
Introduction memfs Evaluation Conclusion and Future Work

memfs – A FUSE Memory File System
Softwarepraktikum für Fortgeschrittene

Michael Kuhn

Parallele und Verteilte Systeme
Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

2008-10-28

1 / 18

Introduction memfs Evaluation Conclusion and Future Work

1 Introduction
Introduction

2 memfs

3 Evaluation

4 Conclusion and Future Work

2 / 18

Introduction memfs Evaluation Conclusion and Future Work

Introduction

FUSE

Goal was to measure the overhead of the FUSE

ctfs indicated that FUSE introduces significant overhead
when a large number of files is processed

FUSE file systems run in user space

They use the special device /dev/fuse to communicate with
the kernel part of FUSE

More expensive context switches have to be performed

3 / 18

Introduction memfs Evaluation Conclusion and Future Work

Introduction

memfs

What?

A FUSE memory file system
Like tmpfs

Why?

Measure FUSE overhead

Eliminate the influence of the relatively slow hard disk

tmpfs for normal users

4 / 18

Introduction memfs Evaluation Conclusion and Future Work

1 Introduction

2 memfs

Overview
/opts directory
Complex Operations

3 Evaluation

4 Conclusion and Future Work

5 / 18

Introduction memfs Evaluation Conclusion and Future Work

Overview

Works like any other file system

Selectable backends for directory entries

Currently hash tables and balanced binary trees are supported

chmod, chown, open and utimens are merely empty stubs

fileop will not run without those

Idea: Use empty operations to measure FUSE overhead

6 / 18

Introduction memfs Evaluation Conclusion and Future Work

/opts directory

Like /proc, just for memfs

Can configure options at runtime

Currently only no data is supported

Discards any data written to a file
Returns bogus data
File size is updated correctly

For example:

$ echo 1 > $HOME/memfs/opts/no data

$ cat $HOME/memfs/opts/no data

7 / 18

Introduction memfs Evaluation Conclusion and Future Work

Complex Operations

Some FUSE file system operations are complex

They are internally made up of several file system operations

setattr()

After chmod(), chown(), truncate() and utimens() an
implicit getattr() is performed

lookup()

After create(), mknod(), mkdir(), symlink(), and link()

an implicit getattr() is performed

close() does not do (too much) implicit work

Let’s use that one

8 / 18

Introduction memfs Evaluation Conclusion and Future Work

1 Introduction

2 memfs

3 Evaluation
Evaluation
Costs

4 Conclusion and Future Work

9 / 18

Introduction memfs Evaluation Conclusion and Future Work

Evaluation

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

100000

200000

300000

400000

500000

600000

700000
125,000 Files

memfs (Hash
Table)

memfs (Binary
Tree)

tmpfs

o
p

s
/s

10 / 18

Introduction memfs Evaluation Conclusion and Future Work

Evaluation

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

100000

200000

300000

400000

500000

600000

700000
512,000 Files

memfs (Hash
Table)

memfs (Binary
Tree)

tmpfs

o
p

s
/s

11 / 18

Introduction memfs Evaluation Conclusion and Future Work

Evaluation

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
1,000,000 Files

memfs (Hash
Table)

memfs (Binary
Tree)

o
p

s
/s

12 / 18

Introduction memfs Evaluation Conclusion and Future Work

Evaluation

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

10000

20000

30000

40000

50000

60000
memfs (Hash Table)

125,000 Files 512,000 Files 1,000,000 Files

o
p

s
/s

13 / 18

Introduction memfs Evaluation Conclusion and Future Work

Evaluation

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

10000

20000

30000

40000

50000

60000
memfs (Binary Tree)

125,000 Files 512,000 Files 1,000,000 Files

o
p

s
/s

14 / 18

Introduction memfs Evaluation Conclusion and Future Work

Evaluation

mkdir
rmdir

create
close

stat
access

chmod
readdir

link
unlink

delete

0

100000

200000

300000

400000

500000

600000

700000
tmpfs

125,000 Files 512,000 Files

o
p

s
/s

15 / 18

Introduction memfs Evaluation Conclusion and Future Work

Costs

tmpfs

Mode switch into the kernel
Mode switch out of the kernel

memfs

Mode switch into the kernel
Context switch into memfs

Context switch out of memfs
Mode switch out of the kernel

16 / 18

Introduction memfs Evaluation Conclusion and Future Work

1 Introduction

2 memfs

3 Evaluation

4 Conclusion and Future Work
Conclusion and Future Work

17 / 18

Introduction memfs Evaluation Conclusion and Future Work

Conclusion and Future Work

memfs is a memory file system that is configurable at runtime

Can be easily extended to use arbitrary data structures as
backends
Basis for benchmarking and – hopefully – tuning of FUSE with
large amounts of files

It is hard to measure the overhead with empty stub operations

FUSE performs implicit getattr() calls for most of them
release() is one of the few operations that can be used
Should give a good estimate of the possible maximum that
FUSE is capable of
Modify the FUSE user-space library to make the implicit
getattr() calls conditional

18 / 18

	Introduction
	Introduction

	memfs
	Overview
	/opts directory
	Complex Operations

	Evaluation
	Evaluation
	Costs

	Conclusion and Future Work
	Conclusion and Future Work

