
memfs – A FUSE Memory File System
Softwarepraktikum für Fortgeschrittene

Parallele und Verteilte Systeme
Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

Michael Kuhn
Betreuer: Julian Kunkel

2008-10-12

Contents

1. Introduction 4
1.1. Goals . 4
1.2. Requirements . 4

2. FUSE Memory File System 5
2.1. Implementation . 5

2.1.1. /opts Configuration Directory . 9
2.2. Complex Operations . 11

2.2.1. setattr() . 11
2.2.2. lookup() . 11

3. Evaluation 12
3.1. Hardware . 12
3.2. File Number . 12

3.2.1. 125,000 Files . 13
3.2.2. 512,000 Files . 14
3.2.3. 1,000,000 Files . 15

3.3. File System . 15
3.3.1. memfs (Hash Table) . 16
3.3.2. memfs (Binary Tree) . 17
3.3.3. tmpfs . 18

4. Conclusion and Future Work 19
4.1. memfs . 19
4.2. FUSE Overhead . 19

Appendices 20

A. Usage Instructions 20
A.1. Installing Required Packages . 20
A.2. Compiling Everything . 20
A.3. FUSE File System . 20

A.3.1. Debugging . 20
A.4. Benchmark . 20

B. Benchmark Data 21
B.1. 125,000 Files . 21

B.1.1. Memory Usage . 21
B.2. 512,000 Files . 21

B.2.1. Memory Usage . 22

2

Contents

B.3. 1,000,000 Files . 22
B.3.1. Memory Usage . 23

3

1. Introduction

1.1. Goals

The goal of this practical was to measure the overhead of the FUSE1 framework, because
previous research indicates that FUSE introduces significant overhead when a large number of
files is processed. FUSE file systems themselves run in user space and use the special device
/dev/fuse to communicate with the kernel part of FUSE. Because of this more expensive
context switches have to be performed.

1.2. Requirements

To eliminate the influence of the relatively slow hard disk, the file system was implemented as
a memory file system, much like tmpfs2.

1Filesystem in Userspace – http://fuse.sourceforge.net/
2http://en.wikipedia.org/wiki/TMPFS

4

http://fuse.sourceforge.net/
http://en.wikipedia.org/wiki/TMPFS

2. FUSE Memory File System

2.1. Implementation

FUSE provides an API to easily implement new FUSE file systems. In this section it is shown
how a simple FUSE file system can be implemented in C. To make the implementation easier,
GLib1 was used. All data types beginning with G and all functions beginning with g belong to
GLib.

The main work is done by the fuse main function that handles command line parameters and
the actual mounting of the file system. The user only has to implement the individual file
system operations like open, read, write and close.

Listing 2.1: main function

1 #define FUSE USE VERSION 26
2 #include <f u s e . h>
3
4 int main (int argc , char∗ argv [])
5 {
6 return fuse main (argc , argv , &memfs oper , NULL) ;
7 }

As can be seen in listing 2.1, a FUSE file system looks like any other C program. The header
file fuse.h contains all necessary declarations. FUSE USE VERSION can be used to specify the
actual API version to use. The memfs oper structure contains a mapping between file system
operations and the functions implementing them.

Listing 2.2: memfs oper structure

1 struct f u s e o p e r a t i o n s memfs oper = {
2 . chmod = memfs chmod ,
3 . chown = memfs chown ,
4 . c r e a t e = memfs create ,
5 . des t roy = memfs destroy ,
6 . g e t a t t r = memfs getattr ,
7 . i n i t = memfs in it ,
8 . l i n k = memfs l ink ,
9 . mkdir = memfs mkdir ,

10 . open = memfs open ,
11 . read = memfs read ,
12 . r eadd i r = memfs readdir ,
13 . rmdir = memfs rmdir ,
14 . s t a t f s = memfs stat f s ,
15 . t runcate = memfs truncate ,
16 . un l ink = memfs unlink ,
17 . utimens = memfs utimens ,
18 . wr i t e = memfs write ,
19 } ;

1http://www.gtk.org/

5

http://www.gtk.org/

2. FUSE Memory File System

Listing 2.2 shows the memfs oper structure containing all implemented file system operations.
The init and destroy operations are not a file system operation in the usual sense as they are
called whenever the FUSE file system is mounted and unmounted. The following file system
operations are merely empty stubs to make fileop run: chmod, chown, open and utimens.

Listing 2.3: memfs init function

1 void∗ memfs in i t (struct f u s e c o n n i n f o ∗ conn)
2 {
3 struct memfs∗ f s ;
4
5 f s = memfs () ;
6 f s−>root = memfs entry new (e n t r y d i r e c t o r y) ;
7
8 return f s ;
9 }

Listing 2.3 shows the memfs init function. The user may return a pointer to a memory address
that will be made available to all other file system operations via the private data member
of the structure returned by fuse get context(). The memfs entry structure is a wrapper
around the memfs directory and memfs file structures to allow both types as entries within
an directory.

Listing 2.4: memfs structures

1 struct memfs d i rectory
2 {
3 #i f de f ined (MEMFS FLAVOR HASH TABLE)
4 GHashTable∗ e n t r i e s ;
5 #e l i f de f ined (MEMFS FLAVOR TREE)
6 GTree∗ e n t r i e s ;
7 #endif
8 } ;
9

10 struct me mf s f i l e
11 {
12 guint r e f c o u n t ;
13 gchar ∗ data ;
14 g o f f s e t s i z e ;
15 } ;
16
17 struct memfs entry
18 {
19 g in t type ;
20
21 union
22 {
23 struct memfs d i rectory ∗ f s d i r ;
24 struct mem f s f i l e ∗ f s f i l e ;
25 }
26 e ;
27 } ;

Listing 2.4 shows the memfs structures. As can be seen, the memfs directory structure
supports different data types to manage its entries. Currently, hash tables and balanced
binary trees are supported. The memfs file structure contains a reference counter to support
multiple links to the same file, that is, a file can be made available under different paths. See

6

2. FUSE Memory File System

memfs link() for more information. The type member of the memfs entry structure indicates
whether the entry is a directory or a file and therefore which pointer of the e member must be
used.

Listing 2.5: memfs create function

1 int memfs create (const char∗ path , mode t mode , struct f u s e f i l e i n f o ∗ f i)
2 {
3 int r e t = −ENOENT;
4 struct memfs entry∗ f s e n t r y ;
5 char∗ dirname ;
6
7 dirname = g path get d i rname (path) ;
8
9 i f ((f s e n t r y = memfs path get last component (dirname)) != NULL)

10 {
11 i f (f s e n t r y−>type == e n t r y d i r e c t o r y)
12 {
13 m e m f s d i r e c t o r y e n t r y i n s e r t (f s e n t r y−>e . f s d i r ,

↪→ g path get basename (path) ,
↪→ memfs entry new (e n t r y f i l e)) ;

14 r e t = 0 ;
15 }
16 }
17
18 g f r e e (dirname) ;
19
20 return r e t ;
21 }

Listing 2.5 shows the memfs create function. The function creates the file given by the
path argument. As can be seen, the last component of the path is treated as a file
name while the rest (dirname) specifies the directory in which the file is created. The
memfs path get last component() function checks each component of the path and returns
a pointer to the memfs entry structure that represents the last one. It is then checked if the
last component is in fact a directory. If this is the case, a new file is created.

Listing 2.6: memfs path get last component function

1 struct memfs entry∗ memfs path get last component (const gchar ∗ path)
2 {
3 struct memfs∗ f s = memfs () ;
4 char∗∗ components ;
5 g in t i ;
6 gu int l ength ;
7 struct memfs entry∗ f s e n t r y ;
8
9 components = g s t r s p l i t (g p a t h s k i p r o o t (path) , G DIR SEPARATOR S, 0) ;

10 l ength = g s t r v l e n g t h (components) ;
11
12 f s e n t r y = fs−>root ;
13
14 for (i = 0 ; i < l ength ; i++)
15 {
16 struct memfs entry∗ l ookup entry ;
17
18 i f (f s e n t r y−>type != e n t r y d i r e c t o r y)

7

2. FUSE Memory File System

19 {
20 goto e r r o r ;
21 }
22
23 i f ((lookup entry =

↪→ memfs d i r ec to ry ent ry lookup (f s e n t r y−>e . f s d i r ,
↪→ components [i])) == NULL)

24 {
25 goto e r r o r ;
26 }
27
28 f s e n t r y = lookup entry ;
29 }
30
31 g s t r f r e e v (components) ;
32
33 return f s e n t r y ;
34
35 e r r o r :
36 g s t r f r e e v (components) ;
37
38 return NULL;
39 }

Listing 2.6 shows the memfs path get last component function. The function gets passed a
path to check. It then checks every component of the path in two steps:

1. It is checked if the component is a directory

2. The next component is looked up in the list of this component’s entries

As this function has to check each component and has to do a lookup for every single one
of them, it is the slowest function of memfs. Because it has to be called for almost all file
operations, it also heavily influences the overall performance. It has a complexity of O(n)
where n is the number of components of the path, that is, the number of subdirectories.

Listing 2.7: memfs getattr function

1 int memfs getattr (const char∗ path , struct s t a t ∗ s tbu f)
2 {
3 int r e t = −ENOENT;
4 struct memfs entry∗ f s e n t r y ;
5
6 . . .
7
8 i f ((f s e n t r y = memfs path get last component (path)) != NULL)
9 {

10 stbuf−>st mode = S IRUSR | S IWUSR | S IRGRP | S IROTH ;
11 stbuf−>s t n l i n k = 1 ;
12 stbuf−>s t u i d = getu id () ;
13 stbuf−>s t g i d = getg id () ;
14 stbuf−>s t a t ime = stbuf−>st mtime = stbuf−>s t c t i m e = 0 ;
15
16 switch (f s e n t r y−>type)
17 {
18 case e n t r y d i r e c t o r y :

8

2. FUSE Memory File System

19 stbuf−>st mode |= S IFDIR | S IXUSR | S IXGRP |
↪→ S IXOTH ;

20 stbuf−>s t s i z e =
↪→ m e m f s d i r e c t o r y s i z e (f s e n t r y−>e . f s d i r) ;

21
22 r e t = 0 ;
23 break ;
24 case e n t r y f i l e :
25 stbuf−>st mode |= S IFREG ;
26 stbuf−>s t s i z e = f s e n t r y−>e . f s f i l e −>s i z e ;
27
28 r e t = 0 ;
29 break ;
30 }
31 }
32
33 return r e t ;
34 }

Listing 2.7 shows the memfs getattr function. It is one of the most important functions in a
FUSE file system as it gets called before each access to a file. As a stat() replacement, it is
supposed to fill a stat structure with the appropriate information if the file exists.

2.1.1. /opts Configuration Directory

The /opts directory allows the memfs file system to be configured at runtime much like the
/proc file system in Unix-like operating systems. This is implemented as a fake directory in
the root directory of the memfs file system. The /opts directory in turn contains files that can
be read and written to view and change the configuration.

Listing 2.8: memfs readdir function

1 int memfs readdir (const char∗ path , void∗ buf , f u s e f i l l d i r t f i l l e r , o f f t
↪→ o f f s e t , struct f u s e f i l e i n f o ∗ f i)

2 {
3 int r e t = −ENOENT;
4 struct memfs entry∗ f s e n t r y ;
5
6 i f (G UNLIKELY(path [1] == ’ \0 ’))
7 {
8 f i l l e r (buf , ” opts ” , NULL, 0) ;
9 }

10 else i f (G UNLIKELY(strcmp (path + 1 , ” opts ”) == 0))
11 {
12 f i l l e r (buf , ” no data ” , NULL, 0) ;
13
14 return 0 ;
15 }
16
17 . . .
18 }

Listing 2.8 shows the relevant part of the memfs readdir function. If a listing of the root
directory is requested, it injects the opts directory into the listing. If a listing of the /opts

directory is requested, it returns a listing of the configuration files. Currently only the no data

setting is exposed in the /opts directory. The G UNLIKELY macro helps the compiler optimize

9

2. FUSE Memory File System

the execution of the if statement. This is done, because these statements should not impact
performance too much.

Listing 2.9: memfs read function

1 int memfs read (const char∗ path , char∗ buf , s i z e t s i z e , o f f t o f f s e t , struct
↪→ f u s e f i l e i n f o ∗ f i)

2 {
3 struct memfs∗ f s = memfs () ;
4 int r e t = −ENOENT;
5 struct memfs entry∗ f s e n t r y ;
6
7 i f (G UNLIKELY(strncmp (path , ”/ opts /” , 6) == 0))
8 {
9 i f (strcmp (path + 6 , ” no data ”) == 0)

10 {
11 r e t = 0 ;
12
13 switch (o f f s e t)
14 {
15 case 0 :
16 memcpy(buf , (f s−>opts . no data) ? ”1” :

↪→ ”0” , 1) ;
17 r e t++;
18 case 1 :
19 memcpy(buf + ret , ”\n” , 1) ;
20 r e t++;
21 }
22 }
23
24 return r e t ;
25 }
26
27 . . .
28 }

Listing 2.9 shows the relevant part of the memfs read function. If the /opts/no data file is
read, it simply returns the boolean value of the no data option as a string.

Listing 2.10: memfs write function

1 int memfs write (const char∗ path , const char∗ buf , s i z e t s i z e , o f f t o f f s e t ,
↪→ struct f u s e f i l e i n f o ∗ f i)

2 {
3 struct memfs∗ f s = memfs () ;
4 int r e t = −ENOENT;
5 struct memfs entry∗ f s e n t r y ;
6
7 i f (G UNLIKELY(strncmp (path , ”/ opts /” , 6) == 0))
8 {
9 i f (strcmp (path + 6 , ” no data ”) == 0)

10 {
11 f s−>opts . no data = (buf [0] == ’ 1 ’) ;
12 r e t = s i z e ;
13 }
14
15 return r e t ;
16 }

10

2. FUSE Memory File System

17
18 . . .
19 }

Listing 2.10 shows the relevant part of the memfs write function.

2.2. Complex Operations

Some of FUSE’s file system operations are complex, that is, are internally made up of several
file system operations.

2.2.1. setattr()

After each of the operations chmod(), chown(), truncate() and utimens() an implicit
getattr() is performed on the selected path. Several of these operations are grouped together
as one setattr() if they are performed on the same path. The getattr() is performed in the
same atomic operation as the setattr().2

2.2.2. lookup()

After each of the operations create(), mknod(), mkdir(), symlink(), and link() an implicit
getattr() is performed on the affected path. The getattr() is performed in the same atomic
operation as the original operation.

2This behavior can be disabled. Operations can then be interrupted.

11

3. Evaluation

The fileop tool from the IOzone Filesystem Benchmark1 was used to conduct several bench-
marks. memfs and tmpfs were compared, each with a varying number of files. The raw data of
the figures presented here can be found in appendix B.

3.1. Hardware

All benchmarks were run on a machine with one Intel Pentium M 1.6 GHz and 512 MB RAM
running Linux 2.6.27 and FUSE 2.7.3.

3.2. File Number

To analyze how the different file systems compare against each other, the following figures
show for 125,000, 512,000 and 1,000,000 files the number of operations per second with each
file system. It is important to note that only 2,550, 6,480 and 10,100 directories are created
for the file numbers above, therefore the results for mkdir, rmdir and readdir may not be as
accurate.

1http://www.iozone.org/

12

http://www.iozone.org/

3. Evaluation

3.2.1. 125,000 Files

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

100000

200000

300000

400000

500000

600000

700000
125,000 Files

memfs (Hash
Table)

memfs (Binary
Tree)

tmpfs

o
p

s
/s

Figure 3.1.: 125,000 Files

Figure 3.1 shows a comparison of memfs and tmpfs for 125,000 files. memfs is used with hash
table and binary tree backends. As can be seen, the results for memfs are about the same for
the hash table and binary tree backends. tmpfs however is much faster, because it has to do
less expensive context switches. Overall, all tmpfs operations are 10–20 times faster than those
in memfs. The close() (that is, release()) operation reaches the most operations per second
with about 56,000 operations per second. Since the operation is not implemented and does no
additional implicit work it can be considered as an approximate maximum.

13

3. Evaluation

3.2.2. 512,000 Files

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

100000

200000

300000

400000

500000

600000

700000
512,000 Files

memfs (Hash
Table)

memfs (Binary
Tree)

tmpfs

o
p

s
/s

Figure 3.2.: 512,000 Files

Figure 3.2 shows a comparison of memfs and tmpfs for 512,000 files. memfs and tmpfs show
the same behavior as in figure 3.1. Overall, all tmpfs operations are more than 10–20 times
faster than those in memfs. The close() (that is, release()) operation reaches the most
operations per second with about 42,000 operations per second. It is important to note that
this is slower than with 125,000 files. This is probably due to the fact that FUSE filled the
kernel cache in this case and therefore the kernel had to do more clean-up work, decreasing
FUSE’s performance.

14

3. Evaluation

3.2.3. 1,000,000 Files

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
1,000,000 Files

memfs (Hash
Table)

memfs (Binary
Tree)

o
p

s
/s

Figure 3.3.: 1,000,000 Files

Figure 3.3 shows a comparison for 1,000,000 files. memfs shows the same behavior as in figure 3.1.
There is no result for tmpfs, because it could not store 1,000,000 files in 512 MB of RAM.2 The
close() (that is, release()) operation reaches the most operations per second with about
41,000 operations per second. It is important to note that this is slower than with 125,000 files,
but not much slower than with 512,000 files.

3.3. File System

To analyze how the different file systems handle increasing amounts of files, the following
figures show for each file system the number of operations per second with 125,000, 512,000
and 1,000,000 files.

2Apparently, it ran out of memory, even with tmpfs’s memory limit. The kernel started killing processes,
effectively crashing the whole machine.

15

3. Evaluation

3.3.1. memfs (Hash Table)

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

10000

20000

30000

40000

50000

60000
memfs (Hash Table)

125,000 Files 512,000 Files 1,000,000 Files

o
p

s
/s

Figure 3.4.: memfs (Hash Table)

Figure 3.4 shows the results of memfs when configured to use a hash table as backend. As can
be seen there is a large drop in performance when increasing the number of files from 125,000
to 512,000. An increase from 512,000 to 1,000,000 files causes a smaller performance decrease.
It is not clear why this is the case. In some cases performance stays the same.

16

3. Evaluation

3.3.2. memfs (Binary Tree)

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

10000

20000

30000

40000

50000

60000
memfs (Binary Tree)

125,000 Files 512,000 Files 1,000,000 Files

o
p

s
/s

Figure 3.5.: memfs (Binary Tree)

Figure 3.5 shows the results of memfs when configured to use a balanced binary tree as backend.
As can be seen there is a drop in performance when increasing the number of files from 125,000
to 512,000. However, this drop is not as big as in figure 3.4. An increase from 512,000 to
1,000,000 files causes an equally big performance decrease. Again, in some cases performance
stays the same.

17

3. Evaluation

3.3.3. tmpfs

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

100000

200000

300000

400000

500000

600000

700000
tmpfs

125,000 Files 512,000 Files

o
p

s
/s

Figure 3.6.: tmpfs

Figure 3.6 shows the results of tmpfs. As can be seen there is a drop in performance when
increasing the number of files from 125,000 to 512,000.

18

4. Conclusion and Future Work

4.1. memfs

With memfs there now exists a memory file system that is configurable at runtime and can be
easily extended to use arbitrary data structures as backends. This will allow benchmarking
and – hopefully – tuning of FUSE with large amounts of files. However, some problems have to
be considered first.

4.2. FUSE Overhead

Currently, it is hard to measure the overhead with empty stub operations, because FUSE
performs implicit getattr() calls for most of them. release() is one of the few operations
that can be used. Since it is not implemented in memfs it introduces no overhead of its own.
Therefore, its performance should give a good estimate of the possible maximum that FUSE
is capable of. It would be interesting to modify the FUSE user-space library to make the
implicit getattr() calls conditional. Since this is apparently only done to populate the caches,
it should be safe to disable this behavior.

19

A. Usage Instructions

A.1. Installing Required Packages

$ sudo aptitude install libfuse-dev libglib2.0-dev

A.2. Compiling Everything

$ cd memfs

$ make

A.3. FUSE File System

$ cd memfs

$./memfs ${MOUNTPOINT}

A.3.1. Debugging

To debug the FUSE file system, use the -f argument.

$ cd memfs

$ gdb --args ./memfs -f ${MOUNTPOINT}

The -d argument causes FUSE to print debug output. Do not run benchmarks with this.

$ cd memfs

$./memfs -d ${MOUNTPOINT}

A.4. Benchmark

$ cd memfs

$ fileop -f {50,80,100} -s 0

20

B. Benchmark Data

B.1. 125,000 Files

The following table shows operations per second.

memfs (Hash Table) memfs (Binary Tree) tmpfs
mkdir 13,964 13,553 169,864
rmdir 27,805 27,964 307,899
create 17,484 16,912 211,971

read 507,788 465,898 556,355
write 541,531 532,712 696,359
close 56,360 53,401 599,711
stat 34,910 35,807 379,100

access 35,833 36,547 415,415
chmod 20,380 19,822 342,789
readdir 18,153 18,234 38,874

link 10,653 10,680 220,692
unlink 15,711 15,241 308,403
delete 15,795 15,716 264,165

B.1.1. Memory Usage

As reported by top.

memfs (Hash Table) memfs (Binary Tree) tmpfs
43 MB 47 MB n/a

B.2. 512,000 Files

The following table shows operations per second.

21

B. Benchmark Data

memfs (Hash Table) memfs (Binary Tree) tmpfs
mkdir 17,832 17,711 260,776
rmdir 27,372 26,660 306,112
create 14,944 14,804 191,267

read 502,365 506,404 697,742
write 583,254 554,159 670,165
close 42,422 45,656 612,714
stat 20,476 25,121 310,329

access 19,366 22,527 331,634
chmod 15,374 15,276 296,911
readdir 12,367 12,126 25,415

link 7,386 6,941 147,648
unlink 13,429 12,882 276,924
delete 14,034 14,123 234,755

B.2.1. Memory Usage

As reported by top.

memfs (Hash Table) memfs (Binary Tree) tmpfs
119 MB 133 MB n/a

B.3. 1,000,000 Files

The following table shows operations per second.

memfs (Hash Table) memfs (Binary Tree) tmpfs
mkdir 17,322 19,084 n/a
rmdir 27,468 27,144 n/a
create 14,219 13,828 n/a

read 498,137 506,167 n/a
write 571,636 590,069 n/a
close 41,182 38,400 n/a
stat 16,904 16,723 n/a

access 16,804 16,997 n/a
chmod 12,419 12,194 n/a
readdir 10,032 9,778 n/a

link 6,915 6,981 n/a
unlink 13,403 13,106 n/a
delete 14,413 14,142 n/a

22

B. Benchmark Data

1 Byte Files

memfs (Hash Table)
mkdir 18,589
rmdir 27,813
create 16,680

read 20,029
write 38,426
close 33,651
stat 19,504

access 17,792
chmod 12,775
readdir 10,088

link 6,954
unlink 14,235
delete 14,728

B.3.1. Memory Usage

As reported by top.

memfs (Hash Table) memfs (Binary Tree) tmpfs
191 MB 199 MB n/a

23

	Introduction
	Goals
	Requirements

	FUSE Memory File System
	Implementation
	/opts Configuration Directory

	Complex Operations
	setattr()
	lookup()

	Evaluation
	Hardware
	File Number
	125,000 Files
	512,000 Files
	1,000,000 Files

	File System
	memfs (Hash Table)
	memfs (Binary Tree)
	tmpfs

	Conclusion and Future Work
	memfs
	FUSE Overhead

	Appendices
	Usage Instructions
	Installing Required Packages
	Compiling Everything
	FUSE File System
	Debugging

	Benchmark

	Benchmark Data
	125,000 Files
	Memory Usage

	512,000 Files
	Memory Usage

	1,000,000 Files
	Memory Usage

