
Andreas Dilger, Principal Lustre Architect

POSIX, and What Comes Next

whamcloud.com2

POSIX Is Really Old

►Original interfaces developed with Unix in the 1970s
• Fragmentation as Unix grew and changed in the 1980s
• Needed a standard for interoperability during "Unix Wars"

►POSIX has been the standard IO interface for decades
• Hasn't changed significantly in many years, but very widely available
• Provides the lowest IO common denominator for apps and user tools
• Consistent behavior means that applications can run everywhere

►Data portability for shared namespace via protocol export (Lustre, NFS, SMB, …)
• Avoid data silos by exporting filesystem with (mostly) POSIX semantics to other nodes
• "Mostly POSIX" can be important, but different parts of POSIX needed for different applications

►POSIX consistency can be a bottleneck for some workloads
• Serialized directory operations, write/read ordering, etc. can slow down performance

whamcloud.com3

Where Are We Now?

►An explosion of new IO interfaces for various special needs
• New storage systems have their own IO APIs (HDFS, S3, DAOS, …)
• Useful for some workloads, but needs significant application investment
• Specialization ties applications to storage system, loses portability
• Higher-level libraries abstract new interfaces, but also many libraries

► Leveraging hardware speedups needs optimization
• Lower storage latency, higher bandwidth
• Many cores, more and faster network interfaces
• A rising hardware tide lifts all software, but not equally
o Leaves "stranded" performance behind

• Software needs to continually adapt to address bottlenecks
o Finer-grained threading, locking, concurrency, new interfaces

INTERFACES

whamcloud.com4

How To Move Beyond Aging POSIX Standard?

►Embrace and Extend
• Some tries at HPC extensions (stat_lite(), open_by_handle(), …)
• Didn't make it into official POSIX standard, but were added to Linux

► Linux provides de-facto standard for new interfaces
• New IO interfaces are being added incrementally
• Sometimes adopted from other OSes (BSD, Solaris, …)
• open_by_handle(), name_to_handle_at(), fallocate(), copy_file_range(), pwritev2()
• *_at(), statx(), O_TMPFILE, FIEMAP, SEEK_HOLE/DATA, …

► DAX for memory load-store access to persistent memory
• Used by SPDK to provide access to NVRAM managed by ext4/XFS

► Asynchronous data AIO/DIO via libaio
• Originally used by databases, but could be leveraged by any tools with a lot of concurrent IO

► Asynchronous data and metadata operations via io_uring with growing capabilities
• Provides may POSIX syscall equivalents with completion callbacks, including some metadata syscalls

whamcloud.com5

What Happens in the Future?

►POSIX continues to be the common interface going forward
• Important for interoperability during "IO Interface Wars"
• Protects significant investment in developed applications and tools
• By necessity, most storage systems must also provide a POSIX interface

►Sometimes bottleneck is in implementation, not POSIX
• Serialized single directory operations is Linux VFS implementation limit

►API extensions for apps with special performance needs
• Specialized interfaces opt-in when/where applications need it
• Easier to relax strong POSIX semantics by request than miss them and cause corruption/bugs
• Applications can leverage new APIs via common libraries or directly for performance reasons
• Data continues to be accessible via standard POSIX APIs/tools after creation/processing

