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What will be discussed

Roadmap for ML with GPU cores

How and where to store data for ML

Best practices to improve efficiency and reliability
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Motivation
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• ML / Deep Learning requires large data
• Many storage formats and locations exist

• How to find best use-case

• Data processing involves network, storage I/O, CPU and GPU
• How to identify potential bottlenecks and improve it

• For parallel training, information needs to be shared among cores
• Model parallelism and/or data parallelism

• What software/tools are available to implement this?



Deep Learning with GPUs
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Source: fullstackdeeplearning.com



Deep Learning on HPC
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Source: DL with GPU course



Getting Started
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• Python is highly recommended as language
• Large availability of tools and frameworks

• GWDG offers JupyterHPC, incl. containers with GPU

• VSCode is recommended IDE
• Extensions that cover many use cases

• Compatible with remote development

• Maintain environments with conda or venv

• Containerize with docker, apptainer, singularity, etc.



Available Toolsets and Packages
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• PyTorch (recommended)
• Developed by Facebook in 2016, most popular in academia

• Tensorflow
• Developed by Google in 2015, still relatively popular.

• Especially useful in large-scale and production environments

• JAX
• Currently in development by Google

• Aimed towards more advanced users.



PyTorch vs TensorFlow
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Source: Google Trends



Programming with PyTorch
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• Fully supports Nvidia GPUs (recommended)
• Compatible releases for most systems and CUDA versions.

• Supports Apple Metal since 2022

• Limited support for AMD GPUs (not recommended)

• I/O can be optimized using DataLoader and other methods



Loading Data into GPU
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• Naïve approach
• Extraction

• Transformation

• Loading

• Optimized
• Prefetching

• Parallelization

• Caching

Source: tensorflow



Optimizing PyTorch
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• FFCV
• Alleviates I/O bottleneck

• Easy to replace code with DataLoader

• 2x to 3x faster on V100 and RTX 3090

• NVIDIA Data Loading Library (DALI)
• Optimized for performance and flexibility

• Alleviates CPU bottleneck

• Achieved 50% to 80% speedup on Jülich cluster

Source: Genesis Cloud



Distributed Deep Learning
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• DataDistributedParallel
• Native PyTorch class

• Large community, good user support

• Horovod
• Developed by Uber

• Compatible with AWS, Azure, Apache Spark

• FairSale
• Developed by Facebook, fully sharded

• DeepSpeed
• Developed by Microsoft, supports model parallelism and data parallelism

Source: Jülich Supercomputing Centre



Where to store data?
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• Codes and scripts
• Small file size, backup and version control necessary

• Software and containers
• Large storage supporting many files, fast I/O

• Training/testing data
• Very large storage, must be reproducible, fast I/O

• Results
• Must be reproducible, should be stored separately once completed

• Archive
• Stored in long-term cold storage with backup



GWDG HPC Storage Environment
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• Work storage: scratch and project folders
• Very large, fast I/O, no backup

• Suitable for temporary storage of data and results

• Home storage
• Small, very fast I/O, regular backups

• Suitable for storing configurations, sensitive codes and scripts

• Not suitable for hosting large software

• Tape Archive
• Extremely large, very slow I/O, RAID Redundancy

• Suitable for storing backups and storing project data after completion



How to store data?

07.02.2024 Monthly Storage Talks – ML Best Practices 15 of 21

• Investigate suitable formats for specific use-case, storage

• Language-agnostic file formats: JSON, XML, CSV, Feather, HDF5, Parquet, Pickle

• Analyze performance and determine use cases, e.g.:
• JSON: Not suitable for large and complex data; slow on read

• XML: Slow performance

• CSV: Cannot store complex data types, e.g. images, audio. Difficult to handle missing data

• Feather: Very fast, lightweight. May not be suitable for data with multiple data frames.

• HDF5: Designed to store large and complex data, supports compression, parallel I/O, data 
chunking, fast performance. Requires specialized software.

• Parquet: Developed for big data processing. Very fast. Efficiency by partitioning and 
compressing data columns. Requires specialized software.

• Pickle: Highly flexible, fast performance. Only usable in Python.



Performance Evaluation
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• Research different 
toolsets and benchmark 
for specific use-case
• tf.data API, Kubeflow AI 

framework, TensorStore,
S3, Dask

• Establish best workflow,
data format for use-case

• Use secure methods for
sensitive data



Coding and Version Control
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• Throughout development, many iterations are needed
• Develop pipeline, test on smaller scale, explore various methods

• Test at each major step to prevent problems later in development

• Write comments and documentation as needed
• Remove clutter, refactor code

• Older code can be very useful, all versions should remain accessible

• Git (Github/Gitlab) is the most well-known and popular VCS

• At later stages, use workflow system, e.g., Snakemake



Job Scheduling
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• Login nodes are not designed for computation

• Jobs are submitted with SLURM
• Interactive jobs for development and testing with --pty

• Parallel training on single node or multi-node configurations
• Only use multi-node configuration when necessary

• RAM, GPUs, etc. must be configured according to model architecture

• Make sure GPU has enough VRAM, monitor usage



Monitoring
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• Monitor GPU, CPU usage
• Command: nvitop

• CPU, MEM, GPU

• Identify bottlenecks
• Storage I/O

• Data preprocessing on CPU

• GPU processing

• Network speed



Follow-up Material
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• Explore hardware, technologies

• Use-case examples
• Deep Learning with GPU course

Follow GWDG on YouTube

• Libraries, tools, frameworks
• From Github, papers, workshops



Summary and Discussion
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• Variety of ML tools available for specific use-cases, worth exploring

• Workflows can differ but important to follow general best practices 

• Data storage
• Store data in format that is efficient for ML

• Data storage must be chosen wisely based on trade-offs between speed, 
reliability and volume

• Identify and fix bottlenecks
• Keep the balance between the modules for maximum efficiency
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