
Neighbourcast,

a Network Paradigm for MMORPGs

Alexei Bratuhin

September 30, 2008

Contents

1 MMORPG 2

1.1 Definition . 2
1.2 History . 2
1.3 Architecture . 3
1.4 Issues . 3

2 Neighbourcast 4

2.1 Introduction . 4
2.2 Problem Statement . 5
2.3 Definition, Description . 5
2.4 Problems . 6
2.5 Enhancements . 6

2.5.1 Logarithmic TTL . 6
2.5.2 Probabilistic Add/Remove Neighbour 6

2.6 Alternatives . 6

3 Mercury 8

3.1 Pub/Sub Introduction . 8
3.2 Description . 9
3.3 Implemented features . 9

3.3.1 Differences to Mercury . 10
3.4 Not Implemented features . 10

4 Test and Test Results 11

5 Conclusion 14

6 Literature and Links 15

7 Appendix A - Test Results As Table 16

1

Chapter 1

MMORPG

1.1 Definition

MMORPG (Massively Multiplayer Online Player Game) is

• A fully realised, living, breathing online world which exists in its entirety
in real-time, allowing players to quest and develop their character, no
matter where they are within it at any one time;

• A ”shared world” online game, with at least some persistent elements,
featuring a large base of otherwise unconnected players.

In an MMORPG, like any RPG, the user controls a character represented
by an avatar, which he directs to fight monsters for experience, interact with
other characters, acquire items, and so on. MMORPGs have become extremely
popular since the wider debut of broadband Internet connections, now with
millions of subscribers from hundreds of different countries. Some MMORPGs
have as many as a million subscribers.

1.2 History

MMORPGs have their roots in online, text-based adventures, which existed
as early as the 1970s. The first real MMORPG, Meridian 59, was released in
1996, but it wasn’t until the next year that Ultima Online highly popularized the
genre. Both games were played on a pay-by-month basis, as are most modern
MMORPGs. The genre surged into popularity throughout the late nineties,
finding especially welcoming markets in Taiwan, South Korea, and America.
In 1999, Sony Online Entertainment released EverQuest, a popular game to
this day. Right around the same time, Ultima Online and Asheron’s Call were
released, two other MMORPGs that would become extremely popular.

Around 2000, MMORPGs began to attract the attention of academia (psy-
chology and economics) and non-gaming publications. Reactions ranging from
praise to distaste are common, with some critics saying that such games turn
us into lifeless zombies, and others celebrating the MMORPG as a fascinating
new way for us to interact with each other.

2

In 2001, the market appeared to plateau, causing the cancellation of some
MMORPGs in development. But new MMORPGs continue to be released, with
dozens of popular games still being sold. One popular selling point is expansion
packs, either downloaded from the server as patches or sold in stores. These
expansion packs ensure that the virtual worlds in MMORPGs stay fresh and
interesting, constantly changing.

Some MMORPGs have developed sophisticated economies with equipment,
currency, and characters within the game being exchanged online for real money.
This has led to the study of ”syntethic economics” and how they relate to
real world economies. As MMORPG worlds become increasingly more realistic
and entertaining, they will continue to permeate further into the mainstream,
attracting both positive and negative reactions from all sides.

1.3 Architecture

• Usually built using client-server architecture, examples World of Warcraft,
Everquest.

• Usually thin clients are used - application logic (e.g., player information,
player interaction) is implemented on the server side.

• Situation: trade chat within M player group

• Implementation: broadcast or some version of multicast is used, resulting
in O(M2) messages sent through the server.

1.4 Issues

• Maintainance requires sufficient servers and bandwidth. Insufficient re-
sources lead to lags.

– Commercial grade infrastructure requires hundreds or thousand of
servers (millions of subscribers).

• P2P + Tracker (peer-to-peer communication) could work for regulating
work load, when not for problems with asymmetrical bandwidth and
cheating.

– DSL solves the asymmetrical bandwidth problem

– Cheating is always an issue

3

Chapter 2

Neighbourcast

2.1 Introduction

In MMORPGs the most common information exchanged is the status, the
position and the stats information. This information needs to be spread all
over the virtual world of MMORPG. But no one from one corner/pole of the
map needs to know what’s happening on the other corner/pole (unless this is a
system or some kind of multicast (group/guild) event).

Therefore information about world changes needs to be spread among the
’neighbours’ of the change only.

The most reasonable metric for neighbourhood relation in MMORPG is the
sight range of a player.

Assuming information should be sent only within some known region, there
arises the problem of finding those neighbours:

• asking the server to check all clients and to return the list of neighbours
results in broadcast, if naive approach is applied.

• sorting clients could potentially solve the problem of finding neighbours,
if only one ordering is used (not the case, since we have x-y-z, y-x-z, etc.)

• maintaining the neighbourhood graph. But keeping this graph up-to-date
in a distributed environment is difficult, since it could require the rebuild
of the whole graph

– Solution: if changing state, client sends messages that have to be
forwarded by its neighbours.

– Problem: since each node doesn’t have the complete neighbourhood
graph, it would require some predictive capabilities to make the al-
gorithm precise.

4

2.2 Problem Statement

Develop an algorithm/model for MMORPG that uses position/range informa-
tion for p2p communication, thus avoiding broadcast for information exchange
between nodes that leads to network overloading.

2.3 Definition, Description

Neighbourcast - multicast variation, aims at sending messages to nodes within
some predefined range only. It uses epidemiologic style of message forwarding
to maintain a state close to consistent.

Nodes within range are called ’neighbours’ - and are the only one (except for
server) that a node communicates with.

Each node maintains its own list of neighbours that it updates on proceeding
messages from neighbours - each message contains ’position’ information that
gives the node the possibility to check, whether its neighbour has left the node’s
range or not.

Each node regularly updates its information on tracker server. That reduces
the probability of cheating, since tracker server is responsible for holding the
client’s information and the client itself. That also assures an recovery point for
client in case of breakdown.

Procedure:

• send status messages to all nodes from neighbour list with

– N forwarding hops = 0, if not moving

– N forwarding hops = 1, if moving

• proceed incoming messages

– if received message from node that is a neighbour and isn’t in neigh-
bourlist ⇒ add node to neighbourlist

– if received message from node that isn’t neighbour and is in neigh-
bourlist ⇒ remove node from neighbourlist - check if graph is still
connected

• if not, ask the server to build MST

Note that breakdown of a client during peer-to-peer communication is treated
as disconnect. That means, that not proceeded information (messages received,
but not yet proceeded and messages not yet received) is then lost. The first
client to discover the breakdown initiates MST build procedure to recalculate
forwarding routes.

5

Note that neighbourhood relation is symmetrical. Therefore it may not hap-
pen that one of the users sees the other, and the second doesn’t see the first
one.

Therefore an inconsistency error (situation, when two nodes aren’t in neigh-
bourhood relation, although they are in each other’s range) may be annoying if
not corrected in reasonable time, but is not crucial for the single user’s gameplay.

2.4 Problems

A chain of nodes that is (part of) a MST. If N nodes > 4 and nodes move to
form a circle, nodes at chain’s end don’t receive information about each other,
although they are in each other’s range.

2.5 Enhancements

2.5.1 Logarithmic TTL

Set N forwarding hops = log(N) − N neighbours. Logarithmic number of
hops makes the probability of occurring of problem situation smaller

• MMORPG node network is unlikely to have a chain structure

– if consisting of several chains, after MST build the chain structure is
unlikely to survive.

• MMORPG node network is likely to have a web-similar structure

2.5.2 Probabilistic Add/Remove Neighbour

Notice that in the step following an MST build an MST is unlikely to change.

• Therefore, removal of distant nodes is more probable, the more time after
MST build has passed.

• Therefore, addition of distant nodes is more probable, the more time after
MST build has passed.

• Probability = 1 − 1/max(t− (c − l), 1), where

– c - current step

– l - last MST build step

– t - number of steps needed to cross range with speed

2.6 Alternatives

Notice that neighbourcast is not an exact algorithm. List of the neighbours
isn’t consistent to reality at each step. Neighbourcast aims at reducing the
network load providing somewhat incomplete or erroneous information.

6

If consistency at each step is crucial (each node at every moment must have
correct and consistent information) one considers publish/subscribe systems
providing possibility for range queries, e.g., ’Mercury’.

If using publish/subscribe system, a node doesn’t maintain a list of neigh-
bours. Instead, it registers its area of interests and then becomes all the mes-
sages from events in the area.

7

Chapter 3

Mercury

3.1 Pub/Sub Introduction

Publish/subscribe is an asynchronous message paradigm where senders (pub-
lishers) of messages are not programmed ti send their messages to specific re-
ceivers (subscribers). Instead, published messages are categorized into classes,
without knowledge of what (if any) subscribers there may be. Subscribers ex-
press interest in one or more classes and only receive messages that are of inter-
est, without knowledge of what (if any) publishers there are. This decoupling of
publishers and subscribers can allow for greater scalability and a more dynamic
network topology.

Types of publish/subscribe architecture:

• Topic-Based Publish/Subscribe - processes exchange information through
a set of predefined subjects (topics) which represent many-to-many dis-
tinct (and fixed) logical channels.

– List-Based Publish/Subscribe

– Broadcast-Based Publish/Subscribe

• Content-Based Publish/Subscribe - are more flexible as subscriptions are
related to specific information content and, therefore, each combination of
information items can actually be seen as a single dynamic logical channel.

Advantages of Publish/subscribe systems:

• Loosely-coupled

• Scalable (for small- and middle-sized installations)

Disadvantages of Publish/subscribe systems:

• Loosely-coupled - no end-to-end functionality possible

• Poorly scalable for larger installations

• Security problems

8

– if using brokers - DoS, DDoS

– unauthorized publishers (SSH solves the problem at cost of higher
network load)

– unauthorized subscribers (SSH solves the problem at cost of higher
network load)

Limitation of topic-based publish/subscribe systems:

• Poor support for range queries (e.g., 1 ≤ x ≤ 2 ∧ y == ”abcd” is very
inefficient, if topic classification is primarily based on ’z’)

3.2 Description

Mercury includes:

• A message routing algorithm that supports range-based lookups within
each routing hub in O(log2(n)/k) when each node maintains k links to
other nodes;

• A low-overhead random sampling algorithm that allows each node to cre-
ate an estimate of system-wide metrics such as data value and load distri-
bution;

• A load-balancing algorithm (which exploits the random sampling algo-
rithm) that ensures that routing load is uniformly distributed across all
participating nodes;

• An algorithm for reducing query flooding by estimating how selective each
of the predicates in a query are based on past database insertions.

Structure:

• (logically) partition nodes in groups called attribute hub;

• each attribute hub is responsible for a specific attribute;

• first routing hop determines which attribute to route through. The rest
of the routing is unidimensional and is based on the values of a single
attribute of the data item;

• nodes within each attribute hub are arranged into a circular overlay with
each node responsible for a contiguous range of attribute values. Ranges
are assigned to nodes during the join process.

3.3 Implemented features

• HubSet

• Hub (Attribute Hub)

• HubNode

9

• Publication

• Subscription

• Publication TTL

• Load balancing

3.3.1 Differences to Mercury

• Publications are not stored in hubs

• Publications have a TTL attribute that is helpful when deleting (expired
/ obsolete) publications

• Publications are routed until they (expire / become obsolete)

• Query is proceeded on each attribute hub, an intersection of found sub-
scriptions is then built

3.4 Not Implemented features

• Small-world network structure

• Sampling for load balancing

• Routing in O(log2(n)/k)

10

Chapter 4

Test and Test Results

To check the grade of inconsistency of the proposed algorithm and also to
evaluate the algorithm in comparison to the most naive approach - broadcast
- a number of test has been launched. The tests were launched with different
parameters (number of nodes, size of game field, speed, range, etc.). As results,
the number of inconsistency errors, the number of ’build MST’-calls and the
number of messages sent overall was computed and stored for analysis.

Since calculating of inconsistencies required strong concurrency control (for
timestamping purposes) it was decided to launch number of iterative test, mean-
ing that nodes ran corresponding neighbourcast routine synchronously. Due to
limitations of existing plotting systems and low computational power following
3 parameters fixed:

• Field size = 1000x1000

• # Nodes = 100

• # Steps = 1000

Results of the test are shown on the graphic for each algorithm:

• Neigbourcast

• Neighbourcast ∧ 2.5.1. (Neighbourcast CWA)

• Neighbourcast ∧ 2.5.2.

Diagram Legend:

• topleft graphic shows test results for the Neighbourcast/Broadcast ratio,
meaning ratio between number of messages sent and number of messages
that would be sent if using broadcast;

• topright graphic shows test results for the Neighbourcast/Broadcast ratio
in interval [0:1], meaning test that performed better (in terms of network
load), that Broadcast would has performed;

11

 50
 100

 150
 200

 250
 300

 350
 400 0

 20
 40

 60
 80

 100
 120

 140
 160

 180

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Neighbourcast

Neighbourcast/Broadcast

Range

Speed
 50

 100
 150

 200
 250

 300
 350

 400 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 0

 0.2

 0.4

 0.6

 0.8

 1

Neighbourcast

Neighbourcast/Broadcast

Range

Speed

 50
 100

 150
 200

 250
 300

 350
 400 0

 20
 40

 60
 80

 100
 120

 140
 160

 180

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Neighbourcast

MST builds

Range

Speed
 50

 100
 150

 200
 250

 300
 350

 400 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

Neighbourcast

#Errors corrected in 1 step(s)
#Errors corrected in 2 step(s)
#Errors corrected in 3 step(s)
#Errors corrected in 4 step(s)
#Errors corrected in 5 step(s)

Range

Speed

Figure 4.1: Test Statistics: Neighbourcast

• bottomleft graphic shows the number of MST build operations performed
by the server. Since building an MST in complete graph has complexity
O(N2) the less such operations performed the better;

• bottomright graphic shows the number of inconsistencies fixed in 1, 2, ...
,5 steps, where an inconsistency is the situation when two nodes aren’t in
neighbourhood relation, although they are in each other’s range.

Let us now discuss the test results:

• First of all, some tests end with Neighbourcast/Broadcast ratio > 1. This
effect is caused by forwarding messages (as specified in neighbourcast rou-
tine) in a very dence neighbourhood graph;

• Second, most tests have a good Neighbourcast/Broadcast ratio - < 0.1 -
for reasonable values of Speed and Range (Speed << Range << Field)

• Third, both ”Neighbourcast” and ”Neighbourcast with Logarithmic TTL”
require large amount of ’build MST’ operations - appr. each step and
appr. each 2nd step, correspondingly. ”Neighbourcast with Probabilistic
Add/Remove Neighbour” scores slightly better.

• Forth, both ”Neighbourcast” and ”Neighbourcast with Logarithmic TTL”
have large amount of inconsistencies, corrected in 1 or 2 steps (which
makes the algorithm follow the past), whereas ”Neighbourcast with Proba-
bilistic Add/Remove Neighbour” results in very few inconsistencies (which
makes the algorithm closely follow the reality).

12

 0 50 100 150 200 250 300 350 400 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Neighbourcast + Logarithmic Hop Number

Neighbourcast/Broadcast

Range

Speed
 0 50 100 150 200 250 300 350 400 0

 20
 40

 60
 80

 100
 120

 140
 160

 180

 0

 0.2

 0.4

 0.6

 0.8

 1

Neighbourcast + Logarithmic Hop Number

Neighbourcast/Broadcast

Range

Speed

 0 50 100 150 200 250 300 350 400 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Neighbourcast + Logarithmic Hop Number

MST builds

Range

Speed
 0 50 100 150 200 250 300 350 400 0

 20
 40

 60
 80

 100
 120

 140
 160

 180

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

Neighbourcast + Logarithmic Hop Number

#Errors corrected in 1 step(s)
#Errors corrected in 2 step(s)
#Errors corrected in 3 step(s)
#Errors corrected in 4 step(s)
#Errors corrected in 5 step(s)

Range

Speed

Figure 4.2: Test Statistics: Neighbourcast with Logarithmic TTL

 0
 50

 100
 150

 200
 250 0

 20
 40

 60
 80

 100
 120

 0

 5

 10

 15

 20

 25

Neighbourcast + Probabilistic Neighbour Reassignment

Neighbourcast/Broadcast

Range

Speed
 0

 50
 100

 150
 200

 250 0
 20

 40
 60

 80
 100

 120

 0

 0.2

 0.4

 0.6

 0.8

 1

Neighbourcast + Probabilistic Neighbour Reassignment

Neighbourcast/Broadcast

Range

Speed

 0
 50

 100
 150

 200
 250 0

 20
 40

 60
 80

 100
 120

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Neighbourcast + Probabilistic Neighbour Reassignment

MST builds

Range

Speed
 0

 50
 100

 150
 200

 250 0
 20

 40
 60

 80
 100

 120

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

Neighbourcast + Probabilistic Neighbour Reassignment

#Errors corrected in 1 step(s)
#Errors corrected in 2 step(s)
#Errors corrected in 3 step(s)
#Errors corrected in 4 step(s)
#Errors corrected in 5 step(s)

Range

Speed

Figure 4.3: Test Statistics: Neighbourcast with Probabilistic Add/Remove
Neighbour

13

Chapter 5

Conclusion

Summarizing results we conclude that

• using Neighbourcast for reasonable values of Range and Speed (Speed <<
Range << Field) efficiently reduces the network load at costs of inconsis-
tencies in neighbourhood graph most of which corrected in at most 5 steps.
However a unaffordably huge number of MST computations is made;

• using Neighbourcast with Logarithmic TTL reduces number of errors and
speeds up their correction, as well as reduces number of MST computations
made at very small costs;

• Using Neighbourcast with Probabilistic Add/Remove Neighbour shows
good results in some parameter constellations and reduces number of in-
consistencies to acceptable level. However the chosen probablity function
doesn’t have a continuous effect on test results. It is too optimistic in
most testcases and is not applicable in general case. More sophisticated
probability function may be needed for probabilistical enhancement of
Neighbourcast.

Relating to MMORPGs, Neighbourcast can be applied for sparse populated
areas, such as ”outtown” terrains. Neighbourcast is definitely not suited for
”intown” areas, especially marketplaces.

Finally, it must be again stressed that Neighbourcast (also with enhance-
ments) is not an ’exact’ algorithm, which means it doesn’t guarantee consistent
state of the neighbourhood graph at every moment. If maintaining such consis-
tent state is important, Publish/Subscribe systems should be considered a good
choice. Using Mercury protocol should theoretically result in O(n ∗ log2(n)/k)
complexity for sending messages to neighbours only, compared to O(n2) using
naive Broadcast (n ∗ log2(n)/n2 ≃ 0.05, n ≃ 100).

14

Chapter 6

Literature and Links

• Mercury

– http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.1608

– www.sigcomm.org/sigcomm2004/papers/p625-bharambe1.pdf

– www.cs.cmu.edu/ ashu/talks/sigcomm2004.ppt

– www.cs.uoi.gr/ pitoura/courses/p2p/slides/tsotsos8.ppt

– www.cs.cornell.edu/people/egs/cs615-spring07/mercury.pdf

– http://doi.acm.org/10.1145/1030194.1015507

• Rest

– http://en.wikipedia.org/wiki/Publish/subscribe

– http://msdn.microsoft.com/en-us/library/ms978603.aspx

– http://www.wisegeek.com/what-is-a-mmorpg.htm

15

Chapter 7

Appendix A - Test Results
As Table

16

Table 7.1: Neighbourcast; Ratio

Speed/Range 50 66 83 100 200 250 300 333 400
2 0.028 - - - - - - - -
3 0.027 - - - - - - - -
4 0.028 0.046 - 0.141 - - - - -
5 0.027 - 0.075 - - - - - -
6 - 0.044 - 0.134 - - - - -
7 0.027 - - - - - - - -
8 0.026 - 0.071 0.124 1.666 - - - -
9 - 0.039 - - - - - - -
10 0.026 - - 0.119 - 3.683 - - -
11 - - 0.062 - - - - - -
12 0.025 - - - - - 6.651 - -
13 - 0.036 - - 1.461 - - - -
14 - - - 0.104 - - - - -
16 0.025 - 0.053 0.094 1.412 - - - 17.262
20 - - - 0.080 1.372 3.205 - - -
22 - 0.032 - - - - - 8.903 -
25 0.025 - - 0.070 - - 5.798 - -
27 - - 0.043 - - - - - -
28 - - - - 1.104 - - - -
33 - 0.030 - 0.057 0.950 - - 8.068 15.775
40 - - - - 0.804 - - - -
41 - - 0.037 - 0.781 2.379 - - -
47 - - - - - - - 7.197 -
50 - - - 0.045 0.542 - 4.518 - -
52 - - - - - 1.833 - - -
62 - - - - - 1.479 3.779 - -
66 - - - - 0.315 - - 5.831 12.680
75 - - - - - - 3.103 - -
83 - - - - - - - - 10.868
100 - - - - 0.161 - - - 9.843
111 - - - - - - - 3.446 -
166 - - - - - - - 2.045 -

1
7

Table 7.2: Neighbourcast; Number of MST Builds

Speed/Range 50 66 83 100 200 250 300 333 400
2 1000 - - - - - - - -
3 1000 - - - - - - - -
4 1000 1000 - 1000 - - - - -
5 1000 - 1000 - - - - - -
6 - 1000 - 1000 - - - - -
7 1000 - - - - - - - -
8 1000 - 1000 1000 209 - - - -
9 - 1000 - - - - - - -
10 1000 - - 1000 - 15 - - -
11 - - 1000 - - - - - -
12 1000 - - - - - 2 - -
13 - 1000 - - 155 - - - -
14 - - - 1000 - - - - -
16 1000 - 1000 1000 203 - - - 1
20 - - - 1000 224 13 - - -
22 - 1000 - - - - - 3 -
25 1000 - - 1000 - - 1 - -
27 - - 1000 - - - - - -
28 - - - - 276 - - - -
33 - 1000 - 1000 302 - - 1 1
40 - - - - 352 - - - -
41 - - 1000 - 349 41 - - -
47 - - - - - - - 1 -
50 - - - 1000 459 - 9 - -
52 - - - - - 71 - - -
62 - - - - - 96 16 - -
66 - - - - 600 - - 2 2
75 - - - - - - 15 - -
83 - - - - - - - - 2
100 - - - - 760 - - - 2
111 - - - - - - - 7 -
166 - - - - - - - 23 -

1
8

Table 7.3: Neighbourcast; Number of Inconsistencies x100

Speed/Range 50 66 83 100 200 250 300 333 400
2 15/0/0/0/0/ - - - - - - - -
3 21/0/0/0/0/ - - - - - - - -
4 29/0/0/0/0/ 65/2/0/0/0/ - 161/6/0/0/0/ - - - - -
5 29/0/0/0/0/ - 121/4/0/0/0/ - - - - - -
6 - 85/3/0/0/0/ - 231/8/0/0/0/ - - - - -
7 41/1/0/0/0/ - - - - - - - -
8 44/1/0/0/0/ - 195/9/0/0/0/ 289/11/0/0/0/ 538/15/4/3/2/ - - - -
9 - 118/4/0/0/0/ - - - - - - -
10 54/2/0/0/0/ - - 339/14/1/0/0/ - 754/15/4/3/3/ - - -
11 - - 246/11/0/0/0/ - - - - - -
12 52/1/0/0/0/ - - - - - 955/13/5/4/7/ - -
13 - 148/7/0/0/0/ - - 784/35/6/4/2/ - - - -
14 - - - 485/29/2/0/0/ - - - - -
16 62/2/0/0/0/ - 321/19/2/0/0/ 529/34/3/0/0/ 956/59/8/3/1/ - - - 1254/14/10/4/14/
20 - - - 635/49/5/0/0/ 1137/82/9/3/1/ 1378/46/6/4/4/ - - -
22 - 203/13/1/0/0/ - - - - - 1698/17/7/8/7/ -
25 85/3/0/0/0/ - - 720/60/9/1/0/ - - 1798/31/8/6/9/ - -
27 - - 456/38/5/0/0/ - - - - - -
28 - - - - 1527/208/25/7/2/ - - - -
33 - 246/16/1/0/0/ - 818/81/13/2/0/ 1710/342/44/9/2/ - - 2419/34/10/10/12/ 2389/15/9/8/13/
40 - - - - 1970/540/83/13/2/ - - - -
41 - - 523/52/7/1/0/ - 2043/589/103/15/2/ 2456/316/30/6/3/ - - -
47 - - - - - - - 3297/74/10/11/13/ -
50 - - - 938/110/21/5/1/ 2474/850/176/29/5/ - 3293/220/22/6/3/ - -
52 - - - - - 2740/672/64/8/2/ - - -
62 - - - - - 2928/1099/162/14/2/ 3805/476/20/6/1/ - -
66 - - - - 3469/1100/220/60/17/ - - 4333/268/20/11/3/ 4326/71/17/15/13/
75 - - - - - - 4171/884/58/10/5/ - -
83 - - - - - - - - 5212/133/26/10/8/
100 - - - - 4810/1064/252/86/30/ - - - 5953/232/24/11/8/
111 - - - - - - - 5745/1399/92/10/4/ -
166 - - - - - - - 7241/2343/236/16/2/ -

1
9

Table 7.4: Neighbourcast with Logarithmic TTL; Ratio

Speed/Range 41 50 66 83 100 166 200 208 250 300 333 400
1 0.033 - - 0.114 - 0.984 - 2.347 3.759 - - -
2 0.036 0.042 - 0.102 - 0.790 - 1.942 3.814 - - -
3 0.034 0.040 - 0.096 - 0.980 - 1.914 3.960 - - -
4 0.034 0.041 0.060 0.094 0.154 0.944 - 2.249 4.092 - - -
5 0.034 0.040 - 0.092 - 0.851 - 1.879 3.656 - - -
6 0.034 - 0.058 0.088 0.144 0.807 - 1.903 3.565 - - -
7 - 0.039 - - - - - - - - - -
8 - 0.039 - 0.087 0.138 - 1.567 - - - - -
9 - - 0.054 - - - - - - - - -
10 - 0.038 - - 0.129 - - - 3.753 - - -
11 - - - 0.081 - - - - - - - -
12 - 0.037 - - - - - - - 6.612 - -
13 - - 0.051 - - - 1.526 - - - - -
14 - - - - 0.121 - - - - - - -
16 - 0.037 - 0.071 0.106 - 1.382 - - - - 17.440
20 - - - - 0.098 - 1.325 - 3.118 - - -
22 - - 0.045 - - - - - - - 8.996 -
25 - 0.037 - - 0.084 - - - - 6.137 - -
27 - - - 0.055 - - - - - - - -
28 - - - - - - 1.105 - - - - -
33 - - 0.042 - 0.071 - 1.003 - - - 8.147 15.644
40 - - - - - - 0.791 - - - - -
41 - - - 0.048 - - 0.767 - 2.304 - - -
47 - - - - - - - - - - 7.245 -
50 - - - - 0.057 - 0.558 - - 4.483 - -
52 - - - - - - - - 1.840 - - -
62 - - - - - - - - 1.470 3.794 - -
66 - - - - - - 0.326 - - - 5.834 12.403
75 - - - - - - - - - 3.213 - -
83 - - - - - - - - - - - 10.956
100 - - - - - - 0.179 - - - - 9.863
111 - - - - - - - - - - 3.428 -
166 - - - - - - - - - - 1.999 -

2
0

Table 7.5: Neighbourcast with Logarithmic TTL; Number of MST Builds

Speed/Range 41 50 66 83 100 166 200 208 250 300 333 400
1 1000 - - 1000 - 872 - 319 46 - - -
2 1000 1000 - 1000 - 570 - 128 1 - - -
3 1000 1000 - 1000 - 642 - 97 44 - - -
4 1000 1000 1000 1000 1000 551 - 131 27 - - -
5 1000 1000 - 1000 - 514 - 174 25 - - -
6 1000 - 1000 1000 1000 521 - 117 47 - - -
7 - 1000 - - - - - - - - - -
8 - 1000 - 1000 1000 - 146 - - - - -
9 - - 1000 - - - - - - - - -
10 - 1000 - - 1000 - - - 14 - - -
11 - - - 1000 - - - - - - - -
12 - 1000 - - - - - - - 1 - -
13 - - 1000 - - - 196 - - - - -
14 - - - - 1000 - - - - - - -
16 - 1000 - 1000 1000 - 175 - - - - 1
20 - - - - 1000 - 185 - 29 - - -
22 - - 1000 - - - - - - - 1 -
25 - 1000 - - 1000 - - - - 2 - -
27 - - - 1000 - - - - - - - -
28 - - - - - - 250 - - - - -
33 - - 1000 - 1000 - 264 - - - 2 1
40 - - - - - - 317 - - - - -
41 - - - 1000 - - 335 - 50 - - -
47 - - - - - - - - - - 7 -
50 - - - - 1000 - 425 - - 8 - -
52 - - - - - - - - 59 - - -
62 - - - - - - - - 109 6 - -
66 - - - - - - 570 - - - 5 2
75 - - - - - - - - - 8 - -
83 - - - - - - - - - - - 2
100 - - - - - - 741 - - - - 2
111 - - - - - - - - - - 10 -
166 - - - - - - - - - - 25 -

2
1

Table 7.6: Neighbourcast with Logarithmic TTL; Number of Inconsistencies x100

Speed/Range 41 50 66 83 100 166 200 208 250 300 333
1 0/0/0/0/0/ - - 21/2/0/0/0/ - 58/5/2/0/0/ - 71/3/2/0/0/ 77/4/5/0/1/ - -
2 2/0/0/0/0/ 6/0/0/0/0/ - 34/2/0/0/0/ - 107/6/2/0/0/ - 129/4/3/0/1/ 149/5/5/1/2/ - -
3 3/0/0/0/0/ 7/0/0/0/0/ - 50/2/0/0/0/ - 177/6/2/1/0/ - 197/6/3/0/0/ 229/5/5/1/1/ - -
4 4/0/0/0/0/ 12/0/0/0/0/ 34/1/0/0/0/ 70/2/0/0/0/ 140/5/0/0/0/ 231/6/2/1/0/ - 275/6/3/1/0/ 301/6/6/1/2/ - -
5 6/0/0/0/0/ 13/0/0/0/0/ - 89/3/0/0/0/ - 271/10/3/1/0/ - 319/9/4/1/1/ 361/7/5/1/2/ - -
6 8/0/0/0/0/ - 53/1/0/0/0/ 96/3/0/0/0/ 184/6/0/0/0/ 327/11/2/1/0/ - 386/11/4/1/1/ 429/10/5/1/1/ - -
7 - 20/0/0/0/0/ - - - - - - - - -
8 - 25/0/0/0/0/ - 151/5/0/0/0/ 252/10/0/0/0/ - 510/16/4/1/1/ - - - -
9 - - 78/3/0/0/0/ - - - - - - - -
10 - 32/1/0/0/0/ - - 287/12/0/0/0/ - - - 769/15/5/2/1/ - -
11 - - - 212/10/0/0/0/ - - - - - - -
12 - 38/1/0/0/0/ - - - - - - - 958/14/9/2/4/ -
13 - - 119/5/0/0/0/ - - - 799/34/7/3/0/ - - - -
14 - - - - 462/24/1/0/0/ - - - - - -
16 - 48/1/0/0/0/ - 314/19/1/0/0/ 496/30/2/0/0/ - 925/57/10/3/1/ - - - -
20 - - - - 602/44/4/0/0/ - 1120/86/9/3/1/ - 1382/45/7/3/2/ - -
22 - - 182/11/0/0/0/ - - - - - - - 1694/20/12/5/7/
25 - 71/2/0/0/0/ - - 693/55/7/0/0/ - - - - 1837/30/10/5/5/ -
27 - - - 403/31/4/0/0/ - - - - - - -
28 - - - - - - 1456/215/28/9/1/ - - - -
33 - - 233/15/1/0/0/ - 820/82/13/2/0/ - 1686/344/46/10/1/ - - - 2439/34/11/5/5/
40 - - - - - - 1903/543/89/11/1/ - - - -
41 - - - 493/46/6/0/0/ - - 1969/602/97/13/2/ - 2422/324/25/10/6/ - -
47 - - - - - - - - - - 3290/87/18/7/6/
50 - - - - 926/107/20/4/1/ - 2394/850/185/28/4/ - - 3274/218/15/9/5/ -
52 - - - - - - - - 2720/685/59/8/2/ - -
62 - - - - - - - - 2904/1082/161/14/2/ 3840/473/22/9/3/ -
66 - - - - - - 3317/1108/226/57/15/ - - - 4285/275/21/7/6/
75 - - - - - - - - - 4253/854/43/9/2/ -
83 - - - - - - - - - - -
100 - - - - - - 4767/1076/245/79/29/ - - - -
111 - - - - - - - - - - 5754/1394/85/6/3/
166 - - - - - - - - - - 7178/2365/243/18/2/

2
2

Table 7.7: Neighbourcast with Probabilistic Add/Remove Neighbour; Ratio

Speed/Range 41 50 83 100 166 200 208 250
1 0.034 - 0.106 - 3.053 - 6.037 9.647
2 0.035 - 0.097 - 4.761 - 7.933 -
3 0.035 - 0.088 - 6.133 - 10.618 -
4 0.036 0.040 0.092 - 6.996 - 11.924 -
5 0.035 0.040 0.401 - 7.519 - 12.092 -
6 0.036 - 1.049 - 8.463 - 12.752 -
8 - 0.042 - 2.667 - - - -
10 - 0.042 - 2.841 - - - -
16 - 0.961 - 3.661 - 14.283 - -
20 - 0.726 - 3.692 - 14.351 - 21.531
25 - 0.675 - - - - - -
33 - - - 3.871 - 14.376 - -
40 - - - - - 14.456 - -
41 - - - 3.960 - - - 21.462
50 - - - 3.858 - - - -
66 - - - - - 14.401 - -
83 - - - - - 14.227 - 21.276
100 - - - - - 14.149 - -
104 - - - - - - - 21.110

2
3

Table 7.8: Neighbourcast with Probabilistic Add/Remove Neighbour; Number of MST Builds

Speed/Range 41 50 83 100 166 200 208 250
1 900 - 908 - 1 - 1 1
2 957 - 963 - 1 - 1 -
3 965 - 998 - 1 - 1 -
4 988 971 997 - 1 - 1 -
5 988 990 461 - 1 - 1 -
6 993 - 1 - 1 - 1 -
8 - 983 - 1 - - - -
10 - 996 - 1 - - - -
16 - 14 - 1 - 1 - -
20 - 1 - 1 - 1 - 1
25 - 1 - - - - - -
33 - - - 1 - 1 - -
40 - - - - - 1 - -
41 - - - 1 - - - 1
50 - - - 1 - - - -
66 - - - - - 1 - -
83 - - - - - 1 - 1
100 - - - - - 1 - -
104 - - - - - - - 1

2
4

Table 7.9: Neighbourcast with Probabilistic Add/Remove Neighbour; Number of Inconsistencies x100

Speed/Range 41 50 83 100 166 200 208 250
1 3/0/0/0/0/ - 24/1/0/0/0/ - 48/2/1/1/0/ - 56/2/2/1/1/ 60/2/3/1/2/
2 7/0/0/0/0/ - 50/3/0/0/0/ - 70/2/1/0/0/ - 73/2/2/1/1/ -
3 9/0/0/0/0/ - 69/2/0/0/0/ - 80/2/1/1/0/ - 82/2/2/1/1/ -
4 13/0/0/0/0/ 24/0/0/0/0/ 91/3/0/0/0/ - 83/2/1/1/0/ - 84/2/2/1/1/ -
5 14/0/0/0/0/ 28/0/0/0/0/ 100/3/0/0/0/ - 83/2/1/1/0/ - 84/2/2/1/2/ -
6 17/0/0/0/0/ - 73/1/1/1/1/ - 87/3/2/1/0/ - 84/3/2/1/1/ -
8 - 42/1/0/0/0/ - 88/2/1/1/2/ - - - -
10 - 44/1/0/0/0/ - 90/2/2/2/2/ - - - -
16 - 104/11/9/2/1/ - 95/4/4/5/6/ - 82/5/3/2/1/ - -
20 - 132/45/17/7/3/ - 97/7/8/12/7/ - 77/5/4/3/2/ - 70/6/5/5/3/
25 - 178/58/14/7/1/ - - - - - -
33 - - - 117/31/23/8/4/ - 78/8/7/8/6/ - -
40 - - - - - 81/9/8/9/6/ - -
41 - - - 136/40/16/6/3/ - - - 71/9/8/9/8/
50 - - - 180/52/14/6/2/ - - - -
66 - - - - - 105/31/27/11/6/ - -
83 - - - - - 114/43/19/8/4/ - 92/33/26/11/6/
100 - - - - - 151/52/17/8/4/ - -
104 - - - - - - - 109/46/24/11/6/

2
5

