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What will be discussed

m:  Roadmap for ML with GPU cores

—
= How and where to store data for ML

M Best practices to improve efficiency and reliability
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Motivation

* ML / Deep Learning requires large data
* Many storage formats and locations exist
 How to find best use-case

 Data processing involves network, storage 1/0, CPU and GPU
* How to identify potential bottlenecks and improve it

* For parallel training, information needs to be shared among cores
* Model parallelism and/or data parallelism
* What software/tools are available to implement this?



Deep Learning with GPUs
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Deep Learning on HPC

Login Compute Nodes Storage
User Side frontend e Put your (output) data in the right place.
ssh
m T3 sscscce shared scratch
compute
user h
nodes
o Log in on the TS388| [33833] [TT] 3% T3 home folders
frontend (glogin9).
T/ tape archive
GPUS are here!
9 Use a scheduler to run your programme. S3 buckets

= (fast) InfiniBand/Omni-Path

— (slow) Ethernet

Source: DL with GPU course
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Getting Started

* Python is highly recommended as language

* Large availability of tools and frameworks
* GWDG offers JupyterHPC, incl. containers with GPU

* VSCode is recommended IDE
* Extensions that cover many use cases
* Compatible with remote development

* Maintain environments with conda or venv
* Containerize with docker, apptainer, singularity, etc.



Available Toolsets and Packages

e PyTorch (recommended)
* Developed by Facebook in 2016, most popular in academia

 Tensorflow

* Developed by Google in 2015, still relatively popular.
* Especially useful in large-scale and production environments

* JAX

e Currently in development by Google
e Aimed towards more advanced users.



PyTorch vs TensorFlow

PyTorch TensorFlow
e o @ Source: Google Trends
Computer application Software
mww
l |
Average Feb 10, 2019 Oct 25, 2020 Jul 10, 2022
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Programming with PyTorch

* Fully supports Nvidia GPUs (recommended)
* Compatible releases for most systems and CUDA versions.

e Supports Apple Metal since 2022
* Limited support for AMD GPUs (not recommended)
* |/O can be optimized using DataLoader and other methods



Loading Data into GPU

* Naive approach
* Extraction
* Transformation
* Loading

* Optimized
* Prefetching
 Parallelization
* Caching

07.02.2024

Naive

time (s)
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Optimizing PyTorch

® CPU & Memory Optimized 3090 w/o ffcv

e FFCV = CPU & Memory Optimized 3090w/ ffcy
* Alleviates I/O bottleneck raining time ——
* Easy to replace code with DatalLoader I
e 2x to 3x faster on V100 and RTX 3090 Tiking o -_

less is better

Source: Genesis Cloud

* NVIDIA Data Loading Library (DALI)

e Optimized for performance and flexibility
* Alleviates CPU bottleneck
e Achieved 50% to 80% speedup on Jilich cluster
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Distributed Deep Learning

e DataDistributedParallel N~

* Native PyTorch class 0.8 \\
e Large community, good user support "

0.6 || —e— PyTorch-DDP-DALI
¢ HOrOVOd —e— PyTorch-DDP-natwe
Horovod-DALI
¢ DeVEIOped by Uber 0.4 Horovod-native ®
* Compatible with AWS, Azure, Apache Spark e

—a— jdeal
¢ Fairsa |e no. GPUs G
* Developed by Facebook, fully sharded Source: Jiilich Supercomputing Centre

/

* DeepSpeed
* Developed by Microsoft, supports model parallelism and data parallelism
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Where to store data?

* Codes and scripts
* Small file size, backup and version control necessary

e Software and containers
* Large storage supporting many files, fast I/O

* Training/testing data
* \Very large storage, must be reproducible, fast I/0O

* Results
* Must be reproducible, should be stored separately once completed

* Archive
e Stored in long-term cold storage with backup



GWDG HPC Storage Environment

e Work storage: scratch and project folders

* Very large, fast 1/O, no backup
 Suitable for temporary storage of data and results

* Home storage
* Small, very fast I/O, regular backups
 Suitable for storing configurations, sensitive codes and scripts
* Not suitable for hosting large software

* Tape Archive
* Extremely large, very slow 1/O, RAID Redundancy
 Suitable for storing backups and storing project data after completion



How to store data?

* |Investigate suitable formats for specific use-case, storage
* Language-agnostic file formats: JSON, XML, CSV, Feather, HDF5, Parquet, Pickle

* Analyze performance and determine use cases, e.g.:

JSON: Not suitable for large and complex data; slow on read

XML: Slow performance

CSV: Cannot store complex data types, e.g. images, audio. Difficult to handle missing data
Feather: Very fast, lightweight. May not be suitable for data with multiple data frames.

HDF5: Designed to store large and complex data, supports compression, parallel 1/0O, data
chunking, fast performance. Requires specialized software.

Parquet: Developed for big data processing. Very fast. Efficiency by partitioning and
compressing data columns. Requires specialized software.

Pickle: Highly flexible, fast performance. Only usable in Python.



Performance Evaluation

Write: Multi Node

e Research different
toolsets and benchmark
for specific use-case

+ tf.data API, Kubeflow Al - | T/m
framework, TensorStore, ‘
S3, Dask |
* Establish best workflow, N :

data format for use-case =l

v
* Use secure methods for N W
sensitive data
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Coding and Version Control

* Throughout development, many iterations are needed
* Develop pipeline, test on smaller scale, explore various methods

* Test at each major step to prevent problems later in development

e Write comments and documentation as needed
 Remove clutter, refactor code

* Older code can be very useful, all versions should remain accessible
 Git (Github/Gitlab) is the most well-known and popular VCS
* At later stages, use workflow system, e.g., Snakemake



Job Scheduling

* Login nodes are not designed for computation
* Jobs are submitted with SLURM

* Interactive jobs for development and testing with --pty

* Parallel training on single node or multi-node configurations
* Only use multi-node configuration when necessary

* RAM, GPUs, etc. must be configured according to model architecture
* Make sure GPU has enough VRAM, monitor usage



Monitoring

* Monitor GPU, CPU usage
* Command: nvitop
* CPU, MEM, GPU

Tue Jan 10 14:54:56 2023

* |dentify bottlenecks
Storage I/O

Data preprocessing on CPU
GPU processing

Network speed

Example output from running nvitop.

07.02.2024 Monthly Storage Talks — ML Best Practices 19 of 21



Follow-up Material

* Explore hardware, technologies

* Use-case examples

* Deep Learning with GPU course
Follow GWDG on YouTube

e Libraries, tools, frameworks
* From Github, papers, workshops



Summary and Discussion

* Variety of ML tools available for specific use-cases, worth exploring
* Workflows can differ but important to follow general best practices

* Data storage
e Store data in format that is efficient for ML

» Data storage must be chosen wisely based on trade-offs between speed,
reliability and volume

* |dentify and fix bottlenecks
* Keep the balance between the modules for maximum efficiency
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