h	٦	tı	0	d	u	С	ti	o	n
		-	-	-					

Challenges for HPC Systems, Administrators, and User $_{\odot \odot \odot \odot \odot}$

Integrating DM in HPC

Governance-Centric Architecture

Governance-Centric Interaction Including Data Management in HPC

Hendrik Nolte

Hendrik Nolte

Introduction	Challenges for HPC Systems, Administrators, and User
●000	00000

Governance-Centric Architecture

Task-Driven Projects

Historically HPC was used to serve single, highly parallelizable tasks

- One task was parallelized across many nodes (Task Parallelism)
- Required that one overarching task can be split down into smaller parts
 - Weather simulation
 - Molecular dynamics simulations
 - Algebra
- ▶ The required resource was mostly computation
- Software could be (easily) optimized for parallel filesystems

Figure: Stone, J.R. Nuclear Physics and Astrophysics Constraints on the High Density Matter Equation of State. Universe 2021, 7, 257. Hendrik Nolte

Data-Driven Projects 1

Data-driven methods had a lot of success in the last years

- Just think of the recent impact of ChatGPT
- Sepsis Prediction based on a multitude of streaming data
- Self-driving cars
- These methods can be used to run independent jobs in parallel
 - On different input data
 - On different hyperparameters
- Generally these data-driven methods are characterized by
 - large data sets
 - random IO
 - potentially unoptimized file formats

Governance-Centric Architecture

Data-Driven Projects 2

- This success has lead to an increased adoption in new domains
- Which increased the share of data-driven projects on HPC systems
 - These projects also require large computational power
- This excarcabates the problems from dd-methods on HPC infrastructure
 - Large data sets require large storage systems
 - These large data sets often consist of millions of small files
 - Which are organized in flat namespaces to encode their target

Governance-Centric Architecture

Challenges Data-Driven Projects

In particular we have identified 4 challenges with this new user group:

- Storage Performance and Efficiency
- Data Management
- Integration of Compute and Data Handling
- Reproducibility

Governance-Centric Architecture

Storage Performance

- Iterative procedures read in small files
 - This can quickly overload the metadata servers
- These small files are organized in flat namespaces
 - Explosion of tree depth due to indirect inodes
- Users use parallel filesystems for WORM-workloads
 - PFS often implement POSIX-IO semantics
 - The statefullness kills read performance

Boot- block	Super- block	Inode-Liste	Datenblöcke
----------------	-----------------	-------------	-------------

Figure: Structure of an inode. Source: Wikipedia

Figure:

https://www.usna.edu/Users/cs/crabbe/SI412

Introduction	Challenges for HPC Systems, Administrators, and User	Integrating DM in HPC	Governance-Centric Architecture
0000	00000	000000	00000000

Data Management

There is an increasing demand for proper data management in science

- One famous standard are the FAIR principles
- Is sometimes required by project funders
 - Sometimes in the form of a data management plan
- or by journals when publishing a paper

ntroduction	
0000	

Governance-Centric Architecture

Integration of Compute and Data Handling - Admin View

- Usually there a multitude of storage tiers available
 - HOME
 - WORK / SCRATCH
 - Local SSD's
 - Burst Buffers
 - tmpfs
 - Archive
 - And probably more, specific to each center
- These different systems differ in
 - performance
 - durability
 - cost
 - volume
 - semantics

Governance-Centric Architecture

Integration of Compute and Data Handling - User View

External Domain-Specific RDMS

- ▶ e.g. XNAT, or Viking
- Have high market share
- Users expect support
- HPC is only "necessary evil"
- Users are familiar with Cloud
 - Started by Hadoop
 - Data Access via
 - HDFS
 - YARN
 - Moved to Jupyter Notebook
 - · Limited virtualization
 - Manual data handling

PROJECT: 1 > SUBJECT: hum_14536_GLE > hum_14536

MR Session: hum_14536

Details Proj	ects	Actions	
		Edit	
Accession #:	XNAT15_E00002 Subject: hum_14536_GLE	View	,
Date Added:	05/14/2020 13:01:43 (admin) Gender:	Download	,
Date:	10/14/2019 Handedness:	E	
Time:	09:39:49 Age:	Email	
Operator:	Pfahlert	Run Pipeline	
Scanner Name:	MEDPC	Manage Files	
Scanner Type:	SIEMENS Prisma_fit	View Images	
Acquisition Site:	MR-Forschung Goettingen	Delete	

Custom Variable Sets

Sci	Scans								
B	ilk Actions:	Download	Run Container 👻						
	Scan		Туре	Series Desc	Usability	Files	Note		
) 5		hrT1	t1_tf3d_ns_sag_T1900_ FA9_TR2250_p2	usable	69.8 MB in 178 files			
C) 6		hrT1	t1_tfl3d_ns_sag_T1900_ FA9_TR2250_p2	usable	69.8 MB in 178 files			
) 7		hrT1	t1_tf3d_ns_sag_T1900_ FA9_TR2250_p2	usable	69.6 MB in 178 files			
) 8		hrT1	t1_tfl3d_ns_sag_T1900_ FA9_TR2250_p2	usable	69.6 MB in 178 files			
	9		hrFLAIR	t2_space_dark- fluid_sag_p2_iso	usable	76.0 MB in 194 files			
) 10		hrFLAIR	t2_space_dark- fluid_sag_p2_iso	usable	76.1 MB in 194 files			
C) 11		EPI_DTLPA	topup- PA_cmrr_mbep2d_diff_ B0_10xb5_1.7mm_mb3 -ip2	usable	67.7 MB in 15 files			
) 18		topup- PA_R1_cmrr_mb3- ip2_FOV210_48slc_trd 0_3x3x3-10gap	topup- PA_R1_cmrr_mb3- ip2_FOV210_48sic_tr96 0_3x3x3-10gap	usable	21.9 MB in 22 files			
) 19		AP_R1_cmrr_mb3-	AP_R1_cmrr_mb3-	usable	343.6 MB in 316 files			

Governance-Centric Architecture

Reproducibility

- There is a general reproducibility crisis
- For HPC one needs to distinguish
 - Deterministic execution of a job
 - Proper provenance auditing
- Deterministic execution is hard
- Proper lineage recording shouldn't be
 - Due to insufficient data management
- Specififc HPC tools are often not used
 - e.g. PASS, LPS, or ReproZIP
 - Domains developed own standards
 - Integrated into remote DMS

Nature 533, 452-454 (26 May 2016) doi:10.1038/533452a

Governance-Centric Architecture

HPC Interaction Paradigms

Generally, there are three different interaction Paradigms:

- Traditional
- Compute-Centric
- Use-Case, or DMS-centric

Traditional Interaction Paradigm

- Users log in via ssh
- Users manually have to prepare their code
- Users manually manage data, processes, and resources
- Users manually have to map input/output data to storage targets

Introd	luction
0000	

Governance-Centric Architecture

Compute-Centric Interaction Paradigms

- Users connect to a HPC system as in the traditional paradigm
- Different degrees of sophistication
- In the simplest form:
 - Users maintain a data catalog and select based on semantic metadata
 - Data is loaded into the running code
 - Either synchronously or asynchronously
 - · asynchronous staging has to be explicitly defined by users
 - Provenance auditing is the response of the users

Example implementation with iRODS, Python and Snakemake

Governance-Centric Architecture

Compute-Centric Paradigm - Control and Data Flow

Data is accessed explicitly using library functions or implicitly as an input parameter

- storage-tier aware data placing
 - Data locality
 - Data Availability
 - Data Durability

Control flow managed by the user layer

ļ	In	tr	0	d	u	С	ti	0	n
	-	-	-	-					

Challenges for HPC Systems, Administrators, and User $_{\odot \odot \odot \odot \odot}$

Integrating DM in HPC

Governance-Centric Architecture

DMS-Centric Interaction Paradigms

- Web frontend is used to
 - query and select input data
 - define a compute task
 - and submit it to the HPC system
- Users expect efficient and transparent data transfers
 - Data placement should also be transparently handled

Governance-Centric Architecture

DMS Paradigm - Control and Data Flow

- User not interested in data access
 Complexity should be abstracted away
 Communication Layer is mandatory for
 Data transfer, depending on topology
 Control flow for job dispatch
 reingest of artifacts and metadata
 Data placement and process management done by DMS
 - Data is located outside of HPC

Governance-Centric Architecture

Analysis of Paradigms

Characteristics	Traditional	Compute-Centric	Use Case-Centric
Resources (Compute)	Auto	Auto	Auto
Resources (Storage)	Manual	Manual	Auto
Res. Mgmt (Compute)	Semi-Auto	Semi-Auto	Auto
Res. Mgmt (Storage)	Manual	Manual	Auto
Job spec	Manual	Semi-Auto	Auto
Program	Manual	Manual	Auto
Software land	Provided	Provided/User-Container	Provided
Workflow spec	Manual	Semi-Auto	Auto
DMP	Manual	Manual	Tool-specific
User interface	SSH	SSH+Web	Web
User interface (Data)	SSH	SSH	Web
Client	SSH	SSH+Browser	Browser
Performance	User-specific	User-specific	+
Data management	-	-	Tool-specific
Integration	-	0	++
Reproducibility	-	+	Tool-specific
Flexibility	++	++	

Analysis of Paradigms

Metrics for user experience basically boil down to

- Where is my data located?
- How is my data linked?
- To answer this question one has to come from two directions
 - Integration Layer above the resource manager
 - Provide a unified namespace for users
 - ▶ Actionable information flow in the opposite direction as the control flow
 - It must be actionable in order to guide a user to a predefined state
 - Not create another piece of data a user has to manage as well

To solve this problem, we propose the **Governance-Centric Paradigm**

Introduction	
--------------	--

Challenges for HPC Systems, Administrators, and User $_{\odot \odot \odot \odot \odot}$

Integrating DM in HPC

Governance-Centric Architecture

Required Degree of Automation

Characteristics	Traditional	Compute-Centric	Governance-Centric	UseCase-Centric
Resources (Compute)	Auto	Auto	Auto	Auto
Resources (Storage)	Manual	Manual	Auto	Auto
Res. Mgmt (Compute)	Semi-Auto	Semi-Auto	Auto	Auto
Res. Mgmt (Storage)	Manual	Manual	Auto	Auto
Job spec	Manual	Semi-Auto	Semi-Auto	Auto
Program	Manual	Manual	Semi-Auto	Auto
Software land	Provided	Provided/User-Container	Provided/User-Container	Provided
Workflow spec	Manual	Semi-Auto	Semi-Auto	Auto
DMP	Manual	Manual	Semi-Auto	Tool-specific
User interface	SSH	SSH+Web	Web+SSH	Web
User interface (Data)	SSH	SSH	Web+SSH	Web
Client	SSH	SSH+Browser	Browser+SSH	Browser
Performance	User-specific	User-specific	++	+
Data management	-	-	++	Tool-specific
Integration	-	0	++	++
Reproducibility		+	++	Tool-specific
Flexibility	++	++	+	

Introduction	Challenges for HPC Systems, Administrators, and User	Integrating DM in HPC	Governance-Centric Architecture
0000	00000	000000	0000000

Architecture

Scientists define an experimental description at the beginning, containing

- a high-level workflow description linking data with tasks
- a data management plan for all input/output data
- Moving from a DMP as an abstract Plan towards an enforced entity
 - Requires an machine-readable DMP, where users can specify
 - the data flow
 - the data sets
 - access and backup policies
 - the data life cycle
 - IO intensity (if known)
 - Each task, e.g. Slurm job, has to be linked to a workflow step

Governance-Centric Architecture

Use in Data-Intensive Projects

Specifically in data-intensive projects a workflow is being executed

as opposed to one large, expensive single task

This workflow description states when which data should be where

Governance-Centric Architecture

Gathering Rich Metadata

To improve findability users provide domain specific metadata

- User annotated side car file
- Automated process to extract metadata from a dataset
- Metadata modeling is done in the DMP
 - Ensures continuous, automatic quality control
- Indexing in an external DB
 - Unifies compute-centric and DMS-centric paradigms

Governance-Centric Architecture

Modifying Tasks and Resource Manager

- Each compute job has to be prepared, annotated, and linked with the DMP
- Linkage has to be done by the resource manager, i.e. Slurm
 - Data becomes another resource
 - Users specify the task of the workflow/DMP
 - Users specify the input data set
 - Instead of working with explicit filenames
 - Required mappings are provided by the integration layer
 - Explicit data path is exported via environment variables
 - > Data staging strategies and storage targets are determined by DMP tool
 - Can be done based on generalized heuristics implemented by admins
 - Users can hint expected IO intensity

Reproducibility

- At least enough provenance information for retrospective comprehensibilityAutomatically recording data lineage is a nested problem
 - Job Script
 - ▶ Resolve ambiguities of running commands, e.g.: python myScript.py
 - Check if file is part of a git repository, create sidecar file with git commit hash
 - Parse job script and identify untracked, userspace dependencies
 - · Use known provenance tools and write results in side car file
 - Prompt users to write sidecar file themselves

Introduction	Challenges for HPC Systems, Administrators, and User
0000	00000

Governance-Centric Architecture

Implications

Abstractions of files towards data sets will **integrate** storage and compute

- Users don't need to know specifics about storage tiers
- Pushes users to proper metadata management and cataloging

Performance increase since users work with data sets, not with filepaths

- Increased reproducibility by linking datasets to tasks during scheduling
 - ► Tight integration with containers and auditing tools can be provided by admins
- The proposed methodology is enforcable/actionable
 - Compare the is-state against the DMP-defined state
 - Automatically using cron jobs to detect
 - files outside of data sets
 - insufficient/missing sidecar files

How to Start?

- Looks like a big paradigm shift, how can we convince users?
- We suggest to make it part of the application process for Tier-2 systems
 - Just having short, and simple section will raise awareness for the user
 - It will have a simple structure to make it machine-readable
- Incentivice by offering more resources?
- What do you think? Let's have a discussion!