L 19
GlusterF'S Volume-File glusterfs-server.vol 20
GlusterFS Volume-File glusterfs-client.vol 21
Starting GlusterF'S Server oL 21
Starting GlusterF'S Client, 21

25

Bibliography

Flex. http://flex.sourceforge.net, October 2009.

Bison. http://www.gnu.org/software/bison/, October 2009.

GlusterF'S. http://www.gluster.com, October 2009.

Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Car-
los Maltzahn. Ceph: A Scalable, High-Performance Distributed File System.
http://www.usenix.org/events/osdi06/tech/weil.html, November 2006.

The Lex & Yacc Page. http://dinosaur.compilertools.net, October 2009.

Gnome Library. http://library.gnome.org, October 20009.

Bison Manual: Recursive Rules. http://www.gnu.org/software/bison/manual/
bison.html#Recursion, October 2009.

Gnome Library Reference Manual: Singly-Linked Lists. http://library.gnome.
org/devel/glib/stable/glib-Singly-Linked-Lists.html#g-1list-append,
October 2009.

Flex Manual: Options for Scanner Speed and Size. http://flex.
sourceforge.net/manual/Options-for-Scanner-Speed-and-Size.html#

Options-for-Scanner-Speed-and-Size, October 2009.

Paul Hsieh. The Better String Library. http://bstring.sourceforge.net, Octo-
ber 2009.

Argonne National Laboratory. MPICH2. http://www.mcs.anl.gov/research/
projects/mpich2/, October 20009.

Ceph. http://ceph.newdream.net/, October 2009.

Storage Systems Research Center. Petabyte Scale Object-Based Storage Systems
@ SSRC. http://www.ssrc.ucsc.edu/proj/ceph.htm, May 2008.

26

http://flex.sourceforge.net
http://www.gnu.org/software/bison/
http://www.gluster.com
http://www.usenix.org/events/osdi06/tech/weil.html
http://dinosaur.compilertools.net
http://library.gnome.org
http://www.gnu.org/software/bison/manual/bison.html#Recursion
http://www.gnu.org/software/bison/manual/bison.html#Recursion
http://library.gnome.org/devel/glib/stable/glib-Singly-Linked-Lists.html#g-list-append
http://library.gnome.org/devel/glib/stable/glib-Singly-Linked-Lists.html#g-list-append
http://flex.sourceforge.net/manual/Options-for-Scanner-Speed-and-Size.html#Options-for-Scanner-Speed-and-Size
http://flex.sourceforge.net/manual/Options-for-Scanner-Speed-and-Size.html#Options-for-Scanner-Speed-and-Size
http://flex.sourceforge.net/manual/Options-for-Scanner-Speed-and-Size.html#Options-for-Scanner-Speed-and-Size
http://bstring.sourceforge.net
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://ceph.newdream.net/
http://www.ssrc.ucsc.edu/proj/ceph.htm

[14]

[15]
[16]

[17]

[19]

[20]

Bibliography

Sage Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH: Con-
trolled, Scalable, Decentralized Placement of Replicated Data. http://www.ssrc.
ucsc.edu/Papers/weil-sc06.pdf, November 2006.

Ceph Wikipedia Article. http://en.wikipedia.org/wiki/Ceph, October 2009.

IOzone. http://www.iozone.org, October 2009.

Ceph: OSD cluster expansion/contraction. http://ceph.newdream.net/wiki/
0SD_cluster_expansion/contraction, October 2009.

Ceph: Monitor cluster expansion. http://ceph.newdream.net/wiki/Monitor_
cluster_expansion, October 2009.

FUSE, Filesystem in Userspace. http://fuse.sourceforge.net, October 2009.

Who is using GlusterFS. http://gluster.com/community/documentation/
index.php/Who’%27s_using_GlusterFS, October 2009.

27

http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf
http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf
http://en.wikipedia.org/wiki/Ceph
http://www.iozone.org
http://ceph.newdream.net/wiki/OSD_cluster_expansion/contraction
http://ceph.newdream.net/wiki/OSD_cluster_expansion/contraction
http://ceph.newdream.net/wiki/Monitor_cluster_expansion
http://ceph.newdream.net/wiki/Monitor_cluster_expansion
http://fuse.sourceforge.net
http://gluster.com/community/documentation/index.php/Who%27s_using_GlusterFS
http://gluster.com/community/documentation/index.php/Who%27s_using_GlusterFS

	Introduction
	Motivation

	I/O-Pattern Benchmark
	Design Goals
	Specification
	Basic Language Constructs
	I/O Language Constructs
	Parallel Language Constructs

	Implementation
	Scanner Layer
	Parser Layer
	Interpreter Layer

	Outlook & Future Work

	Selected Cluster File Systems
	Test Cluster
	Ceph
	Overview
	Installation

	GlusterFS
	Overview
	Installation

	Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography

