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Background & motivation

Why should we predict the I/O bandwidth of the jobs on the cluster?

• Useful for optimizing performance & efficiency
− Identify performance anomalies

− Tune the filesystem

− Make better hardware procurement decisions

− Potentially implement hardware optimizations (lower energy usage etc.)

• BUT requires a lot of data from the specific cluster
− Need to set up a monitoring & processing pipeline

− Takes a lot of time to collect a significant amount

Extracted from [1]
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Background & motivation

Transfer Learning for I/O Prediction

• Relies on the assumption that „different clusters might exhibit similar I/O 

characteristics“
− Same filesystems

− Same I/O APIs such as POSIX, MPI-IO, etc.

− Similar applications (e.g. computational fluid dynamics or biomedical simulations)

• Use an already existing dataset from another cluster
− Years of I/O performance data

− Real-life application runs

• Fine-tune on a small dataset collected at the target installation
− Relatively short time to gather the data

− Might work as a Proof-of-Concept for hardware procurement
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Transfer Learning: The Idea

Try to predict the I/O bandwidth of a specific job on a specific cluster, based 

on the observations from another cluster

Extracted from [2]

Extracted from [3]
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Proposed workflow
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Preprocessing the binary Darshan logs

• Developed at the Argonne National Lab

• A well-known tool for the I/O performance measurement & shown to be reliable

• Minimal influence on the applications‘ I/O time (less than 3% [19])

• Binary log format allows storing significant amounts of performance data

• Several large-scale public datasets are already available

Overview of Darshan’s architecture & log format [14] Darshan’s influence on I/O time of the instrumented 

application [14]

Why Darshan?
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Preprocessing the binary Darshan logs

Prediction target design

• Focus on the POSIX module for now
− De facto standard for I/O operations on Unix-like filesystems

− MPI-IO, HDF5, and other APIs are implemented on top of it

▪ Their calls are reflected in the corresponding POSIX ops counters [18]

− Potentially more data, as using MPI-IO requires POSIX, but not vice versa [18]

− Existing body of work to compare against

• Parse the binary logs using PyDarshan
− Python module from the authors of Darshan

− Provides a summary of sizes, times, the I/O histogram, and so on

− Does not calculate the bandwidth by default → must be done separately
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Preprocessing the binary Darshan logs

Datasets (both collected at the Lustre filesystem)

• Blue Waters (source dataset)
− Gathered during 2012-2021 at the University of Illinois

− More than 4.65 mln individual files

− The subset used contains ~690k records

▪ Not all logs contain POSIX performance data

▪ PyDarshan supports only logs recorded with v3.21+

• CLAIX (target dataset)
− Data from several applications:

▪ C-Class NAS Parallel Benchmark from NASA

- 4, 9, 16, 64-process variants

▪ Ciao - 48, 144, 162, 240 processes

▪ Quantum Espresso was considered, but removed due to the very high variance it 

introduced

− Limited size
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Preprocessing the binary Darshan logs

How to calculate the bandwidth?

Darshan’s bandwidth formula [14]

Bandwidth calculation workflow for an individual Darshan log
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Cleaning the resulting data

The IQR and its projection on a normally distributed density [15]

• High number of outliers causes problems with model convergence
▪ Three-stage removal process

- Eliminate erroneous items, e.g., with negative times (similar to [18])

- Remove all-zero features

- Apply the Interquartile Range (IQR) method to the rest
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What is the input?

Darshan job summary (by PyDarshan)

• 96 different POSIX counters + # of processes:
− Times:

▪ POSIX_F_READ_TIME, POSIX_F_WRITE_TIME …

▪ POSIX_F_SLOWEST_RANK_TIME …

− Sizes:

▪ POSIX_BYTES_WRITTEN, POSIX_BYTES_READ

▪ POSIX_SLOWEST_RANK_BYTES, POSIX_FASTEST_RANK_BYTES

▪ 4 most frequently appearing access sizes & strides

− Ops counts:

▪ POSIX_OPENS, POSIX_SEEKS, POSIX_STATS …

▪ POSIX_CONSEC_READS, POSIX_CONSEC_WRITES …

▪ 4 most frequently appearing access sizes & strides

− I/O histogram

▪ Number and total size of read/write ops split into brackets:

- 0-100B, 100B-1KB, …, 1GB+

− Alignments (file & memory)

− Read/write switches

− POSIX mode

− Offsets etc.
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Training the source model

• Architecture: Multi-Layer Perceptron
− Mathematically proven universal approximator [16]

− No structure of the features to rely on for a CNN

− No time series → not well-suited for an RNN

− Efficient: total time to train ~60 mins

• 2 different sets of the training data:
▪ Full dataset

▪ Subset with the number of processes per job that appears at least once in the target 

data

▪ Motivation: some of the jobs in the Blue Waters dataset would be physically impossible 

to run on the CLAIX cluster

- The model does not need to generalize to them 

- Try to focus on more realistic data → potentially better performance
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Neural network architecture
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Validating the results – Initial training

The principle of 5-fold cross-validation
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Validating the results – Transfer learning

Cross-validation of the transfer learning
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Results of the initial training on the Blue Waters dataset

Variant Full dataset Limited # of processes Random guess in IQR

MAE (n=50) 18.81 MB/s 5.53 MB/s 155.4 MB/s
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Fine-tuning the model

• All models were fine-tuned using the same network-based transfer learning setup
− Weights of the output layer reset

− All layers unfrozen

− Trained for 1200 epochs (vs 600 on the source dataset)

− Fine-tuning time: <1 min on P100 GPU, ~6 mins on an Intel CPU

▪ Very low resource requirements
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Results after fine-tuning on the data from CLAIX

Variant Full dataset Limited # of processes No initial training Random guess in IQR

MAE 355.92 MB/s 157.44 MB/s 394.67 MB/s 254.75 MB/s
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Comparison of results between the transfer learning stages
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Comparison of results between the transfer learning stages (cont.)

Final errors across all stages and variants (as % of the mean bandwidth)

Variant Initial training Fine-tuning

Full dataset 11.6% 20.1%

Limited number of processes 3.4% 8.92%

Random guess in the IQR 95.9% 14.4%

No initial training - 22.4%

Current state of the art (Isakov et al.) [18] 10% 10%
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Preliminary results using data from ALCF Theta
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What did the model learn?

• Explainable AI lets us “take a look into the black box”

• Idea: Attribute importance to the features

• Multiple approaches available:
− Integrated Gradients [4] (with NoiseTunnel [5])

− DeepLift [6]

− Feature Ablation [7]

− Shapley Value Sampling [8, 9]

− Guided Backpropagation [10]

− Feature Permutation [11]

− InputXGrad [12]

− Saliency [13]

• Use all the approaches above to cross-compare the attributions
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Top 10 most important features

• Times:
− POSIX_F_READ_TIME

− POSIX_F_META_TIME

− POSIX_TOTAL_TIME

− POSIX_F_MAX_READ_TIME

− POSIX_F_WRITE_TIME

− POSIX_F_SLOWEST_RANK_TIME

• Sizes:
− POSIX_ACCESS2_ACCESS

− POSIX_SLOWEST_RANK_BYTES

− POSIX_MAX_READ_TIME_SIZE

− POSIX_BYTES_WRITTEN

• # of processes
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Conclusion

• The proposed workflow is shown to work in the proof-of-concept form
− Cross-validation results are mostly stable for both clusters

− Explainable AI identifies the features considered by Darshan crucial for the bandwidth as 

the most important ones for the model

− The results imply the produced models can outperform the current state of the art

• Several aspects require additional work in the future
− Verify the workflow using data from MPI-IO, HDF5, and other common I/O APIs

− Try to target different filesystems (e.g., BeeGFS)

− Increase the diversity of applications in the target dataset

− Evaluate MAPE as the measurement of model accuracy

▪ Has its own drawbacks → try to use it as a part of a two-component error function:

- MAE for the low-bandwidth jobs

- MAPE for the high-bandwidth jobs

− Test the proposed workflow on the data from additional clusters

− Experiment with alternative outlier removal techniques or the ways to increase the 

robustness of the models to outliers

− Use additional FS information to make more informed predictions

− Remove all the time-based features & try to predict the execution time for a job



Thank you for your attention!

More details:

https://publications.rwth-aachen.de/record/958007

https://publications.rwth-aachen.de/record/958007
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Appendix – Most important features (full dataset variant)
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Appendix – Most important features (limited # of processes variant)
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Appendix – Detailed model input

• POSIX_OPENS

• POSIX_FILENOS

• POSIX_DUPS

• POSIX_READS

• POSIX_WRITES

• POSIX_SEEKS

• POSIX_STATS

• POSIX_MMAPS

• POSIX_FSYNCS

• POSIX_FDSYNCS

• POSIX_RENAME_SOURCES

• POSIX_RENAME_TARGETS

• POSIX_RENAMED_FROM

• POSIX_MODE

• POSIX_BYTES_READ

• POSIX_BYTES_WRITTEN

• POSIX_MAX_BYTE_READ

• POSIX_MAX_BYTE_WRITTEN

• POSIX_CONSEC_READS

• POSIX_CONSEC_WRITES

• POSIX_SEQ_READS

• POSIX_SEQ_WRITES

• POSIX_RW_SWITCHES

• POSIX_MEM_NOT_ALIGNED

• POSIX_MEM_ALIGNMENT

• POSIX_FILE_NOT_ALIGNED

• POSIX_FILE_ALIGNMENT

• POSIX_MAX_READ_TIME_SIZE

• POSIX_MAX_WRITE_TIME_SIZE

• POSIX_SIZE_READ_0_100

• POSIX_SIZE_READ_100_1K

• POSIX_SIZE_READ_1K_10K

• POSIX_SIZE_READ_10K_100K

• POSIX_SIZE_READ_100K_1M

• POSIX_SIZE_READ_1M_4M

• POSIX_SIZE_READ_4M_10M

• POSIX_SIZE_READ_10M_100M

• POSIX_SIZE_READ_100M_1G

• POSIX_SIZE_READ_1G_PLUS

• POSIX_SIZE_WRITE_0_100

• POSIX_SIZE_WRITE_100_1K

• POSIX_SIZE_WRITE_1K_10K

• POSIX_SIZE_WRITE_10K_100K

• POSIX_SIZE_WRITE_100K_1M

• POSIX_SIZE_WRITE_1M_4M

• POSIX_SIZE_WRITE_4M_10M

• POSIX_SIZE_WRITE_10M_100M

• POSIX_SIZE_WRITE_100M_1G

• POSIX_SIZE_WRITE_1G_PLUS

• POSIX_STRIDE1_STRIDE

• POSIX_STRIDE2_STRIDE

• POSIX_STRIDE3_STRIDE

• POSIX_STRIDE4_STRIDE

• POSIX_STRIDE1_COUNT

• POSIX_STRIDE2_COUNT

• POSIX_STRIDE3_COUNT

• POSIX_STRIDE4_COUNT

• POSIX_ACCESS1_ACCESS

• POSIX_ACCESS2_ACCESS

• POSIX_ACCESS3_ACCESS

• POSIX_ACCESS4_ACCESS

• POSIX_ACCESS1_COUNT

• POSIX_ACCESS2_COUNT

• POSIX_ACCESS3_COUNT

• POSIX_ACCESS4_COUNT

• POSIX_FASTEST_RANK

• POSIX_FASTEST_RANK_BYTES

• POSIX_SLOWEST_RANK

• POSIX_SLOWEST_RANK_BYTES

• READ_0_100

• READ_100_1K

• READ_1K_10K

• READ_10K_100K

• READ_100K_1M

• READ_1M_4M

• READ_4M_10M

• READ_10M_100M

• READ_100M_1G

• READ_1G_PLUS

• WRITE_0_100

• WRITE_100_1K

• WRITE_1K_10K

• WRITE_10K_100K

• WRITE_100K_1M

• WRITE_1M_4M

• WRITE_4M_10M

• WRITE_10M_100M

• WRITE_100M_1G

• WRITE_1G_PLUS

• rank

• POSIX_F_READ_TIME

• POSIX_F_WRITE_TIME

• POSIX_F_META_TIME

• POSIX_TOTAL_TIME

• POSIX_F_MAX_READ_TIME

• POSIX_F_MAX_WRITE_TIME

• POSIX_F_FASTEST_RANK_TIME

• POSIX_F_SLOWEST_RANK_TIME
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