Best Practices in Organizing I/O for ML Projects

Monthly Storage Talks

Ali Doosthosseini | 07.02.2024

KI-Servicezentrum für sensible

KI-Servicezentrum für sensible und kritische Infrastrukturen

What will be discussed

Roadmap for ML with GPU cores

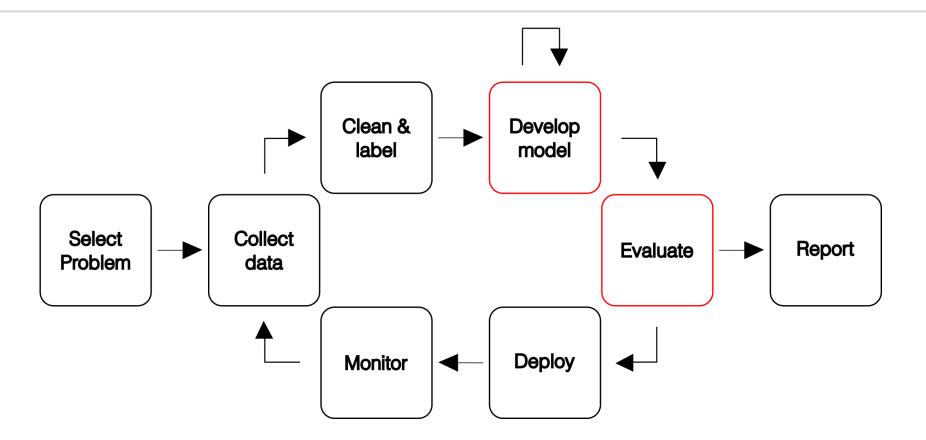
How and where to store data for ML

Best practices to improve efficiency and reliability

Motivation

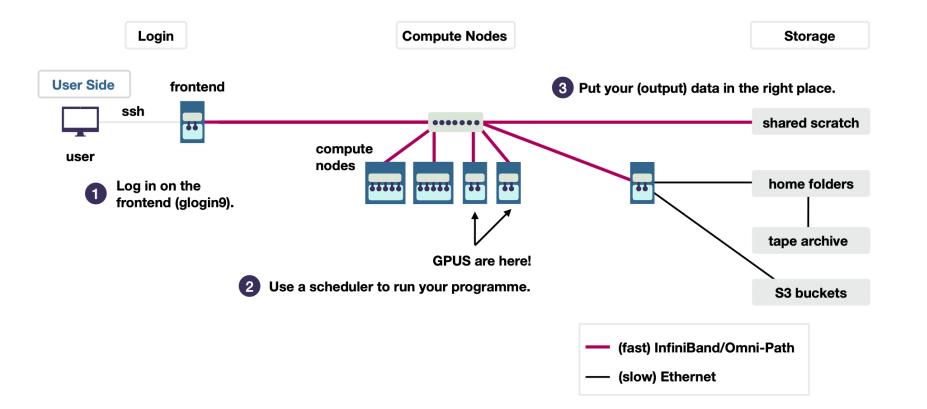
- ML / Deep Learning requires large data
 - Many storage formats and locations exist
 - How to find best use-case
- Data processing involves network, storage I/O, CPU and GPU
 - How to identify potential bottlenecks and improve it
- For parallel training, information needs to be shared among cores
 - Model parallelism and/or data parallelism
 - What software/tools are available to implement this?

Deep Learning with GPUs



Source: *fullstackdeeplearning.com*

Deep Learning on HPC



Source: DL with GPU course

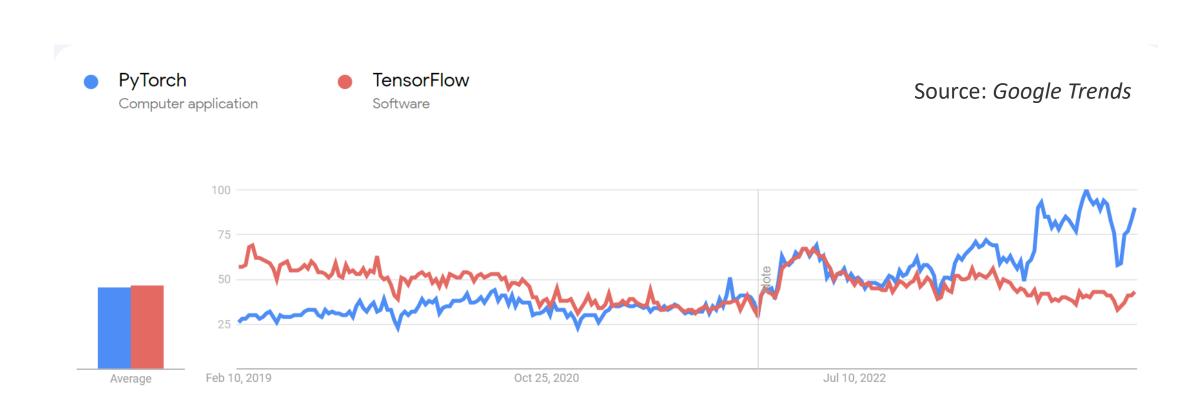
Getting Started

- Python is highly recommended as language
 - Large availability of tools and frameworks
 - GWDG offers JupyterHPC, incl. containers with GPU
- VSCode is recommended IDE
 - Extensions that cover many use cases
 - Compatible with remote development
- Maintain environments with conda or venv
- Containerize with docker, apptainer, singularity, etc.

Available Toolsets and Packages

- PyTorch (recommended)
 - Developed by Facebook in 2016, most popular in academia
- Tensorflow
 - Developed by Google in 2015, still relatively popular.
 - Especially useful in large-scale and production environments
- JAX
 - Currently in development by Google
 - Aimed towards more advanced users.

PyTorch vs TensorFlow

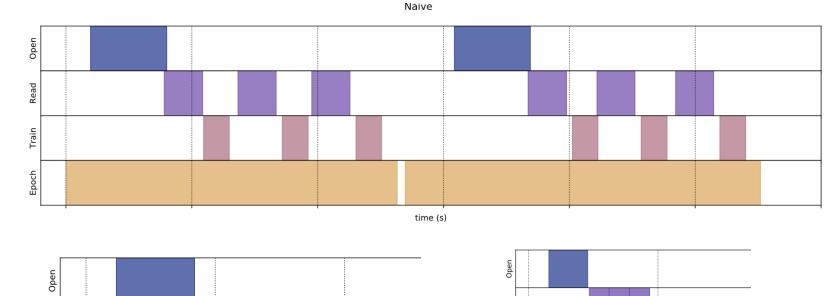


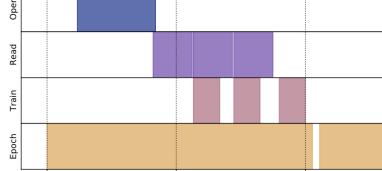
Programming with PyTorch

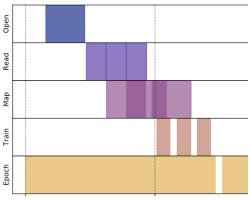
- Fully supports Nvidia GPUs (recommended)
 - Compatible releases for most systems and CUDA versions.
- Supports Apple Metal since 2022
- Limited support for AMD GPUs (not recommended)
- I/O can be optimized using DataLoader and other methods

Loading Data into GPU

- Naïve approach
 - Extraction
 - Transformation
 - Loading
- Optimized
 - Prefetching
 - Parallelization
 - Caching





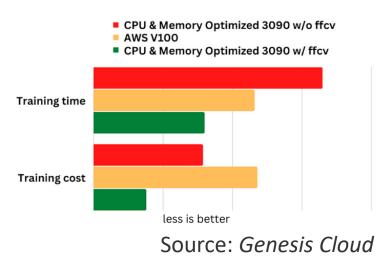


Source: *tensorflow*

Optimizing PyTorch

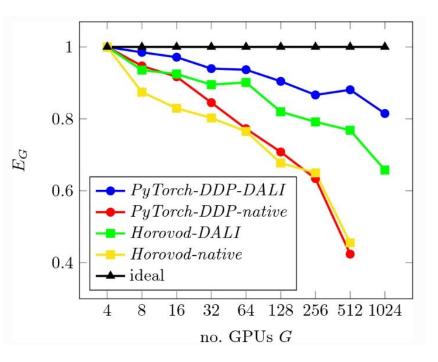
• FFCV

- Alleviates I/O bottleneck
- Easy to replace code with DataLoader
- 2x to 3x faster on V100 and RTX 3090
- NVIDIA Data Loading Library (DALI)
 - Optimized for performance and flexibility
 - Alleviates CPU bottleneck
 - Achieved 50% to 80% speedup on Jülich cluster



Distributed Deep Learning

- DataDistributedParallel
 - Native PyTorch class
 - Large community, good user support
- Horovod
 - Developed by Uber
 - Compatible with AWS, Azure, Apache Spark
- FairSale
 - Developed by Facebook, fully sharded
- DeepSpeed
 - Developed by Microsoft, supports model parallelism and data parallelism



Source: Jülich Supercomputing Centre

Where to store data?

- Codes and scripts
 - Small file size, backup and version control necessary
- Software and containers
 - Large storage supporting many files, fast I/O
- Training/testing data
 - Very large storage, must be reproducible, fast I/O
- Results
 - Must be reproducible, should be stored separately once completed
- Archive
 - Stored in long-term cold storage with backup

GWDG HPC Storage Environment

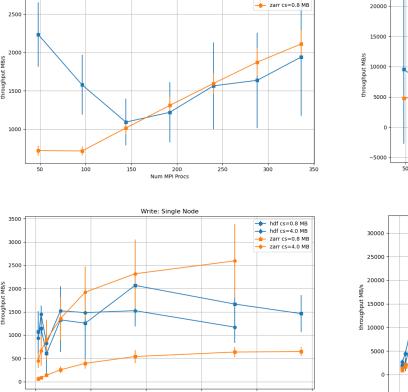
- Work storage: scratch and project folders
 - Very large, fast I/O, no backup
 - Suitable for temporary storage of data and results
- Home storage
 - Small, very fast I/O, regular backups
 - Suitable for storing configurations, sensitive codes and scripts
 - Not suitable for hosting large software
- Tape Archive
 - Extremely large, very slow I/O, RAID Redundancy
 - Suitable for storing backups and storing project data after completion

How to store data?

- Investigate suitable formats for specific use-case, storage
- Language-agnostic file formats: JSON, XML, CSV, Feather, HDF5, Parquet, Pickle
- Analyze performance and determine use cases, e.g.:
 - JSON: Not suitable for large and complex data; slow on read
 - XML: Slow performance
 - CSV: Cannot store complex data types, e.g. images, audio. Difficult to handle missing data
 - Feather: Very fast, lightweight. May not be suitable for data with multiple data frames.
 - HDF5: Designed to store large and complex data, supports compression, parallel I/O, data chunking, fast performance. Requires specialized software.
 - **Parquet**: Developed for big data processing. Very fast. Efficiency by partitioning and compressing data columns. Requires specialized software.
 - **Pickle**: Highly flexible, fast performance. Only usable in Python.

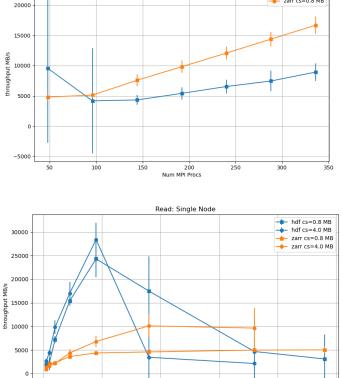
Performance Evaluation

- Research different toolsets and benchmark for specific use-case
 - tf.data API, Kubeflow AI framework, TensorStore, S3, Dask
- Establish best workflow, data format for use-case
- Use secure methods for sensitive data



Num MPI Proce

Write: Multi Node



40

Num MPI Procs

20

Read: Multi Node

- zarr cs=0.8 ME

80

60

Coding and Version Control

- Throughout development, many iterations are needed
 - Develop pipeline, test on smaller scale, explore various methods
- Test at each major step to prevent problems later in development
- Write comments and documentation as needed
 - Remove clutter, refactor code
- Older code can be very useful, all versions should remain accessible
- Git (Github/Gitlab) is the most well-known and popular VCS
- At later stages, use workflow system, e.g., Snakemake

Job Scheduling

- Login nodes are not designed for computation
- Jobs are submitted with SLURM
 - Interactive jobs for development and testing with --pty
- Parallel training on single node or multi-node configurations
 - Only use multi-node configuration when necessary
- RAM, GPUs, etc. must be configured according to model architecture
- Make sure GPU has enough VRAM, monitor usage

Monitoring

- Monitor GPU, CPU usage
 - Command: nvitop
 - CPU, MEM, GPU
- Identify bottlenecks
 - Storage I/O
 - Data preprocessing on CPU
 - GPU processing
 - Network speed

		A Driver Version: 11.8	
GPU Name Persistence-M	Bus-Id Disp.A	MIG M. Uncorr. ECC	
0 A100-SXM4-40GB On N/A 28C P0 151W / 400W	00000000:2F:00.0 Off 39.41GiB / 40.00GiB	Disabled 0 52% Default	MEM: UTL: 52%
1 A100 CXN1 (OCD On N/A 21C P0 52W / 400W	00000000000000000000000000000000000000	Disabled 0 0% Default	NEN: 0.0% UTL: 0%
2 A100-SXM4-40GB On N/A 22C P0 53W / 400W	00000000:AF:00.0 off 128KiB / 40.00GiB	Disabled 0 0% Default	MEM: 0.0% UTL: 0%
3 A100-SXM4-40GB On N/A 23C P0 54W / 400W	00000000:B0:00.0 Off 128KiB / 40.00GiB	Disabled 0 0% Default	MEM: 0.0% UTL: 0%
Load Average: 0.93 0.31 0.13 CPU: 0.8% 1205	605	30s	AVG GPU MEM: 24.6%
MEM: 1.8% SWP: 0.0%			AVG GPU UTL: 13.0%
Processes: GPU PID USER GPU-MEM 3	%SM %CPU %MEM TI	ME COMMAND	gzadmtvogt@ggpt

Example output from running nvitop.

Follow-up Material

- Explore hardware, technologies
- Use-case examples
 - Deep Learning with GPU course Follow GWDG on YouTube
- Libraries, tools, frameworks
 - From Github, papers, workshops

- Variety of ML tools available for specific use-cases, worth exploring
- Workflows can differ but important to follow general best practices
- Data storage
 - Store data in format that is efficient for ML
 - Data storage must be chosen wisely based on trade-offs between speed, reliability and volume
- Identify and fix bottlenecks
 - Keep the balance between the modules for maximum efficiency