
Best Practices in 
Organizing I/O for
ML Projects

Ali Doosthosseini | 07.02.2024

Monthly Storage Talks



What will be discussed

Roadmap for ML with GPU cores

How and where to store data for ML

Best practices to improve efficiency and reliability

07.02.2024 Monthly Storage Talks – ML Best Practices 2 of 21



Motivation

07.02.2024 Monthly Storage Talks – ML Best Practices 3 of 21

• ML / Deep Learning requires large data
• Many storage formats and locations exist

• How to find best use-case

• Data processing involves network, storage I/O, CPU and GPU
• How to identify potential bottlenecks and improve it

• For parallel training, information needs to be shared among cores
• Model parallelism and/or data parallelism

• What software/tools are available to implement this?



Deep Learning with GPUs

07.02.2024 Monthly Storage Talks – ML Best Practices 4 of 21

Source: fullstackdeeplearning.com



Deep Learning on HPC

07.02.2024 Monthly Storage Talks – ML Best Practices 5 of 21

Source: DL with GPU course



Getting Started

07.02.2024 Monthly Storage Talks – ML Best Practices 6 of 21

• Python is highly recommended as language
• Large availability of tools and frameworks

• GWDG offers JupyterHPC, incl. containers with GPU

• VSCode is recommended IDE
• Extensions that cover many use cases

• Compatible with remote development

• Maintain environments with conda or venv

• Containerize with docker, apptainer, singularity, etc.



Available Toolsets and Packages

07.02.2024 Monthly Storage Talks – ML Best Practices 7 of 21

• PyTorch (recommended)
• Developed by Facebook in 2016, most popular in academia

• Tensorflow
• Developed by Google in 2015, still relatively popular.

• Especially useful in large-scale and production environments

• JAX
• Currently in development by Google

• Aimed towards more advanced users.



PyTorch vs TensorFlow

07.02.2024 Monthly Storage Talks – ML Best Practices 8 of 21

Source: Google Trends



Programming with PyTorch

07.02.2024 Monthly Storage Talks – ML Best Practices 9 of 21

• Fully supports Nvidia GPUs (recommended)
• Compatible releases for most systems and CUDA versions.

• Supports Apple Metal since 2022

• Limited support for AMD GPUs (not recommended)

• I/O can be optimized using DataLoader and other methods



Loading Data into GPU

07.02.2024 Monthly Storage Talks – ML Best Practices 10 of 21

• Naïve approach
• Extraction

• Transformation

• Loading

• Optimized
• Prefetching

• Parallelization

• Caching

Source: tensorflow



Optimizing PyTorch

07.02.2024 Monthly Storage Talks – ML Best Practices 11 of 21

• FFCV
• Alleviates I/O bottleneck

• Easy to replace code with DataLoader

• 2x to 3x faster on V100 and RTX 3090

• NVIDIA Data Loading Library (DALI)
• Optimized for performance and flexibility

• Alleviates CPU bottleneck

• Achieved 50% to 80% speedup on Jülich cluster

Source: Genesis Cloud



Distributed Deep Learning

07.02.2024 Monthly Storage Talks – ML Best Practices 12 of 21

• DataDistributedParallel
• Native PyTorch class

• Large community, good user support

• Horovod
• Developed by Uber

• Compatible with AWS, Azure, Apache Spark

• FairSale
• Developed by Facebook, fully sharded

• DeepSpeed
• Developed by Microsoft, supports model parallelism and data parallelism

Source: Jülich Supercomputing Centre



Where to store data?

07.02.2024 Monthly Storage Talks – ML Best Practices 13 of 21

• Codes and scripts
• Small file size, backup and version control necessary

• Software and containers
• Large storage supporting many files, fast I/O

• Training/testing data
• Very large storage, must be reproducible, fast I/O

• Results
• Must be reproducible, should be stored separately once completed

• Archive
• Stored in long-term cold storage with backup



GWDG HPC Storage Environment

07.02.2024 Monthly Storage Talks – ML Best Practices 14 of 21

• Work storage: scratch and project folders
• Very large, fast I/O, no backup

• Suitable for temporary storage of data and results

• Home storage
• Small, very fast I/O, regular backups

• Suitable for storing configurations, sensitive codes and scripts

• Not suitable for hosting large software

• Tape Archive
• Extremely large, very slow I/O, RAID Redundancy

• Suitable for storing backups and storing project data after completion



How to store data?

07.02.2024 Monthly Storage Talks – ML Best Practices 15 of 21

• Investigate suitable formats for specific use-case, storage

• Language-agnostic file formats: JSON, XML, CSV, Feather, HDF5, Parquet, Pickle

• Analyze performance and determine use cases, e.g.:
• JSON: Not suitable for large and complex data; slow on read

• XML: Slow performance

• CSV: Cannot store complex data types, e.g. images, audio. Difficult to handle missing data

• Feather: Very fast, lightweight. May not be suitable for data with multiple data frames.

• HDF5: Designed to store large and complex data, supports compression, parallel I/O, data 
chunking, fast performance. Requires specialized software.

• Parquet: Developed for big data processing. Very fast. Efficiency by partitioning and 
compressing data columns. Requires specialized software.

• Pickle: Highly flexible, fast performance. Only usable in Python.



Performance Evaluation

07.02.2024 Monthly Storage Talks – ML Best Practices 16 of 21

• Research different 
toolsets and benchmark 
for specific use-case
• tf.data API, Kubeflow AI 

framework, TensorStore,
S3, Dask

• Establish best workflow,
data format for use-case

• Use secure methods for
sensitive data



Coding and Version Control

07.02.2024 Monthly Storage Talks – ML Best Practices 17 of 21

• Throughout development, many iterations are needed
• Develop pipeline, test on smaller scale, explore various methods

• Test at each major step to prevent problems later in development

• Write comments and documentation as needed
• Remove clutter, refactor code

• Older code can be very useful, all versions should remain accessible

• Git (Github/Gitlab) is the most well-known and popular VCS

• At later stages, use workflow system, e.g., Snakemake



Job Scheduling

07.02.2024 Monthly Storage Talks – ML Best Practices 18 of 21

• Login nodes are not designed for computation

• Jobs are submitted with SLURM
• Interactive jobs for development and testing with --pty

• Parallel training on single node or multi-node configurations
• Only use multi-node configuration when necessary

• RAM, GPUs, etc. must be configured according to model architecture

• Make sure GPU has enough VRAM, monitor usage



Monitoring

07.02.2024 Monthly Storage Talks – ML Best Practices 19 of 21

• Monitor GPU, CPU usage
• Command: nvitop

• CPU, MEM, GPU

• Identify bottlenecks
• Storage I/O

• Data preprocessing on CPU

• GPU processing

• Network speed



Follow-up Material

07.02.2024 Monthly Storage Talks – ML Best Practices 20 of 21

• Explore hardware, technologies

• Use-case examples
• Deep Learning with GPU course

Follow GWDG on YouTube

• Libraries, tools, frameworks
• From Github, papers, workshops



Summary and Discussion

07.02.2024 Monthly Storage Talks – ML Best Practices 21 of 21

• Variety of ML tools available for specific use-cases, worth exploring

• Workflows can differ but important to follow general best practices 

• Data storage
• Store data in format that is efficient for ML

• Data storage must be chosen wisely based on trade-offs between speed, 
reliability and volume

• Identify and fix bottlenecks
• Keep the balance between the modules for maximum efficiency


	Slide 1: Best Practices in Organizing I/O for ML Projects
	Slide 2: What will be discussed
	Slide 3: Motivation
	Slide 4: Deep Learning with GPUs
	Slide 5: Deep Learning on HPC
	Slide 6: Getting Started
	Slide 7: Available Toolsets and Packages
	Slide 8: PyTorch vs TensorFlow
	Slide 9: Programming with PyTorch
	Slide 10: Loading Data into GPU
	Slide 11: Optimizing PyTorch
	Slide 12: Distributed Deep Learning
	Slide 13: Where to store data?
	Slide 14: GWDG HPC Storage Environment
	Slide 15: How to store data?
	Slide 16: Performance Evaluation
	Slide 17: Coding and Version Control
	Slide 18: Job Scheduling
	Slide 19: Monitoring
	Slide 20: Follow-up Material
	Slide 21: Summary and Discussion

