

Leveraging AI: Large Language Models in HPC I/O Optimization

Dong Dai Associate Professor, University of Delaware

- The HPC I/O stack is complex
- Many levels
 - High-Level I/O
 - I/O middleware
 - Low-Level I/O
 - I/O forwarding
 - Parallel File Systems
- Various options at each level
- Many interacting parameters
- It is challenging for users/developers leverage all layers effectively

Bez, Jean Luca, Suren Byna, and Shadi Ibrahim. "I/o access patterns in hpc applications: A 360-degree survey." ACM Computing Surveys 56, no. 2 (2023): 1-41.

Current Solutions

- How do we diagnose and resolve I/O inefficiencies?
 - Profiling tools create detailed trace logs
 - Darshan
 - Recorder
 - Analysis tools extract/visualize key metrics
 - PyDarshan
 - DXT-Explorer
 - Diagnose tools indicate potential performance issues
 - Drishti

Analysis Tools

Diagnosis Tools

I/O Trace analysis

- Many profiling tools exist
- Domain scientists may not have expertise to interpret their output
- Not enough experts to help individual users
- Users need to wait long for questions to be answered

Can LLMs help democratize I/O performance Diagnosis?

They would need to be:

- Approachable
 - Any type of user should understand
- Interactive
 - Users can ask specific questions
- Accurate
 - Diagnosis content should be correct

# <module></module>	<rank> <record id=""> <counter> <value> <file name=""> <mount pt=""> <fs type=""></fs></mount></file></value></counter></record></rank>
MPI-I0 -1	1448033504430027070 MPIIO_INDEP_OPENS 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-IO -1	1448033504430027070 MPIIO_COLL_OPENS 8 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-IO -1	1448033504430027070 MPIIO_INDEP_READS 12 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-IO -1	1448033504430027070 MPIIO_INDEP_WRITES 3 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPIIO_COLL_READS 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-IO -1	1448033504430027070 MPII0_COLL_WRITES 24 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPII0_SPLIT_READS 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPII0_SPLIT_WRITES 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPIIO_NB_READS 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPII0_NB_WRITES 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPIIO_SYNCS 0 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPIIO_HINTS 48 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-I0 -1	1448033504430027070 MPII0_VIEWS 48 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre
MPI-IO -1	1448033504430027070 MPIIO_MODE 8 /pscratch/h5bench/build-offsets/plt00003.h5 /pscratch lustre

Challenges

- Log content complexity
 - Requires domain knowledge to interpret
- Log size
 - LLM context windows are limited
- Performance issue diagnosis requires domain expertise identify and diagnose

LLM Capabilities

- LLM capabilities have advanced significantly
 - Handle complex context
 - Instruction following

Figure 3: LLM development timeline. The models below the arrow are closed-source while thos above the arrow are open-source.

- Post-training techniques have emerged
 - Chain of Thought
 - One/Few-shot prompting
 - Retrieval-Augmented Generation
 - LLMs as agents

LLM Capabilities

- LLM capabilities have advanced significantly
 - Handle complex context
 - Instruction following

- Post-training techniques have emerged
 - Chain of Thought
 - One/Few-shot prompting
 - Retrieval-Augmented Generation
 - LLMs as agents

	ION Output	Drishti Output
OpenPMD (Baseline)	Application demonstrates a potentially inefficient (/O pattern. 98.78% of operations being small //O that might lead to underutilization of RPCs as most small //O are consecutive.aggregation optimization might be in placeSignificant file misalignment detectedthis may contribute to performance degradation due to increased contention4.8a parallel_3Db_0000001.h5) is being accessed by multiple ranks (384 in total)	issues a high number (275840) of small read requests (i.e., < 1MB) issues a high number (427366) of small write requests (e., < 1MB)(64389) small write requests are to '8a parallel, 30b. 0000001.h5"Application issues a high number (100.00%) of misailgned file requests
OpenPMD (Optimized)	The trace file indicates that 3.31% of total I/O operations consist of small-sized operations, with 88.15% of these exhibiting random access patterns However, the random access operation count per rank and the total volume of data transferred through these patterns are lownot affecting the entire application's I/O performance.	Application is issuing a high number (565) of random read operations (35.25%)
E2E (Baseline)	misaligned memory accesses(approximately 99.8%) of the write operations are misaligned Rank O also has much larger summed I/O sizes, which indicates that rank O is doing much more work	Application issues a high number (99.81%) of misaligned file requestsLoad imbalance of 99.90% detected while accessing "3d_32_32_16_32_32.ac.4"
E2E (Optimized)	a pervasive issue with file access alignment, with 99.8% of file I/O operations being misaligned. A subset of 64 out of the 1024 ranks exhibit a significantly higher number of I/O operations per secondtheir throughput stats far exceeding one standard deviation above the meanthese ranks contribute to approximately 98.23% of the total write operationsit is worth investigating further to determine if this behavior is intentional (e.g., based on the application algorithm) or if it can be optimized for better load distribution.	Application issues a high number (99.80%) of misaligned file requests

Egersdoerfer, Chris, Arnav Sareen, Jean Luca Bez, Suren Byna, and Dong Dai. "ION: Navigating the HPC I/O Optimization Journey using Large Language Models." In *Proceedings of the 16th ACM Workshop on Hot Topics in Storage and File Systems*, pp. 86-92. 2024

Solution Scalability

User Interaction

I/O Navigator

Workflow

Some Results

• We built a new benchmark suite to evaluate the system

Labeled Issue	SB	IO500	RA	Total
High Metadata Load	1	2	2	5
Misaligned Read requests	2	10	4	16
Misaligned Write requests	2	10	6	18
Random Access Patterns on Write	0	5	2	7
Random Access Patterns on Read	0	5	2	7
Shared File Access	1	14	4	19
Small Read I/O Requests	2	10	5	17
Small Write I/O Requests	2	10	6	18
Repetitive Data Access on Read	1	0	0	1
Server Load Imbalance	7	15	2	24
Rank Load Imbalance	1	0	1	2
Multi-Process W/O MPI	0	13	0	13
No Collective I/O on Read	6	8	4	18
No Collective I/O on Write	5	8	2	15
Low-Level Library on Read	1	0	0	1
Low-Level Library on Write	1	0	0	1

Metric	Diagnosis Tool	Simple-Bench	IO500	Real-Applications	Overall
Accuracy	Drishti	0.398	0.480	0.472	0.459
	ION	0.343	0.381	0.417	0.380
	IOAgent-gpt-40	0.630	0.655	0.620	0.641
	IOAgent-llama-3.1-70B	0.620	0.488	0.463	0.513
Utility	Drishti	0.426	0.417	0.491	0.436
	ION	0.352	0.401	0.380	0.385
	IOAgent-gpt-40	0.565	0.615	0.639	0.609
	IOAgent-llama-3.1-70B	0.694	0.587	0.565	0.607
Interpretability	Drishti	0.417	0.452	0.463	0.447
	ION	0.343	0.417	0.352	0.385
	IOAgent-gpt-40	0.546	0.659	0.713	0.645
	IOAgent-llama-3.1-70B	0.694	0.484	0.472	0.530
Average	Drishti	0.414	0.450	0.475	0.447
	ION	0.346	0.399	0.383	0.383
	IOAgent-gpt-40	0.580	0.643	0.657	0.632
	IOAgent-llama-3.1-70B	0.670	0.520	0.500	0.550

Scan to try out our demo!

Lawrence Berkeley National Laboratory

THE OHIO STATE UNIVERSITY

