
Scaling Performance Analysis Tools to

Hundreds of Lustre Filesystems

Ellis Wilson - Microsoft

Today’s Talk

 The Need for Advanced Logging, Metrics, and Alerting
 Problem statement for Azure Managed Lustre Filesystem (AMLFS)

 Making Sense of Logs from Thousands of Nodes
 Collection and Aggregation of node syslog and other log output

 Azure Monitor Log Curation, Search, and Analytics

 Node and Cluster Performance Metrics
 What we collect, how, and why

 Overview of the Azure Monitor Metrics Interface(s)

 Health Monitoring and Alerting
 Automated problem detection (before the customer notices)

 Azure Monitor Health Interface

The Need for Observability in Lustre

 Typical end-user feedback

tends to be … sparse:
 “It’s not working”

 “It’s stuck”

 “It’s slow”

 “I get an error”

 Lustre stats are useful, but only

available at the CLI on-box

 A lot more to monitor:
 Networking health and performance

 CPU load

 Memory utilization

 Disk throughput, latency, load, capacities

 Client connectivity

 Cluster-wide health (e.g., heartbeats)

 System infrastructure logs

 Userspace crashes and core files

 Kernel panics and vmcores

 Lustre-related application health

 Various versions (distro, Lustre, software)

 …

Now Scale that to Thousands of Clusters

 Azure Managed Lustre (AMLFS) needed to design logging, metrics,

and health telemetry to support tens of thousands of Lustre nodes
 One admin per cluster is not even remotely viable

 Getting on-box to support customers is a non-starter
 Ignoring scaling issues, privacy and security requirements preclude this

 Cluster may be gone – transient/job-based usage

 Must export (solely non-sensitive) logs, metrics, and health information to centralized service

 Need support for powerful querying
 Downloading logs from ten thousand nodes and grepping won’t cut it

 Visualize performance and health metrics
 No sane way to find the one problematic OSS in a cluster without this

 Internal and Customer-facing Alerting

The Azure Monitor Data Platform

https://learn.microsoft.com/en-us/azure/azure-monitor/overview

AMLFS Logging Design Criteria

• Ingest system logs from every AMLFS-side cluster node
• MGS, MDSes, OSSes, and HSM Agents

• All syslog traffic

• New log messages uploaded and available within low-digit minutes

• No personally-identifiable information (PII) exfiltrated
• E.G.: File names or data

• Support powerful querying available in Azure Monitor
• Syslog messages quantized into

• Time, PID, ProgramName, Facility, Severity

• Additional metadata associated with each log

• Region, Cluster ID, Hostname, Role, RoleInstance

• Enable non-syslog log ingest for metric-like data

Azure Monitor Log Querying Interface: Dgrep

 Dgrep supports server and client-side queries
 Typical debugging pattern:

 Server-side selection of a cluster or a nodes logs over a time period

 Client-side filtration down to the program, PID, or message content of interest

 Much more powerful queries become possible:
 Example: Search all OSSes in the fleet for a specific Lustre error message over the last 3 days

 Example: Gather logs from copytools on primary agents in a specific region

 Example: Gather logs for a specific agent over the last 30 days at or above warning severity

 Deeper log analysis becomes possible with aggregates
 Average, Count, Max, Min, and Sum across all previously mentioned dimensions

 Example: Count by RoleInstance in a large cluster to find a misbehaving node

 Example: Count by Msg to find log spam

 Example: Sum Severity by Time and sort to find times with lots of warnings/errors

Dgrep User Interface: Simple Search by Time/Cluster

Metrics via Logs

 Client export stats are also collected as logs as they don’t fit well into

our normal metrics infrastructure
 Great for locating problem clients or doing deep analysis on why “It’s running slowly today”

AMLFS Metrics Design

• Metrics are the second pillar of our approach to observability
• Used for both performance analysis and cluster health triage

• Daemon metrics process on every node in every cluster collects,

processes, and sends metrics to Azure Monitor Metrics

• Metrics collected at varying intervals, and via different means
• Some metrics are gathered by running utilities (e.g., lctl, iostat)

• Others gathered more directly via Python libraries (e.g., psutil)

• Similar time between upload and visibility to Logs (minutes)

• Two interfaces available for visualizing metrics
• Jarvis and Grafana

Component Metrics

 CPU
 Overall percentages broken down akin to

top (busy, idle, iowait, etc)

 Per-core percentages

 Memory
 Capacity in various states (total, free,

available, cached, slab, etc)

 Networking
 Total packets in/out

 Error counts

 Disk Performance
 Throughput, utilization, merges, iops,

request sizes

 OS/Crash/Log Disk Capacities
 Fullness by bytes (total, used, free, %)

 Data Disk Capacities
 Fullness by bytes (total, used, free, %)

 Fullness by inodes (total, used, free, %)

Lustre-specific Metrics

 OSS:
 Request statistics by request type

 Total requests

 Total bytes moved in requests

 Min/max op size since restart

 Min/max op latency since restart

 Total evicted clients

 Total connected clients

 All Cluster Nodes
 Event Alert (e.g., node restart)

 AMLFS Heartbeat

 AMLFS Version

 MGS/MDS:
 Same as OST, plus:

 HSM request count by type (restore,

remove, archive)

 HSM current/completed/errored requests

 HSM registered agents

 Changelog unread events

 Changelog size

 LDLM MGS Timeouts

Geneva Dashboard Interface: Cluster Diagnostics

Geneva Dashboard Interface: Disk Stats for One Node

Geneva Dashboard Interface: HSM Metrics

Grafana Dashboard Interface: Per Node Stats

Cluster Health Monitoring and Alerts

• Logs and metrics are great – when you know you have a problem
• But this tends to occur after an angry Lustre user has escalated a complaint

• Which means it’s guaranteed to be 3am

• Knowing there is a problem prior to or simultaneously with a

customer being made aware is infinitely better

• Health Monitors and Alerts are the third pillar of observability

• Most of this leverages existing metrics discussed before
• Take existing stats that we’re already sending to Azure Monitoring, and set rules on them

• If a stat is found to fail the test so many times in a row or for known duration,

automatically create an incident ticket and autopopulate information about the problem

• Engineers can jump right from the incident via links to logs and metrics around that time to triage/diagnose

AMLFS Monitors

 We have rules that raise alerts and/or create incidents of varying

severities for the following:
 Missing Heartbeats

 Heartbeat indicates Degraded cluster

 Unexpected reboot/shutdown events

 MGT/MDT/OST capacity available too low

 Non-data disk capacity available too low

 Coredumps observed

 Read and Write op latencies too long

 Total CPU percentage too high

 Free memory too low

 We continue to adjust and add more as customer issues find cases we’d like to detect early

 Most of these only “pop” if they hit many times over some duration

Azure Monitor Health Interface: Cluster Getting Full

Wrapping Up

• In AMLFS we had to design an observability infrastructure to support

thousands of clusters, and hundreds of thousands of cluster nodes,

including nodes that may not be around when you need to debug

• Logs, Metrics, and Alerts comprise our three pillars of observability
• Support Log aggregation, parsing, querying, and statistics via Azure Monitor Logs/Dgrep

• Support Metric gathering and aggregation from various on-box utilities and visualization

• Support Monitors/Alerts and automated incident creation when certain metrics go south

• In most cases, we can avoid getting on-box until we know exactly

what we plan to do to fix the problem
• Less time on-box, less room for user-error, far less exposure to customer data

• Again, looking for feedback and others experiences in this area!

Thanks! Questions?

	Slide 1: Scaling Performance Analysis Tools to Hundreds of Lustre Filesystems
	Slide 2: Today’s Talk
	Slide 3: The Need for Observability in Lustre
	Slide 4: Now Scale that to Thousands of Clusters
	Slide 5: The Azure Monitor Data Platform
	Slide 6: AMLFS Logging Design Criteria
	Slide 7: Azure Monitor Log Querying Interface: Dgrep
	Slide 8: Dgrep User Interface: Simple Search by Time/Cluster
	Slide 9: Metrics via Logs
	Slide 10: AMLFS Metrics Design
	Slide 11: Component Metrics
	Slide 12: Lustre-specific Metrics
	Slide 13: Geneva Dashboard Interface: Cluster Diagnostics
	Slide 14: Geneva Dashboard Interface: Disk Stats for One Node
	Slide 15: Geneva Dashboard Interface: HSM Metrics
	Slide 16: Grafana Dashboard Interface: Per Node Stats
	Slide 17: Cluster Health Monitoring and Alerts
	Slide 18: AMLFS Monitors
	Slide 19: Azure Monitor Health Interface: Cluster Getting Full
	Slide 20: Wrapping Up
	Slide 21: Thanks! Questions?

