
Ruprecht-Karls Universität Heidelberg

Institute of Computer Science

Research Group Parallel and Distributed Systems

Internship

Analysis and Extension of the JavaGUI for
PIOsimHD

Name: Samantha Dulip Withanage

Matriculation number: 2371809

Supervisors: Prof. Dr. Thomas Ludwig, Julian Kunkel

Date of submission: 10. Februar 2009

1 Abstract

This document describes the graphical user interface for the Parallel I/O Simulator(PIOsim)
for clusters, developed by the Parallel and Distributed Systems Research Group of the
Ruprecht-Karls Universität in Heidelberg, Germany. The graphical user interface is based on a
previous implementation. [Bra].

The PIOsimGUI is a swing and awt based java application. The underlying modeling ar-
chitecture Piosim which is also a java application was completely rewritten by Julian Kunkel
during the internship period to facilitate the complex requirements of modeling the cluster.
The integration of the model to the existing graphical user interface was executed by the au-
thor. New programming concepts were added to the programming model and to the graphical
user interface in order to provide e�cient and dynamical graphics rendering. The existing
GUI was extended to facilitate more than one switch, component hosting machines that hold
a set of components. A basic point-to-point connection drawing concept was introduced for
connecting the cluster component. An easily modi�able attribute setting concept was added
and the programming was executed in a one-to-one mapping of the model object for easily
implementation of newer component types. Some of the restrictions of the earlier drawing area
were eased as well.

The document also discusses the technical di�culties that the author confronted in extending
the graphical user interface. Most of the restrictions that were cased by the underlying swing
and awt libraries are discussed and illustrated in examples.

Furthermore, the document describes the concepts of the Model-View-Controller (MVC)
architecture that is a generally accepted and mostly used concept of user interface designing.
The relation of the current model to the MVC architecture is also discussed.

The Eclipse Standard Widget Toolkit (SWT) [A07] is anaylsed in the last chapter. A sample
SWT paint application is included as an executable jar �le which comes with the eclipse SWT
installation.

2

Contents

1 Abstract 2

2 Introduction 4

2.1 Methodology . 4

3 Use cases 5

4 Model-View-Controller Concept 16

4.1 Introduction . 16
4.2 Comparison Current Model vs. MVC . 17

5 Current Model 18

5.1 Model . 18
5.2 View . 20
5.3 Functions . 21
5.4 JPanel restrictions . 23

6 SWT vs. AWT 25

6.1 SWT Introdcution . 25
6.2 The line drawing concept of SWT vs. AWT . 26

7 Examples of better design 27

8 Conclusion 28

Bibliography 29

3

2 Introduction

The parallel I/O Simulator (PIOsim) is a model - driven graphical user interface designed
for simulating parallel programs running on clusters. A cluster in the context of the document
is understood as a set of clients, servers and switches that are connected with network cables to
act as one-logical unit, which executes tasks in parallel. The graphical user interface prototype
that was developed by Matthias Braun and was later extended by Julian Kunkel is the basis
of the user interface.

The main purpose of the internship is to develop a consistent model and to extend the
limited functionalities that exist in the current GUI. Another important task is to decouple the
components of the model and the GUI into separate packages for a clear separation and for the
facilitation of autonomous development. As the model concept that was adopted earlier was not
necessarily ful�lling the complex requirements of simulating a cluster, Julian Kunkel designed
a completely di�erent model than that was adapted earlier. The graphical components, that
was existing earlier was integrated into the model and necessary changes in the model for the
integration was executed during the internship period. The following sections describe the
model package and the GUI packages that currently exist.

2.1 Methodology

The following methodology is used in this document.

1. PIOsim is the abbreviation for the Parallel Input/Output Simulator.

2. GUI is the graphical user interface of the PIOsim. It is also referred as user interface or
the user interface.

3. Component, Graphical component is the word used for the visual object of the component
of a cluster such as servers or clients.

4. Panel is de�ned as a graphical user component which holds a set of other components.
E.g. the graphical user in label [1] of the �gure 5.3 shows a panel component.

5. Drawing Area is a canvas where the components are drawn.

6. The term [DE], when used before any word is an indication that it is a word in the
German language or a key of the German keyboard. DE is the abbreviation for Deutsch.

4

3 Use cases

In this chapter, a real world cluster is introduced and the tasks that have to be executed
when modeling the cluster is also described. Some of the usability features were decided after
observing some of the fascinating open source programs such as NetBeans [A10] and the Eclipse
Software Framework [A11]. Another most considered fact is the type of users that would use
the tool. The users who will use the tool will be mostly linux users who are more used to the
key board combinations than moving the mouse. Therefore mostly user key combinations for
executing were also considered when de�ning use cases. Some of the possible implementation
suggestions were also added in the user case diagrams. Please note that the user cases are
colored in fading green and the possible solutions are colored in the fading yellow.

Figure 3.1: Cluster Architecture

The architecture of a real-world scienti�c cluster that is calculating parallel programs appears
similar to the �gure 3.1. The clients are computers where the parallel programs are running.
The clients execute special programs that can do tasks in parallel. In a homogeneous cluster
every client has the identical hardware. But there are also heterogeneous clusters where the
hardware con�gurations of the clients di�er. The discussion will be focused explicitly on the
homogeneous clusters.

5

3 Use cases

In the cluster, there are servers which access the data, that is being read or written by the
parallel programs that are running on the clients. Servers posses disk I/O systems which hold
the data.

Clients and servers are connected to a network with network cards and network cables. The
network may not be typical Ethernet, but other high performance networks such as myrinet.
Inside the network, there are switches that transfer the network data.

The main user cases of the visual modeling structure are listed underneath and is depicted
in the �gure 3.2 .

Figure 3.2: Basic user cases

1. De�ne and generate the templates.

In a homogeneous cluster, the hardware of the computer nodes are identical. Therefore
it is necessary to de�ne a template architecture to facilitate de�ning similar hardware
components which only defer from there label (A name or a unique id). There are also
global settings in the cluster, which set using the template structure.

2. Instantiate the component.
A cluster component has its own attributes. For each component, the attributes has to
be set either by setting them individually or by modi�cation of a template. Changes to
the templates should be propagated e�ciently, for instance this allows rapid testing of
the cluster environment with di�erent network speeds.

3. Identify between connectable or unconnectable components and network ca-

bles.

The components are categorized in to three groups according to their connectability to
external components. The �rst type is the unconnectable component that cannot be
connected to a network directly, rather holds the components that interacts with the

6

3 Use cases

network. E.g for unconnectable components are clients or servers that are equipped with
network cards. The second type of component is the network component such as Net-
work interface cards which are connected to the network cables. The third type is the
connection cables. They are distinguished from other network components because they
have on either end a network component attached to it, unlike the network components.

4. Connect two components together.
After components are set, their Network components must be made connectable. Explic-
itly, this is achieved by setting a network cable between two connectable components.

5. Component identi�cation.
A mechanism must be in place to identify the component type and their attributes.

6. Remove a connections. Disconnecting a component is identi�ed as removing the cable
that connects the component to the cluster.

Following use cases are de�ned not only for the basic functionalities but also for the better
user experience in the GUI.

Figure 3.3: Adding and editing components in the GUI

1. Adding a new component to the cluster.

7

3 Use cases

• A list of components in the GUI

A list of component types has to be de�ned in a panel for the gui user to select
them for editing. The panel must hold all the components that are available in the
real-world cluster.

• Allow drawing the component in the drawing area.

If the component can be drawn using a pre-de�ned model, it will enhance the user
experience. User may wish to draw the component by enlarging or minimizing a
standard model picture.

• Copy and Paste

Duplicating the existing cluster components is necessary when constructing the clus-
ter components or adding components that are similar to the already existing com-
ponents.

• Change the mouse type when component is clicked.

When the component is clicked it is desirable that the mouse type is changed indi-
cating that component adding is activated. This e�ect helps the user to know that
the gui is in an editable modus.

• Allow drag and drop feature for the components

For the user to create a direct projection of the real-world cluster in the GUI, it may
be needful to relocate the components due to the infrastructure changes.

The �gure 3.4 in the Netbeans shows this e�ect, when editing the uml diagrams. Figure
3.4 shows that an actor is chosen and highlighted. The gui user can insert an actor
component in to the drawing area. The component has to be draggable inside the drawing
area to facilitate repositioning. Another interesting feature may be to cut and paste the
components. As most of the moderner graphical applications allow, copying and pasting
the component using either by hot keys or using a list by right clicking is also desirable.

Figure 3.4: Add component Extensions

2. Editing the components in the cluster.

Use cases for editing the component are summarized in the �gure 3.3. Editing the com-
ponent and setting the attributes has to be one of the most user friendly and optimized

8

3 Use cases

interactions, because this action has to be repeated a lot when setting a cluster compo-
nent.

• Edit the attributes

Editing the attributes directly in the GUI is compulsory for setting the attributes
of the cluster components. This may be implemented by allowing the user to di-
rectly edit the attribute after clicking on the component and/or on the respective
component panel.

• Select the component with mouse+ctrl key

Users need to select the components of the cluster for various purposes. E.g a user
may wish to run a program in a set of components and want to click and select
them. A generally used procedure is pressing the ctrl key and clicking on the de-
sired component. For the latter, the attribute panel is automatically activated,
simultaneously when the component is clicked. The user has to have the ability
to edit the component attributes directly there. This e�ect is implemented in the
current GUI (see �gure 3.5).

• Clicking activates the component visually

The color of the clicked component may be changed or the borders of the component
may be highlighted.

• Highlight the component

When the component is clicked there must be a visual indication that the user is
editing the selected component.

• Fill and Stroke

Fill color and the stroke colors can be customized for visual identi�cation of di�erent
types of components. An example use case scenario can be a cluster that has two
types of processors in it's clients. E.g the clients with intel processor may be �lled
with color blue and the AMD clients with green.

Figure 3.5: Edit component attributes

3. Remove a component.
The removing of a component can be put in to the following categories as depicted in
the �gure 3.6. The tasks for removing components are de�ned with the background idea
of how the model components are changed, when the real-world cluster is relocated, it's
components are changed. E.g a very possible scenario is that after a period of time, the

9

3 Use cases

network is upgraded to a more faster version. The GUI must allow mechanisms to remove
components e�ciently.

Figure 3.6: Remove Components

• Remove a connection cable

In this case only the connection component is removed from the model.

• Remove a connectable component

In this case, the connecting component has to be removed and the connecting cable
has to be removed as well. E.g Removing a Network Interface card (NIC) automat-
ically triggers removing the connecting cable from the model.

• Remove an unconnectable component

Removing a component such as server triggers removing all the sub components
such as disks and NICs inside it and the connection cable, if there is a connection
to the network.

• Select a set of components for delete

Another important feature is selecting the components in the drawing area with the
tab key. This is an important feature to some of the users, who are used to press
the tab key. Component selection may be activated from the following priority as
in a regular web browser. The tab key begins from the top left hand corner. It

10

3 Use cases

moves in a row from left to right. When �nished, it moves to the row which lies
below. The coordinates for the movement can be extracted by using the top-left
corner coordinates of the component.
A second movement strategy is to prioritize the components according to pre-de�ned
conditions. E.g When a component that is holding sub-components is selected, the
movement may �rst in all the sub-components before moving to the component
which lies to it's right.
Selecting a set of components for deleting must be executed with the help of a con-
venient method. A mostly used way is to click on the intended components while
pressing the ctrl ([DE] Strg) key. Select can also be used to export a set of compo-
nents to another program such as a graphic design program. Please refer to the use
case diagram 3.7.

• Remove the component from The List panel

As we saw in the edit section, the users can activate the attributes panel to edit the
attributes. A delete button is desirable to remove the component inside this panel.
This feature is already implemented in the current gui.

• Remove the component with delete key

When a component is selected, it is a general feature that it can be removed with
the delete key ([DE]Entf Taste).

• Save a recently removed components list in a bu�er for further reference.
This feature can be based on the current gui session. This may be helpful when
the users are removing a component or a set of components from the cluster for
hardware errors. The GUI user can save them in a list and later add them when
they are later serviceable.

• Fading Away or minimizing e�ect

A visual e�ect for removing the component may be to show a minimizing rectangle
or a fading away e�ect.

Figure 3.7: Selecting the component

11

3 Use cases

4. Tasks menu for the right mouse click

The Menu that appears by the right mouse click on a component allows all the tasks that
have to be executed on the component. Please note that some of the ideas are inspired
from the Adobe Fireworks [A12], a graphics design program. The Right Click Menu
actions are listed not in a priority manner to allow the designer free imagination. Figure
3.8 shows a typical right mouse click menu.

Figure 3.8: A sample right mouse menu from NetBeans

All the use cases for the right mouse click menu are listed in the �gure 3.9.

• Copy : generate an identical copy of the component. To generate the identical copy
user has to get all the attributes of the component, it's position and other visual
features that are added to the component.

• cut : The same as copy, but the original component is removed from the drawing
area. The new position can be calculated using an pre-de�ned algorithm. A desir-
able feature is also to hold the component in a well-accepted format for graphical
programs. Then the users can add the component in to a text document or graphic
designing application.

• Paste : After a component is copied or cut, users can paste them to a pre-de�ned
position or to the position direct under the mouse.

• Duplicate : This function can be the same as copy, but it will allow the user to
make an exact copy of the component. The graphics designer may able to customize
the Copy and Duplicate to accommodate more user friendly functions.

• Delete : This allows deleting the component.

• Undo : If a user has accidently deleted a component, this function will allow
restoring the component.

12

3 Use cases

Figure 3.9: Use cases for Right Mouse Click Menu

• Fill and Stroke : Fill color and the line color of the component may be change-
able. This will allow the user to customize the components. Fill colors may be an
inspiration for the copy and duplicate function. E.g. the Copy function may only
copy a standard color component, but the duplicate will also copy the customized
colors of the component.

• Select All : This functions selects all the components in the drawing area. It may
be necessary for exporting the components to another program.

• Invert selection: This function is not a familiar function, but may be necessary
to select a large set of components avoiding a few selected ones.

• Select all similar components: May be helpful to select a set of components
from the same type. A real-world use case scenario may be selecting all the network
interface cards and setting their latency attribute from a new template.

• Set Dimensions : Most of the gui users may not want to move the mouse to
generate components in a customized size for standardization. Therefore setting the
width and height attributes from a window may reduce much of the time of the gui

13

3 Use cases

user.

• Apply Template : A simple way to set the template is to integrate the temple
setting in the right mouse click menu. This will allow the user to select a set of
components using the mouse and set the same template for all of them.

5. The drawing area tool bar
A tool bar for the drawing area may help the gui user to have a better control of the GUI.

Figure 3.10: Tool bar for the drawing Area

• scrollable drawing area : The drawing area shall expand when the number of
components increase and the space they are taking increases.

• Zoom : A zoom function shall help to focus in and out of the components in the
drawing area. This function is required when modeling large clusters. User may
want to edit a particular sector of the cluster and want to zoom into the respective
component. A precondition for the zoom function is the use of vector graphics for
the components.

• Edit modus: The modus of the drawing area should be made uneditable. When
a test is running on the cluster, the user may only want to watch how the system

14

3 Use cases

behaves and not to accidently edit the component attributes when an application
is running. E.g the drawing area may be made automatically uneditable during the
test execution.

• Select an Area with mouse : Selecting an area with the mouse is helpful for a
lot of tasks. Some of them are listed follow.

• Set the drawing Area size: It may be an added advantage if the user could
set the drawing area to a pre-determined size. E.g setting the area to DIN A4 size
would help, for optimized printing of a cluster environmet.

• Zoom to �t selection in window : Zooming the selected section in to the full
visible area may be helpful to easily edit a section of the cluster.

• Export the drawing area to a graphical format : Formats such as png ,jpg
or svg can be used to export the drawing area to a graphics �le.

• Naming the drawing area: Customized name adding to the drawing area may
be needed in order to mark a cluster name.

Figure 3.11: Set the component state and use scalable vector graphics

6. De�ne the state of the component

• inactive : When modeling a particular parallel program, not all the components
are necessarily required for it. Therefore the user may want to see, what components
are active for the certain test.

7. Vector graphics : Vector graphics allows scalable components without distorting the
quality, when they are enlarged or when they are minimized. If the component drawing
is planed with automatic scalable methods, it would be helpful when exporting scalable
vector graphics (SVG).

15

4 Model-View-Controller Concept

4.1 Introduction

Figure 4.1: Model-View-Controller Architecture [Mic]

Figure 4.1 from the sun's blueprints shows the graphical representation of the model-view-
controller concept used in Swing. Model-View-Controller is a structural architecture model
often used for designing graphical user interfaces. The model represents the logical repre-
sentation of the data or the real-world model approximated to the software. The View is the
representation of the content in the model in the graphical user interface. The controller de�nes
how the user interaction is de�ned in the model. Controller forwards the actions performed on
the view in to the model [Ins].

There are two approaches to connect the model and the view, namely the push-model and the
pull-model. In the push-model, the view registers on the model in order to get the noti�cations.
Whenever there is a change in the model, it noti�es the view and view gets updated. In a pull-
model, there is a mechanism in the view where it calls the model to get an updated version of
the model.

16

4 Model-View-Controller Concept

4.2 Comparison Current Model vs. MVC

The current design of the PIOsim GUI is in many ways similar to the MVC concept. As
explained in the current model chapter (see chapter 5) the isolation of the model from the
GUI depicts the characteristics of the Model - View separation that shall be necessary in a MVC
architecture. The controller which triggers the events is integrated to the view. Each graphical
component implements the MouseListner() of the java.awt.event package. In this way, the
current implementation of the GUI acts as a pull-model, in which the GUI is regenerated only
when the view inquires the model for an update.

Although the MVC is implemented in the traditional sense, the current GUI has some draw
backs.

One of the most signi�cant of these is the algorithm-based component position assignment.
The current strategy of determining the position of a component works as following. The
JDrawingArea is separated in to three virtual horizontal sections. The top-most section is
reserved for the maschines that have only clients inside them. The middle section is reserved
for the switches. The bottom section is reserved for the maschines that posses at least one
server and clients.

The algorithm for the position calculation �rst identi�es the maschines and switches. Then
it checks whether the maschines are having at least one server inside it. According to the
above criteria they are put in the user interface from left to right. If any of the component
groups exceeds the visible GUI area, a scroll bar is generated automatically to facilitate their
placement.

This positioning system has the disadvantage of not saving the order of the components
which in return restrict the natural order of the real-world cluster components. A possible use
case is that the user map the cluster to the GUI in the same way, that it is located in physical
form. This implies the need for saving the position of the cluster component permanently. This
can be in form of extending the current XML Model �le with additional attributes or using an
additional XML �le to save the positions. The author suggests to user the latter idea, due to
it's association with the MVC Concept, thus making the view data separate from the model
data.

17

5 Current Model

5.1 Model

All the model related components are included in the package de.hd.pvs.piosim. The model
package is located in the CVS Host : pvs-cluster.informatik.uni-heidelberg.de under the
repository module piosim-shared. The de.hd.pvs.piosim package is depicted in the �gure
5.1.

Figure 5.1: Main packages of the model de.hd.pvs.piosim

Class BasicComponent represents the basic characteristics of a component in the cluster.
The Class Model represents the complete structure and their relations and is accessed by the
graphical user interface to visualize the model. The package components contain all the com-
ponents that are included in a cluster. They all are sub classes of the class BasicComponent.
At present, the package interfaces contains the classes that are required to interface the model
with the XML �les. The classes that are related to the parallel programs such as commands,
distributions and MPI-related data are stored in the program package. The package util
contains the helper classes such as time functions or �le read/write functions.

As shown in �gure 5.2 the UML Diagram shows the current model that is used to gener-
ate the graphical view of the computer cluster. As shown in the attributes part in the UML
diagram, the model consists of components lists that map the real world cluster components.
A component called maschine was de�ned to host a set of clients and servers. Switches and
maschines are connected through network connections. The model also consists of a template

18

5 Current Model

Figure 5.2: UML Diagram of Model.java

manager that can set template based values to all the components in the cluster. The Glob-
alSettings class is responsible for setting the common attributes that go beyond the boundaries
of a single component. The cidMap (Component ID map) is a HashMap that is responsible for
holding unique ids assigned to the respective components.

All the components are saved in an XML �le and accessed by the model to generate the
classes. The java re�ection class is used to generate the Objects from the XML data. From
the available methods following methods are signi�cant to the function of the model class.

• readComponents() read the components description from the XML �le and generate
the components accordingly.

• readTemplates() Reads the templates values, that are described in the XML �les and
set it to the components, if the component is template-based.

• connectComponents() connects the components after identifying the relationships be-
tween the NICs (Network interface card) of the maschines and the ports of the switches.

• readXML() triggers the readTemplates(), readComponents() and connectComponents()
and sets the global settings for the model. This method is the main method for reading
a XML �le that contains a model description.

• writeXML() is responsible for generating the XML �le from the objects in the model.

19

5 Current Model

5.2 View

The graphical user interface for the model is based on swing and awt. The main class that is
responsible for the graphical user interface generation is called GUI.java that is a sub-class of
the JFrame class of the swing library. The parts of the user interface are explained explicitly in
the [Bra]. The reading of the above document is recommended in order to understand the user
interface concepts, although the underlying model architecture and rendering methods were
completely rewritten and extended during the internship.

Figure 5.3: Graphical user interface of the Parallel I/O Simulator

Figure 5.3 shows the graphical overview of the parallel I/O simulator. Label [1] shows the
design tab where the attributes of the components are set. Label [2] shows the JDrawingArea
that is also a sub-class of the JPanel which is the container for all the graphical objects. Label
[3] shows a maschine component, which in return holds a set of sub components such as clients
and servers. Each Component inside the JDrawingArea implements the mouseListner() [A05]
which acts as the controller in the MVC design architecture.

All the components in the cluster that have to be visualized in the user interface are coupled
with a graphical object that is drawn in the Drawing Area of the GUI. GUIComponents object
holds an instance of the model object and the GUI object. It acts as the interface between the

20

5 Current Model

model and the view and generates corresponding gui objects from all the model objects. All
the model objects are mapped using the following syntax for easy identi�cation.

Table 5.1: Model Component mapping to GUI component

Component name GUI Component name

Component Component2D

Client.java Client2D.java

Switch.java Switch2D.java

All the GUI components are derived from the Component2D class which is a sub class of the
JPanel. 1

5.3 Functions

This section describes some of the extensions that were made to extend the functionalities
of the user interface.

• Annotation Concept

The annotation concept is introduced in the model to generate attributes for the dy-
namical left panel. An interface called AttributeGetters is de�ned to annotate the getter
methods of the components. The following procedure shows how the annotation concept
is used to generate dynamic attributes in the attributes panel depicted in �gure 5.3, label
[1].

Assume that the attribute memorySize has to be visualized in the attribute panel.
The user has only to annotate the method using the AttributeGetters interface. The
generateMenu() method in the TabPanel class inside the GUI.java dynamically reads
the annotation and sets the method as visible in the user interface.

1 @Attr ibuteGetters
2 pub l i c long getMemorySize () {
3 r e turn memorySize ;
4 }

• Java re�ection

Java re�ection is an advanced java feature used for generic construction of classes during

1JPanel is a generic light weight container, used to de�ne a rectangular space. See [A04] for how to use the
panels

21

5 Current Model

the runtime. For detailed information on the re�ection application programming inter-
face (API) see the [A08][DE]. Re�ection interface is used to generate the class objects
from the XML data �le as shown in the following example. Please refer to the comments
for further explanations.

1 <ComponentList>
2 <MaschineList>
3 <Maschine name="Server2 Host">
4 <MemorySize>1073741824</MemorySize>
5 <CacheSize>0</CacheSize>
6 <Instruct ionPerSecond >1000</Instruct ionPerSecond>
7 <InternalDataTrans ferSpeed >0</Interna lDataTrans ferSpeed>
8 <CPUs>1</CPUs>
9 <NIC name="Server2 NIC1">

10 <Connection template="PVS−Connection" to="Switch 1">
11 <Bandwidth>122683392</Bandwidth>
12 <Latency >0.00002 s</Latency>
13 </Connection>
14 </NIC>
15 <Server name=" Server 2" template="PVS−Server ">
16 <IOSubsystem name=" Server 2 I /O−1" template="Std−Disk">
17 <AvgAccessTime>0.005 s</AvgAccessTime>
18 <MaxThroughput>52428800</MaxThroughput>
19 </IOSubsystem>
20 </Server>
21 </Maschine>
22 </MaschineList>
23 <SwitchList>
24 . . .
25 </SwitchList>
26 </ComponentList>

The generation of the class objects using re�ection in the Model.java.

1 //Read the XML Components and generate the Component c l a s s e s
2 pr i va t e void readComponents (Element templateRoot) throws Exception {
3 // component types e . g . Maschine , C l i en t and Server
4 f o r (Class<BasicComponent<?>> c : componentTypes) {
5 // get the name o f the c l a s s
6 St r ing className = c . getSimpleName () ;
7 // Read the At t r ibute s o f the component type e . g.<

SwitchList >.
8 Element element = XMLutil . getFirstElementByTag (

templateRoot , className + " L i s t ") ;
9 // get a l l the components from the type

10 ArrayList<Element> l i s t = XMLutil . getElementsByTag (element
, className) ;

11 f o r (Element e : l i s t) {
12 // Generate the cons t ruc to r
13 Constructor<BasicComponent<?>> ct = c .

getConstructor (Model . c l a s s) ;
14 // Generate the component in s t anc e .
15 BasicComponent<?> component = ct . newInstance (t h i s)

;
16 // Read the a t t r i b u t e s f o r the component
17 component . readXML(e) ;
18 }
19 }
20 }

22

5 Current Model

5.4 JPanel restrictions

A signi�cant di�culty in the user interface is generating light weight lines. In the cur-
rent model multiple switches are visualized in contrast to the original GUI where only ver-
tical lines were allowed. In this case, a network cable (or connection) in the form of a line
has to be drawn from two arbitrary positions in the JDrawingArea (see Figure 5.3). As the
JDrawingArea is a sub-class of the JPanel, the components that are placed in the JDrawingArea
has to be sub-classes of the JPanel to generate a uniform design model for all the visual com-
ponents. Therefore, a new Component that is extended from the JPanel has to be de�ned
for connection visualization. Figure 5.4 shows the design concept of the line inside a JPanel
. Assume that a connection object has to be generate from the point (x1, y1) to the point
(x2, y2). Then a JPanel object is generated to include a Line2D object from the package
java.awt.geom.Line2D that extends from (x1, y1) to (x2, y2). Figure 5.4 shows the possible
drawings of the lines in JPanel rectangles.

Figure 5.4: Line drawing inside a JPanel

As the �gure 5.3 shows, there may be overlapped regions from several JPanels in the
JDrawingArea. Overlapping makes it di�cult to make the lines clickable because the JPanels
overlap. A mechanism was developed to prevent the user from clicking in overlapped areas
were generated using the distance to a line inside the JPanel. The following method in the
Connection2D.java shows the implementation of the mouse change that is used to prevent the
user from clicking the areas outside the line component.

1 addMouseMotionListener (new MouseMotionAdapter () {
2 @Override
3 pub l i c void mouseMoved(MouseEvent e) {
4 // i f the d i s t ance from the l i n e i s sma l l e r than 5 p ixe l , change the mouse to

the c r o s s cur so r element from the d e f au l t mouse po in t e r .
5 i f (l i n e . ptSegDist (e . getPoint ()) < 5 . 0)
6 se tCursor (myCrossCursor) ;
7 e l s e
8 se tCursor (myDefaultCursor) ;
9 }

10 }) ;
11 }

23

5 Current Model

The method for manipulating the mouse is not a perfect solution. It assumes that the
JPanels are rendered in the correct order, if the clicking has to be correct. But in the current
user interface, the component rendering is executed in an nondeterministic way and the user
has no control over the rendering. Thus, the mouse hiding to detect the lines can be inaccurate
in the long-run.

24

6 SWT vs. AWT

6.1 SWT Introdcution

SWT (Software Widget Toolkit) is an alternative user interface developing toolkit to the
AWT/Swing Libraries. In this chapter, the basic functionalities of the SWT explained and the
pros and cons of the SWT library is discussed.

SWT structure is based on three building blocks called shell, display and the widgets. SWT
is a heavy weight GUI toolkit relying on the native operating systems drawing functionalities.

• Shell is the graphical window rendered by the window manager of the underlying oper-
ating system. Instance that do not have a parent object are generated in the shell.

• Display is responsible for event loop handling and managing the communication between
the UI thread and the other threads.

• Widget is a basic interactive element in a graphical user interface. Example widgets are
buttons, lists, text boxes and menus.

One of the advantages of the SWT is that it generally uses less memory thant the light
weight toolkit Swing. The less memory usage is due to the fact that heavy weight toolkits pass
most of the memory management to the native operating system rather than using its internal
rendering techniques.

One of the other characteristics of a heavy-weight toolkit like swing is that it's tight coupling
with native operating system. That makes each swt application appear similar to the operating
system's native look. But Swing as a light weight toolikt has the advantage of looking similar
in any operating system. Therefore the use case of PIOsim plays a major role in the selection
of the GUI toolkit. Another setback of the SWT is that it simply wraps the gui functionalities
that the operating system provides. Therefore customizing the widgets is complicated and
sometimes impossible using SWT where Swing has a clear advantage. In swing there are
lots of api elements that are provided with each gui object for customization purposes. The
customization options make the debugging of the swing applications di�cult, because of the
large number of attributes.

25

6 SWT vs. AWT

In the context of performance, SWT is more responsive and uses less system resource than
swing. But according to available performance benchmarks, there are di�erences that depend
on the operating system and the java version the application is built on. See [A09] for the
performance benchmarks of swt against swing.

6.2 The line drawing concept of SWT vs. AWT

To summarize the the AWT/Swing Concept, in a rectangular Jpanel is extend from the
Swing component making it an interactable object in a JFrame component. As JPanel is a
sub-class of the Container, it can hold a set of other components, which is a necessity in the
piosim project. On the other hand, the Line component implemnts the Shape which is a class
in the awt package. This makes the programming of a unique controller mechansim between
the model and the graphical user interface di�cult. When a new JPanel is de�ned for the line
component and the line is painted inside it , this naturally puts a layer on the other components
and the overlapping areas are unaccessible from the mouse pointer. Therefore the concept of
sub-classing the JPanel for line drawing is only e�ciently usable for non-overlapping lines.

SWT has a more generalized concept of drawing graphics than in AWT/Swing. , In SWT,
there is a class called org.eclipse.swt.graphics.GC that includes the procedure for drawing lines
and shapes. The following example shows the drawing of a line in a SWT shell. Some of the
content contains code parts of [A14].

1 import org . e c l i p s e . swt . ∗ ;
2 import org . e c l i p s e . swt . events . ∗ ;
3 import org . e c l i p s e . swt . g raph i c s . Rectangle ;
4 import org . e c l i p s e . swt . widgets . ∗ ;
5 import org . e c l i p s e . swt . layout . ∗ ;
6

7 pub l i c c l a s s DrawLine {
8 pub l i c DrawLine () {
9 Display d i sp l ay = new Display () ;

10 f i n a l Sh e l l s h e l l = new She l l (d i sp l ay) ;
11 s h e l l . addPaintL i s tener (new Pa in tL i s t ene r () {
12 pub l i c void pa intContro l (PaintEvent e) {
13 Rectangle c l i en tArea = s h e l l . ge tCl i entArea () ;
14 e . gc . drawLine (0 , 0 , c l i en tArea . width , c l i en tArea . he ight) ;
15 }
16 }) ;
17 s h e l l . open () ;
18 whi le (! s h e l l . i sD i sposed ()) {
19 i f (! d i sp l ay . readAndDispatch ()) {
20 d i sp l ay . s l e e p () ;
21 }
22 }
23 d i sp l ay . d i spo s e () ;
24 }
25 pub l i c s t a t i c void main (S t r ing [] a rgs) {
26 DrawLine d= new DrawLine () ;
27 }
28 }

26

7 Examples of better design

Users can download a set of sample applications from the Eclipse web site, that include the
behavior of the widgets. A complete documentation of the examples (including the installa-
tion)is found under :

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/samples/

org.eclipse.swt.examples/doc-html/swt_manual_setup.html

From the available examples, the paint example that is contained in the
org.eclipse.swt.examples.paint can has most of the features that are needed for developing
the PIOsim gui.

27

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/samples/org.eclipse.swt.examples/doc-html/swt_manual_setup.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/samples/org.eclipse.swt.examples/doc-html/swt_manual_setup.html

8 Conclusion

PIOsim GUI, which is intended for simulating clusters has to undergo several steps of change
to become a reliable user friendly user interface. During the internship period, lots of e�orts
were made to develop the current swing gui in a more e�cient graphical user interface. Al-
though the basic integration and some of the necessary tasks were executed, there were lots of
restrictions in the e�cient visualizing.

Although the basic functionalities were integrated to the model, there are also some functional
issues that has to be dealt with, that were explained in the current model chapter. The
restrictions of the Swing API and the complexity of the Swing development dominated during
the Internship period. Therefore the author suggests also looking to the SWT library before
doing further development in to the GUI.

28

Bibliography

[A04] How to use panels. http://java.sun.com/docs/books/tutorial/uiswing/

components/panel.html.

[A05] Mouselistener. http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Component.

html#addMouseListener(java.awt.event.MouseListener).

[A07] The standard widget toolkit (swt). http://www.eclipse.org/swt/.

[A08] Re�ection - die java re�ection api. http://wiklet.javacore.de/index.php?oldid=448.

[A09] Swt vs. swing performance comparison. http://cosylib.cosylab.com/pub/CSS/DOC-
SWT_Vs._Swing_Performance_Comparison.pdf.

[A10] Netbeans. http://www.netbeans.org/.

[A11] eclipse. http://www.eclipse.org/.

[A12] �reworks. http://www.adobe.com/de/products/�reworks/.

[A14] Swt graphics.

[Bra] Matthias Braun. Entwicklung einer gra�schen ober�aechen fuer piosim.

[Ins] MageLang Institute. Java short course. http://java.sun.com/developer/

onlineTraining/GUI/Swing2/shortcourse.html#JFCMVC.

[Mic] Sun Microsystems. Java BluePrints Model-View-Controller. http://java.sun.com/

blueprints/patterns/MVC-detailed.html.

29

http://java.sun.com/docs/books/tutorial/uiswing/components/panel.html
http://java.sun.com/docs/books/tutorial/uiswing/components/panel.html
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Component.html#addMouseListener(java.awt.event.MouseListener)
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Component.html#addMouseListener(java.awt.event.MouseListener)
http://www.eclipse.org/swt/
http://java.sun.com/developer/onlineTraining/GUI/Swing2/shortcourse.html#JFCMVC
http://java.sun.com/developer/onlineTraining/GUI/Swing2/shortcourse.html#JFCMVC
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html

	Abstract
	Introduction
	Methodology

	Use cases
	Model-View-Controller Concept
	Introduction
	Comparison Current Model vs. MVC

	Current Model
	Model
	View
	Functions
	JPanel restrictions

	SWT vs. AWT
	SWT Introdcution
	The line drawing concept of SWT vs. AWT

	Examples of better design
	Conclusion
	Bibliography

