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Introduction

FUSE

Goal was to measure the overhead of the FUSE

ctfs indicated that FUSE introduces significant overhead
when a large number of files is processed

FUSE file systems run in user space

They use the special device /dev/fuse to communicate with
the kernel part of FUSE

More expensive context switches have to be performed
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Introduction

memfs

What?

A FUSE memory file system
Like tmpfs

Why?

Measure FUSE overhead

Eliminate the influence of the relatively slow hard disk

tmpfs for normal users
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Overview

Works like any other file system

Selectable backends for directory entries

Currently hash tables and balanced binary trees are supported

chmod, chown, open and utimens are merely empty stubs

fileop will not run without those

Idea: Use empty operations to measure FUSE overhead
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/opts directory

Like /proc, just for memfs

Can configure options at runtime

Currently only no data is supported

Discards any data written to a file
Returns bogus data
File size is updated correctly

For example:

$ echo 1 > $HOME/memfs/opts/no data

$ cat $HOME/memfs/opts/no data
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Complex Operations

Some FUSE file system operations are complex

They are internally made up of several file system operations

setattr()

After chmod(), chown(), truncate() and utimens() an
implicit getattr() is performed

lookup()

After create(), mknod(), mkdir(), symlink(), and link()

an implicit getattr() is performed

close() does not do (too much) implicit work

Let’s use that one
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Costs

tmpfs

Mode switch into the kernel
Mode switch out of the kernel

memfs

Mode switch into the kernel
Context switch into memfs

Context switch out of memfs
Mode switch out of the kernel
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Conclusion and Future Work

memfs is a memory file system that is configurable at runtime

Can be easily extended to use arbitrary data structures as
backends
Basis for benchmarking and – hopefully – tuning of FUSE with
large amounts of files

It is hard to measure the overhead with empty stub operations

FUSE performs implicit getattr() calls for most of them
release() is one of the few operations that can be used
Should give a good estimate of the possible maximum that
FUSE is capable of
Modify the FUSE user-space library to make the implicit
getattr() calls conditional
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