
Container Library and FUSE Container File
System

Softwarepraktikum für Fortgeschrittene

Parallele und Verteilte Systeme
Institut für Informatik

Ruprecht-Karls-Universität Heidelberg

Michael Kuhn
Matrikelnummer: 2405219

2008-03-31

Contents

1. Introduction 3
1.1. Requirements . 3
1.2. Goals . 3

2. Container Library 4
2.1. License . 4
2.2. General Overhaul . 4
2.3. New Features . 4

2.3.1. Architecture Independence . 4
2.3.2. Thread-Safety . 4
2.3.3. Write Support . 4
2.3.4. File Hashing . 5

2.4. Application Programming Interface . 5

3. Container Tools 7

4. FUSE Container File System 8
4.1. Realization . 8
4.2. Implementation . 8

5. Evaluation 13
5.1. Hardware . 13
5.2. Without Metadata . 13
5.3. With Metadata . 14

Appendices 16

A. Usage Instructions 16
A.1. Installing Required Packages . 16
A.2. Compiling Everything . 16
A.3. Generating libct Documentation . 16
A.4. FUSE file system . 16

B. Benchmark Program 17

C. BSD License 20

D. Benchmark Data 21

Bibliography 22

2

1. Introduction

There are cases when many small files must be stored in a file system. If these files are
accessed frequently, metadata performance plays an important role. An attempt to decrease
the metadata overhead is to maintain a reduced set of metadata for these files. This usually
has to be done manually, because available file systems do not permit the user to change which
metadata is stored. One approach is to pack them together in one file – a container – and thus
have the file system only manage metadata for one file. Within this container, the files and
their corresponding metadata can be managed arbitrarily. One advantage of such an approach
is that the files’ data and metadata are packed together and can be read efficiently – that is, if
the container is not fragmented.

1.1. Requirements

It is obvious that the container format should enable random access to provide access times
independent of the position of a file within the container. Existing formats either do not provide
random access – like the tar format – or store too much metadata – like the iso format.
Therefore a new container format was designed and implemented in [Hei07]. This existing
implementation was used as a basis for all work presented in this report.

1.2. Goals

The goal of this practical was to maintain and enhance the container library and to create
a FUSE1-based file system using it. The FUSE file system was planned to allow legacy
applications to access containers via the POSIX API for file system access.

1Filesystem in Userspace – http://fuse.sourceforge.net/

3

http://fuse.sourceforge.net/

2. Container Library

2.1. License

The container library was not licensed in any way, making future development and usage
difficult. It has therefore been licensed under a 2-clause BSD license in agreement with the
original author. A copy of the license text can be found in appendix C.

2.2. General Overhaul

The library was completely overhauled to provide consistently named functions and data types.
Additionally, the comments within the code were modified to allow the automatic generation
of an API documentation with Doxygen1.

2.3. New Features

2.3.1. Architecture Independence

The original implementation did not honor the different sizes of data types on 32 and 64 bit
architectures, thus making it impossible to use a container created with a 32 bit version of the
library with a 64 bit version and vice versa. By using datatypes of a fixed size the containers
can now be used on both 32 and 64 bit architectures without problems. Additionally, the size
of the metadata structures used in the library is now independent of the architecture.

2.3.2. Thread-Safety

Because of the use of a shared file pointer and the functions read and write in combination
with lseek the library was not thread-safe in its original form. Therefore the library was
modified to use the pread and pwrite functions that do not modify the shared file pointer. It
can now be used safely in multi-threaded applications.

2.3.3. Write Support

The original version of the container library lacked an easy-to-use method to create containers.
Therefore, a convenient interface to add new files from either memory or an existing file was
added to the library. For more information see ct file create * and ct file create fast *

in section 2.4.

1http://www.stack.nl/~dimitri/doxygen/

4

http://www.stack.nl/~dimitri/doxygen/

2. Container Library

2.3.4. File Hashing

File data stored in the container is protected from silent corruption by storing a SHA-1 hash of
it along with its metadata.

2.4. Application Programming Interface

struct ct container This structure represents a container.

struct ct file This structure represents a file within a container.

struct ct container* ct container open (char* path) This function opens the con-
tainer specified by the path argument and returns a ct container pointer. This pointer
can be used to perform further operations on the container.

int ct container close (struct ct container* container) This function closes the
container associated with the container argument and returns an error code.

char* ct container read (struct ct container* container, char* file name) This
function reads the names of all files stored within the container associated with the container

argument. The file name argument must be NULL for the first call and a pointer returned by
the function itself for subsequent calls.

char* ct container read offset (struct ct container* container, uint32 t

offset) This function returns the name of the file at position offset within the
container associated with the container argument.

int ct file exists (struct ct container*, const char* path) This function checks
whether the file with name path exists within the container associated with the container

argument.

struct ct file* ct file open (struct ct container* container, const char* path)

This function opens the file named path within the container associated with the container

argument and returns a ct file pointer. This pointer can be used to perform further
operations on the file.

struct ct file* ct file open offset (struct ct container* container, uint32 t

offset) This function opens the file at position offset within the container associated with
the container argument and returns a ct file pointer. This pointer can be used to perform
further operations on the file.

const char* ct file name (struct ct file* file) This function returns the name of
the file associated with the file argument.

off t ct file size (struct ct file* file) This function returns the size of the file as-
sociated with the file argument.

5

2. Container Library

char* ct file hash (struct ct file* file, char* hash) This function returns the
SHA-1 hash of the file associated with the file argument and stores it in the buffer pointed to
by the hash argument.

ssize t ct file read (struct ct file* file, void* buffer, size t count) reads
count bytes from the file associated with the file argument and stores it in the buffer pointed
to by the buffer argument.

int ct file close (struct ct file* file) closes the file associated with the file argu-
ment.

off t ct file seek (struct ct file* file, off t offset, int whence) sets the file
pointer of the file associated with the file argument according to the offset and whence

arguments.

struct ct container* ct container create (char* path) creates a file called path and
returns a ct container pointer. This pointer can be used to add files to the container with
the following functions.

int ct file create fast buffer (struct ct container* container, const char*

file name, void* buffer, size t size) adds a new file called file name to the con-
tainer associated with the container argument. The contents of the file are read from the
buffer pointed to by the buffer argument and is of size size.

int ct file create buffer (struct ct container* container, const char*

file name, void* buffer, size t size) does the same as ct file create fast buffer,
but sorts the array of files after each call. Otherwise this is done implicitly when
ct container close is called.

int ct file create fast path (struct ct container* container, const char*

file name, const char* path) adds a new file called file name to the container
associated with the container argument. The contents of the file are read from the file called
path.

int ct file create path (struct ct container* container, const char* file name,

const char* path) does the same as ct file create fast path, but sorts the array of
files after each call. Otherwise this is done implicitly when ct container close is called.

For more information, also see the Doxygen documentation, which includes code examples and
more.

6

3. Container Tools

To provide a possibility to work with containers from the command line, several command line
tools were implemented. They provide basic functionality like their POSIX counterparts cat,
cp and ls.

ctmk

This tool creates a new container with all files in a given directory.
Example:

$ ctmk ~/etc.ct /etc

ctcat

This tool prints the contents of a container file to the standard output.
Example:

$ ctcat ~/etc.ct shadow

ctcp

This tool copies a file from a container to the file system or vice versa.
Example:

Copy shadow from the container

$ ctcp ~/etc.ct shadow ~/shadow

The same as above, with verbose output

$ ctcp -v ~/etc.ct shadow ~/shadow

Copy /etc/init.d/rc into the container

$ ctcp -r /etc/init.d/rc rc

ctls

This tool lists all container files and, optionally, their metadata.
Example:

Display the names of all files in the container

$ ctls ~/etc.ct

Display the names and hashes of all files in the container

$ ctls -h ~/etc.ct

Display the names and sizes of all files in the container

$ ctls -s ~/etc.ct

7

4. FUSE Container File System

There are legacy applications that use the POSIX API for file operations and can not be ported,
because it would either be too much work or the source code is not available at all. To enable
easy and transparent use of the containers via the POSIX API, a FUSE file system was created.
Because of conflicts between the container library and the way programs usually write files,
only read-only access was implemented.

4.1. Realization

The FUSE file system was realized as an overlay file system that makes the whole underlying file
system accessible. Containers, however, are handled as directories and files within containers
can be accessed like normal files in a directory. For example, if the FUSE file system was
mounted at /ctfs and a container was available at /storage/files.ct, then all files within
this container would be available in the directory /ctfs/storage/files.ct.

4.2. Implementation

FUSE provides an API to easily implement new FUSE file systems. In this section it is shown
how a simple FUSE file system can be implemented in C.
The main work is done by the fuse main function that handles command line parameters and
the actual mounting of the file system. The user only has to implement the individual file
system operations like open, read, write and close.

Listing 4.1: main function

1 #include <f u s e . h>
2
3 int main (int argc , char∗ argv [])
4 {
5 return fuse main (argc , argv , &c t f s o p e r , NULL) ;
6 }

As can be seen in listing 4.1, a FUSE file system looks like any other C program. The ctfs oper

structure contains a mapping between file system operations and the functions implementing
them.

Listing 4.2: ctfs oper structure

1 struct f u s e o p e r a t i o n s c t f s o p e r = {
2 . g e t a t t r = c t f s g e t a t t r ,
3 . i n i t = c t f s i n i t ,
4 . open = ct f s open ,
5 } ;

8

4. FUSE Container File System

Listing 4.2 shows the ctfs oper structure containing three file system operations. The init

operation is not a file system operation in the usual sense as it is called whenever the FUSE
file system is mounted.

Listing 4.3: ctfs init function

1 void∗ c t f s i n i t (struct f u s e c o n n i n f o ∗ conn)
2 {
3 struct c t f s p r i v a t e d a t a ∗ pd ;
4
5 pd = g new (struct c t f s p r i v a t e d a t a , 1) ;
6
7 pd−>c o n t a i n e r s = g h a s h t a b l e n e w f u l l (g s t r ha sh ,

↪→ g s t r e q u a l , c t f s d e s t r o y k e y , c t f s d e s t r o y v a l u e) ;
8
9 return pd ;

10 }

Listing 4.3 shows the ctfs init function. The user may return a pointer to a memory address
that will be made available to all other file system operations. This is used to keep a hash table
of open containers in memory to speed up access.

Listing 4.4: ctfs open function

1 int c t f s o p e n (const char∗ path , struct f u s e f i l e i n f o ∗ f i)
2 {
3 char∗ dirname ;
4 char∗ basename ;
5 struct c t c o n t a i n e r ∗ cd ;
6 int r e t ;
7
8 r e t = −ENOENT;
9 dirname = g path get d i rname (path) ;

10 basename = g path get basename (path) ;
11
12 i f ((cd = c t f s g e t c o n t a i n e r (dirname)) != NULL)
13 {
14 i f (c t f i l e e x i s t s (cd , basename))
15 {
16 r e t = 0 ;
17 }
18 }
19
20 g f r e e (basename) ;
21 g f r e e (dirname) ;
22
23 i f (r e t == 0 && f i−>f l a g s & (ORDWR | OWRONLY))
24 {
25 r e t = −EACCES;

9

4. FUSE Container File System

26 }
27
28 return r e t ;
29 }

Listing 4.4 shows the ctfs open function. The function checks whether the requested file
exists and returns an appropriate return value. As can be seen, the last component of the
path (basename) is treated as a file name while the rest (dirname) specifies the container. The
ctfs get container function transparently manages the container hash table and returns a
container handle. The existence of the file is checked with ct file exists. Additionally, the
function returns an error if the file is not opened read-only.

Listing 4.5: ctfs get container function

1 struct c t c o n t a i n e r ∗ c t f s g e t c o n t a i n e r (const char∗ path)
2 {
3 GHashTable∗ c o n t a i n e r s ;
4 struct c t c o n t a i n e r ∗ conta ine r ;
5 struct f u s e c o n t e x t ∗ context ;
6
7 context = f u s e g e t c o n t e x t () ;
8 c o n t a i n e r s = ((struct

↪→ c t f s p r i v a t e d a t a ∗) context−>p r i v a t e d a t a)−>c o n t a i n e r s ;
9

10 i f ((conta ine r = g hash tab l e l ookup (conta ine r s , path)) ==
↪→ NULL)

11 {
12 i f ((conta ine r = c t c o n t a i n e r o p e n (path)) != NULL)
13 {
14 g h a s h t a b l e i n s e r t (conta ine r s ,

↪→ g st rdup (path) , con ta ine r) ;
15 }
16 }
17
18 return conta ine r ;
19 }

Listing 4.5 shows the ctfs get container function. The function gets passed a path to a
container. If this container has not been opened yet, it is opened and its handle inserted into
the hash table. Otherwise, the handle is taken directly from the hash table. The hash table
is available as the private data member (as specified by ctfs init) of the so-called FUSE
context that gets returned by fuse get context().

Listing 4.6: ctfs getattr function

1 int c t f s g e t a t t r (const char∗ path , struct s t a t ∗ s tbu f)
2 {
3 char∗ dirname ;
4 char∗ basename ;
5 struct c t c o n t a i n e r ∗ cd ;

10

4. FUSE Container File System

6 struct c t f i l e ∗ c f ;
7 int r e t ;
8
9 /∗ FIXME: use l s t a t () here ? ∗/

10 i f (s t a t (path , s tbu f) == 0)
11 {
12 r e t = 0 ;
13
14 i f (stbuf−>st mode & S IFREG)
15 {
16 /∗ Fake a d i r e c t o r y . ∗/
17 stbuf−>st mode = (stbuf−>st mode &

↪→ ˜S IFREG) | S IFDIR | 0111 ;
18 }
19 }
20 else
21 {
22 r e t = −ENOENT;
23 dirname = g path get d i rname (path) ;
24 basename = g path get basename (path) ;
25
26 i f ((cd = c t f s g e t c o n t a i n e r (dirname)) != NULL)
27 {
28 i f ((c f = c t f i l e o p e n (cd , basename)) !=

↪→ NULL)
29 {
30 r e t = 0 ;
31 s t a t (dirname , s tbu f) ;
32 stbuf−>s t s i z e = c t f i l e s i z e (c f) ;
33 c t f i l e c l o s e (c f) ;
34 }
35 }
36
37 g f r e e (basename) ;
38 g f r e e (dirname) ;
39 }
40
41 i f (r e t == 0)
42 {
43 /∗ We don ’ t suppor t w r i t i n g at a l l . ∗/
44 stbuf−>st mode &= ˜0222 ;
45 }
46
47 return r e t ;
48 }

Listing 4.6 shows the ctfs getattr function. It is one of the most important functions in a

11

4. FUSE Container File System

FUSE file system as it gets called before each access to a file. As a stat() replacement, it is
supposed to fill a stat structure with the appropriate information if the file exists. Therefore,
the ctfs getattr function first calls stat() on the file to see if it exists. If the file is actually
a directory, the information is passed on unmodified. However, if it is a file, we assume that it
is a container and represent it as a directory by modifying the st mode member of the stat

structure. If the file does not exist on the underlying file system at all, we assume that the user
wanted to open a file within a container. Thus, the last path component (basename) is used
as the file name and the rest of the path (dirname) is assumed to be a container. If the file
basename exists within the container dirname the stat structure is filled with the information
of the container and only the st size member is modified to reflect the actual file size. This
probably is the biggest performance issue of this function, because stat() gets called twice.
However, this can easily be corrected by storing an appropriate stat structure within the
already existing hash table that is used as a cache.

12

5. Evaluation

5.1. Hardware

All benchmarks were run on a machine with one Intel Pentium M 1.6 GHz, 512 MB RAM and
a 60 GB HDD.

5.2. Without Metadata

POSIX ctfs ct
0

5

10

15

20

25

30

35

40

45

Without Metadata (First Execution)

10,000
100,000
1,000,000

T
im

e
(in

 s
ec

on
d

s)

Figure 5.1.: Without metadata, first execution

Figure 5.1 shows numbers from benchmarks run on a freshly mounted file system, that is, with
a cold cache. As can be seen, ctfs has almost no overhead when compared to ct, which is quite
satisfying, considering the additional layer all file system calls have to go through.

13

5. Evaluation

POSIX ctfs ct
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Without Metadata

10,000
100,000
1,000,000

T
im

e
(in

 s
ec

on
d

s)

Figure 5.2.: Without metadata, subsequent executions

Figure 5.2 shows numbers from benchmarks run on the same file system as before without a
preceding remount, that is, with a hot cache. POSIX, ctfs and ct are all faster here, because
no data has to be read from the disk. It is interesting to note that the overhead of ctfs is now
more visible. This is due to the fact that the overhead was negligible when actual disk access
happened as in the previous benchmark.

5.3. With Metadata

POSIX ctfs ct
0

100

200

300

400

500

600

700

With Metadata (First Execution)

10,000
100,000
1,000,000

T
im

e
(in

 s
ec

on
ds

)

Figure 5.3.: With metadata, first execution

14

5. Evaluation

Figure 5.3 shows numbers from benchmarks run on a freshly mounted file system, that is, with
a cold cache. As can be seen, ctfs is now much slower than ct here. This is probaby due to
the fact that ctfs getattr calls stat() two times. However, it should be possible to optimize
this function quite easily. The speed of ct is around same as in the case without metadata,
because all the metadata gets read from disk in any case.

POSIX ctfs ct
0

20

40

60

80

100

120

140

160

180

With Metadata

10,000
100,000
1,000,000

T
im

e
(in

 s
ec

on
d

s)

Figure 5.4.: With metadata, subsequent executions

Figure 5.4 shows numbers from benchmarks run on the same file system as before without a
preceding remount, that is, with a hot cache. It is interesting to note that for 1,000,000 files
ctfs is actually slower than in the first run with a cold cache. However, the reason for this
is not apparent. Also, the speedup for POSIX is relatively small for 1,000,000 files. This is
probably due to the small amount of RAM in the machine, which could therefore not cache all
metadata which in turn had to be read from the disk intermittently.

15

A. Usage Instructions

A.1. Installing Required Packages

$ cd ct

$ sudo aptitude install libfuse-dev libglib2.0-dev libssl-dev

A.2. Compiling Everything

$ cd ct

$ make

A.3. Generating libct Documentation

$ cd ct

$ doxygen

A.4. FUSE file system

$ cd ct/ctfs

$ export LD_LIBRARY_PATH=../lib

$./ctfs ${MOUNTPOINT}

16

B. Benchmark Program

1 #!/ bin / sh
2
3 set −x
4
5 remount ()
6 {
7 sudo umount ”${1}”
8 sudo mount ”${1}”
9 }

10
11 unmount ctfs ()
12 {
13 s l e e p 1
14 fusermount −u ”${1}”
15 }
16
17 mount ct f s ()
18 {
19 ”${CT}/ c t f s / c t f s ” ”${1}”
20 }
21
22 [−z ”${1}”] && exit 1
23 [−z ”${2}”] && exit 1
24
25 SIZE=”${1}”
26 COUNT=”${2}”
27
28 MOUNT=”/ foo ”
29 ROOT=”/ foo /bar”
30 FUSE MOUNT=”${HOME}/ c t f s ”
31 CT=”${HOME}/ ct ”
32 LOG=”${HOME}/${SIZE}/${COUNT}”
33
34 export LD LIBRARY PATH=”${CT}/ l i b ”
35
36 [! −d ”${ROOT}/${SIZE}/${COUNT}”] && exit 1
37
38 mkdir −p ”${LOG}”
39 unmount ctfs ”${FUSE MOUNT}”
40

17

B. Benchmark Program

41 # POSIX
42 for mode in meta no meta
43 do
44 [”${mode}” = ”meta”] && META=”−m” | | META=””
45
46 for run in 0 1 2
47 do
48 remount ”${MOUNT}”
49
50 for i in 0 1 2
51 do
52 (time ”${CT}/ t o o l s /benchmark” −p ${META}

↪→ ”${ROOT}/${SIZE}/${COUNT}”) >
↪→ /dev/ n u l l 2>>
↪→ ”${LOG}/ posix−${mode}−${ run } . tx t ”

53 done
54 done
55 done
56
57 # ct
58 for mode in meta no meta
59 do
60 [”${mode}” = ”meta”] && META=”−m” | | META=””
61
62 for run in 0 1 2
63 do
64 remount ”${MOUNT}”
65
66 for i in 0 1 2
67 do
68 (time ”${CT}/ t o o l s /benchmark” −c ${META}

↪→ ”${ROOT}/${SIZE}/${COUNT} . c t ”) >
↪→ /dev/ n u l l 2>>
↪→ ”${LOG}/ ct−${mode}−${ run } . tx t ”

69 done
70 done
71 done
72
73 # c t f s
74 for mode in meta no meta
75 do
76 [”${mode}” = ”meta”] && META=”−m” | | META=””
77
78 for run in 0 1 2
79 do
80 unmount ctfs ”${FUSE MOUNT}”
81 remount ”${MOUNT}”

18

B. Benchmark Program

82 mount ct f s ”${FUSE MOUNT}”
83
84 for i in 0 1 2
85 do
86 (time ”${CT}/ t o o l s /benchmark” −p ${META}

↪→ ”${FUSE MOUNT}/${ROOT}/${SIZE}/${COUNT} . c t ”)
↪→> /dev/ n u l l 2>>
↪→ ”${LOG}/ c t f s−${mode}−${ run } . tx t ”

87 done
88 done
89 done
90
91 unmount ctfs ”${FUSE MOUNT}”

19

C. BSD License

Copyright (c) <Year> <Author>

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ‘‘AS IS’’ AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

20

D. Benchmark Data

Without Metadata

First Execution

10,000 100,000 1,000,000
POSIX 0.1s 0.7s 41s

ctfs 0.05s 0.3s 2.7s
ct 0.00s 0.1s 2.2s

Subsequent Executions

10,000 100,000 1,000,000
POSIX 0.01s 0.1s 0.9s

ctfs 0.01s 0.06s 0.6s
ct 0.00s 0.03s 0.2s

With Metadata

First Execution

10,000 100,000 1,000,000
POSIX 0.6s 29.5s 12m15s

ctfs 0.5s 5.5s 1m16s
ct 0.01s 0.5s 3.1s

Subsequent Executions

10,000 100,000 1,000,000
POSIX 0.05s 0.5s 2m35s

ctfs 0.3s 5.2s 1m28s
ct 0.01s 0.1s 1.1s

21

Bibliography

[Hei07] Hendrik Heinrich. Ein Container-Format für den wahlfreien effizienten Zugriff auf
Dateien. Bachelor’s Thesis, Ruprecht-Karls-Universität Heidelberg, September 2007.

22

	Introduction
	Requirements
	Goals

	Container Library
	License
	General Overhaul
	New Features
	Architecture Independence
	Thread-Safety
	Write Support
	File Hashing

	Application Programming Interface

	Container Tools
	FUSE Container File System
	Realization
	Implementation

	Evaluation
	Hardware
	Without Metadata
	With Metadata

	Appendices
	Usage Instructions
	Installing Required Packages
	Compiling Everything
	Generating libct Documentation
	FUSE file system

	Benchmark Program
	BSD License
	Benchmark Data
	Bibliography

