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LLM Checkpointing — Megatron-LM Deployment Model

GPT-3 175B Parameter Model — Example for 128 DGX Superpod (4 DGX-H100 SUs)
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Figure 5 Existing scaling techniques on distributed GPU clusters and their challenges. Scaling on GPU clusters requires a complex combination of all forms of parallelism. ; that combine pipeline and tensor model parallelism using a GPT
: model with 162.2 billion parameters and 64 A100 GPUs.
* Model Size Exceeds GPU VRAM * Tensor Model Parallel
« GPT-3is ~350 GB (2 bytes/parameter) «  Shard Model Across 8 GPUs In A DGX
« Gradients, optimizer state etc increase in-mem state ~ * Pipeline Parallel - N DGXs in a Pipeline Parallel Group
size by 7x «  N=16typically for GPT-3 sized models
* Model IsVery Deep (~90 Layers) i+ Data Parallel Across the pipeline parallel groups

ONLY ONE PIPELINE PARALLEL GROUP of GPUs NEED TO BE CHECKPOINTED
https://arxivorg/odi/210404473,p0f  RESTORE NEEDS ALL GPUs TO BE REPOPULATED



The LLM Checkpointing Sizer

https://shorturl.at/gmz/7/
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https://shorturl.at/gmzZ7

LLM CHECKPOINTING IN
PRACTICE




CHECKPOINTING DIRECTLY TO
SHARED STORAGE

GPU node GPU node GPU node GPU node

InfiniBand Cluster
shard0 shard7 shard8 shard15 shardQ shard/7 shard8 shard15

shardQ shard7 shard8 shard15

Shared Storage (Azure Blob, VAST Data)



HIERARCHICAL CHECKPOINTING
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ISN'T TRAINING READ-
HEAVY?




TRAINING MODELS DIRECTLY
FROM SHARED STORAGE

GPU node GPU node GPU node GPU node

InfiniBand Cluster

50 GB/s

| shard0 shard1 shard2 shard3 shard4 shard5 shardé shard7
' Shared storage

,




TRAINING MODELS WITH AN
INTERMEDIATE CACHE

InfiniBand Cluster

GPU node

GPU node GPU node GPU node

500 GB/s

Accelerator

shardQ shard1 shard?2 shard3 shard4 shard5 shardé shard7

50 GB/s

Shared storage

O

shardO shard1 shard?2 shard3 shard4 shard5 shardé shard7

all training data -




TRAINING WITH CLIENT-SIDE
ACCELERATION
5,000 GB/s e

GPU node GPU node GPU node GPU node

InfiniBand Cluster

50 GB/s

shard0 shard1 shard2 shard3 shard4 shard5 shardé shard7

- all training data -

Shared storage




MODEL LOADING FOR
INFERENCING




LOADING MODELS DIRECTLY
FROM SHARED STORAGE

GPU node GPU node GPU node GPU node

InfiniBand Cluster

50 GB/s \

Shared storage

-= model data (e g., 500 GiB)




HIERARCHICAL MODEL LOADING

5,000 GB/s

GPU node GPU node GPU node GPU node

InfiniBand Cluster

copy copy3

50 GB/s

Shared storage m
-I model data (500 GiB) -




WHERE DOES HIERARCHICAL
DATA MOVEMENT BREAK DOWN?

Services built around inferencing

Multimodal models that train on
that rely on state or external

low-density data modalities
data




* We Challenge One-Size-Fits-All Advice

* et the data drive what performance and
capacity requirements LLMs really need
to handle Checkpointing

« Advocate for decisions based on data,
CONCLUSION not dogma
» Understanding LLM Behavior

« Emphasizes calculating LLM behavior
from first principles and real data

 Rejects rationale-less guidance for LLM
training requirements
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