
Initiate from the accelerator:
storage and network IO from the GPU
Dr. CJ Newburn, Distinguished Engineer, Architect for HPC/IO/Security | ISC23: IODC May 25

• Control and asynchrony

•

GPU-initiated storage

Problem and usage models

AWS and NVGNN examples

• GPU-initiated storage POC

• GPU-initiated networking results

Agenda

*

CPU

<diagram>

read/compute/write
cuFile
orchestrate DMAs
bypass CPU
↑bw, ↓CPU utilization

3

Each of CPU, DPU, GPU can control NVMe storage

Control sources

Usage:
Interface:
Coord:
Data:
Gain:

DPU

<diagram>

JBOF
NVMf
stage data to/from media
system cache or CMB
max bandwidth, ↓cost

GPU

<diagram>

RecSys, GML, GNN
GPU-initiated
spcl staging
NVMe
concurrency

CPU

\

GPU ← NVMe

NW → DPU

|

NVMe

[CPU]

GPU ← NVMe

NVIDIA GPUDirect™

- GPUDirect enables direct data movement to and from the GPU, without staging in CPU
- As memory becomes migratable, the source/target may happen to be in GPU or CPU

- Network and storage IO involves
- Preparation: create work request for an IO device, e.g. work queue entry on a cmd queue
- Triggering: hand off work request to/sync with an IO device, e.g. ring a doorbell

Variants on who decides what to do and when to do it

* 4

GPUDirect (non-Async) GPUDirect Async

CPU initiated (prepared, triggered) CPU prepared, GPU triggered GPU kernel initiated

Video: GPUDirect Video

Local GPU: GPUDirect Peer-Peer P2P

Remote master: GPUDirect RDMA GDR

Storage: GPUDirect Storage GDS

Stream triggered GDA-ST

Graph triggered GDA-GT

Kernel triggered GDA-KT

Network GDA-KI

Network

NVSHMEM (blog)

GPUNetIO (blog)

Storage GDA-KI Storage

Increasing autonomy for GPU

https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/
https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/

GPU-initiated storage

Problem: Large volume of random fine-grained accesses

*

● Large volume of random fine-grained accesses → large concurrency to maximize tput
○ GPU >>concurrency CPU; control and data path would be bottlenecked on CPU

● Data consumed on GPU; requests may also be generated there
○ Feeding data through CPU becomes a bottleneck

● Criticality assumptions about rates
○ tput = min(GPU request generation, $ bw, NVMe access for misses, data consumption on GPU)

● GPU advantages over CPU
○ Generating requests more threads generating requests
○ Requests to local cache latency more threads accessing in parallel, tolerant of latency
○ Making requests to NVMes more threads generating NVMe requests
○ Consuming data more threads/other acceleration features like tensor cores

6

GPU concurrency is key to throughput

GPU-initiated storage usage models

*

● Graph neural network
○ Widely used in fraud detection, fake reviews, tracking bot assaults, recommendation systems
○ Nodes (millions to billions) and edges (billions to trillions) graphs
○ Each node and edge has embeddings of size upto 4KB (>10TB)

● Recommender systems
○ Training pipeline - 10-100 TB embedding models requiring fine-grain access
○ Data ingestion pipeline - requiring efficient preprocessing such as filtering and reconstruction

● Data analytics (cuDF, Spark from RAPIDs)
○ Spill management, shuffle management on billion rows
○ Cost reduction

● Omniverse
○ Low-latency persistent texture objects with multiple simultaneous clients

● Vector Search
○ Billions of documents represented as vectors (~20PB)

● Graph Analytics in ML - current cuGraph only supports if graph is in memory
○ Nodes (millions to billions) and edges (billions to trillions)
○ Require the graph in memory address space

7

Large batches of small IOs to GPU memory requiring efficient KeyValue APIs

Scale GNN training and memory requirements

Graph Size
Total memory

size

Node feature

size

Reduce memory

consumption with

NVMe by (%)

OGBN-

papers100M

#100M nodes

#1.6B edges

128 node features

100 GB 52 GB 52%

MAG-LSC

#240M nodes

#3.4B edges

768 node features

224 GB 174 GB 78%

Future target
O(10-100B) nodes

O(100B-1T) edges
100 TB to >1 PB

100 TB to >1 PB

> feature

richness

improves with

> nodes,

compression
● Future: fits in O(1-10K) GPUs@O(100GB) HBM,O(100-1K) CPUs@1TB DRAM,O(10-100)

NVMes@15.4TB

● Buying GPUs for their HBM isn’t cost effective.

● NVMes are way less expensive than HBM or DDR, and enable scaling to much larger graphs

● Conclusion: if performance to NVMe can keep up, that’s way more cost effective

Distributed GNN training pipeline

Mini-batch

sampling

(CPU)

Node feature

copy

(1: CPU-CPU-

GPU)

Node feature

copy

(2: NVMe-

mmap)

Mini-batch

computation

(GPU)

OGBN-

papers100M
3407 MB/s 1020 MB/s 40.2 MB/s 6813 MB/s

MAG-LSC 4733 MB/s 1241 MB/s 41.2 MB/s 4730 MB/s AWS system info:

g4dn.metal with T4 GPUs

(2560 CUDA cores @ 585MHz)

Data for 3 will be shown below- CPU, NVMe can’t keep up, need a better solution

- But fast-enough NVMe reduces memory consumption, enables lower cost

GPU

Compute NVMe

CPU

1

1

2

3

Remote

CPU

Mini-batch training steps:

● Sample mini-batch

● Copy node/edge features

● Mini-batch computations

The data copy throughput required in each step.

GPU-initiated storage design goals and requirements

*

● Design goals
○ New APIs to access storage IO from GPU
○ Maximize throughput for large batches of small data accesses
○ Scale to problem sizes too big to fit into GPU HBM or CPU DDR with cheaper NVMe
○ Relieve NVMe IOPs bottleneck with GPUs vs. CPUs

● Design requirements
○ In case there’s any temporal or spatial locality to the data

■ Bandwidth out of the cache in the GPU >> PCIe bandwidth into the GPU
■ Make the cache line size match the block size to enable aggregation into block accesses

○ Storage capacity provided by NVMes
○ NVMe bandwidth is maximized by issuing concurrent accesses on abundant GPU threads

10

POC in research, not a committed product yet

GPU-initiated storage architecture

*

● Request, initiation, service, consumption all happen on the GPU
● GDA KI Storage enables storage IO accesses that are both initiated and triggered by GPU
● Features a key pillar of Magnum IO: flexible abstraction

11

Ultimate removal of the CPU as a bottleneck for storage

GPU

Work on

results

Threads gen

request

Threads

generate

requests
Cache

Consume and

work on

results

Storage

Process req

and DMA

Data

Submit

req

Control

Data

NVMes

Performance results

● Data lookup acceleration enables higher throughput by reducing the IO bottleneck to
(feature) data

○ transparent data reuse benefit: cache bw (400-600 GB/s) >> PCIe into the GPU (24 GB/s)
○ IO processing (48 MIOPs) keeps up with PCIe-saturating NVMe IOPs rates (6-48 MIOPs)

● GPUs are latency tolerant - HW context switching covers miss latency
12

Balanced end to end system matches best-available throughput

Cache

processing

Request

generation
IO

processing

NVMe

access

NVGNN

Request: 45M IOPs

Consume: >180GB/s

Hit : <150 MIOPs

<600 GB/s

Miss : ~100M IOPs

<400 GB/s

48 MIOps

NVMe Gen4

- 6 MIOPs @ 4KB

GPU.PCIe: 24GB/s

Per GPU tput on A100

6910 CUDA cores @1.41GHz

Transfer size = 4KB

GPU batch

processing

Performance
Measured bandwidth saturating Gen4
on MAG240M dataset for GraphSAGE model using Samsung 173X SSDs

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

M
ill

io
n

 I
O

P
s

IO
 B

a
n
d
w

id
th

 A
c
h
ie

v
e
d
 (

G
B

p
s
)

Batches

Bandwidth IOPs

Graph neural network (GNN)

A family of (deep) neural networks that
learn node, edge, and graph embeddings

How do GNNs work?

Ego-network around each node is used to learn an embedding that captures task-specific info

The embeddings use both the structure of the graph and the features of the nodes and edges

Embeddings are learned in E2E fashion; predictions are a function of target nodes’ ego-network

They are becoming
extremely popular.

AWS applicability

*

● Relevance of prototype
○ Bandwidth significantly exceeds current alternatives of CPU and NVMe via CPU
○ Much lower TCO while mitigating data access bottlenecks
○ Provides massive memory address space and scales with the graph size
○ Simplifies the programming to the storage
○ Minimizes the cost of the graph partitioning

● Priorities among GPU-initiated storage future directions
○ Distributed
○ Unified data access API to hide all complexity
○ Prefetching

15

GPU-based data delivery rate relieves bottleneck, saves $, motivates a GPU-based sampler

Da

Mini-batch
sampling @AWS

(CPU)

Node feature copy
Mini-batch

computation
@AWS (GPU)

1: CPU-CPU-

GPU

@AWS

2: NVMe-mmap

@AWS

3: GPU-initiated

storage

@NV subsystem

OGBN-

papers100M
3407MB/s 1020MB/s 40.2MB/s up to 24 GB/s 6813MB/s

MAG-LSC 4733MB/s 1241MB/s 41.2MB/s up to 24 GB/s 4730MB/s

GPU-initiated storage: Current POC limitations

*

● Scale
○ Single node with CPU/GPU/NVMe

● Access APIs
○ Memory array abstraction

● Loading NVMe
○ NVMe is preloaded
○ Requests always hit in NVMe tier

● Not integrated into AWS’s E2E system

16

Effective proof of concept with extensible architecture

Credits

AWS
● Da Zheng, Sr. Applied Scientist, AWS, ML framework/algo lead

GPUDirect Storage team
● Kiran Kumar Modukuri, Zhen Zeng, Sourab Gupta, Rebanta Mitra, Prashant Prabhu,

Aniket Borkar, Vahid Noormofidi, Sandeep Joshi, Salah Chaou

NVIDIA Research team
● Wen-mei Hwu, Isaac Gelado, Vikram Sharma Mailthody, Zaid Qureshi

NVIDIA GNN team
● Kyle Kranen, Nicolas Castet, Onur Yılmaz, Joe Eaton

UIUC
● Arpandeep Khatua, Jeongmin Park

* 17

GPU-initiated networking

GPU-initiated networking: NVSHMEM
A GPU-initiated version of OpenSHMEM/PGAS for fine-grained interleaving of compute and communication

User kernel running on the SM:

1. Writes data into a buffer in memory. The user then calls an
NVSHMEM routine like nvshmem putmem

2. Within this routine, NVSHMEM code in kernel writes a work
request to the NIC’s work queue

3. Writes a doorbell record (if lossy)

4. Rings doorbell on the NIC.

5. NIC processes the work request

6. Grabs the data

7. Performs the requested communication

8. Writes a completion event to the completion queue (CQ) that can
later be processed by NVSHMEM

GPUDirect Async Kernel-Initiated Networking bandwidth gains
100x higher put bandwidth from GPU-initiated, then 10x more from GPU coalescing

• IBRC = GPU calls back to CPU to initiate on its behalf

• Use of GPU reduces sync

• IBGDA = GPU-initiated

• Saturates NIC @ 180MOps/s

• 100x speedup vs. IBRC’s 1.7 MIOPs

• Coalescing of scalar put operations targeting adjacent
memory locations provides a 10x boost in perf

• GPU naturally coalesces

• Messages are spent more effectively

• More bandwidth
Higher is better

GPUDirect Async Kernel-Initiated Networking latency benefits
2+x lower All2All latency from GPU-initiated

• IBRC = GPU calls back to CPU to initiate on its behalf

• CPU thread is a serialization point

• Proxy thread processes in batches; missing a batch leads
to variation in delays

• IBGDA = GPU-initiated

• 2+x lower latency

• Smooth and stable performance

Lower is better

After

• Real-time GPU packet processing, e.g. for
sensor-based systems, 5G components

• New IO protocol between GPU and NIC/DPU

• Expose NIC registers to the GPU

• Removes the CPU from the data path

• Sends and receives from the GPU

• Packets land directly into the GPU

• Minimizes latency

Before

DOCA GPUNetIO
GPU-initiated, NIC-assisted packet processing acceleration

Call to action

● Remove CPU bottlenecks to boost bandwidth and reduce latency

● GPU-initiated storage: make the most of GPU pins bandwidth

○ Engage with us to share your usage models and feedback

● Try out GPU-initiated networking

○ NVSHMEM

○ GPUNetIO

* 23

Safe travels home! Until next year…

Comparison with UVM
More capacity, better perf on misses, better for fine-grained sparse access

SCADA vs. UVM:

• Higher-level abstraction vs. load/store model

• No application change for UVM

• Application change required for SCADA, but that’s needed anyway to extend to remote memory or storage

• Capacity: Enables accessible memory >> CPU memory capacity

• Miss handling: rate of accesses >> rate of repeated page faults

• Example: dependent accesses

• High arithmetic intensity will reduce reference rate → miss rate

• Prefetching is more beneficial for UVM than SCADA

• UVM page fault can halt the whole or large subset of GPU

• Granularity of locality: can be fine-grained

• Request packing for fine-grained accesses can lead to better efficiency than page granularity

• Software-defined cache can be tailored to each application if there’s locality

	Default Section
	Slide 1: Initiate from the accelerator: storage and network IO from the GPU
	Slide 2

	Control
	Slide 3: Each of CPU, DPU, GPU can control NVMe storage
	Slide 4: Variants on who decides what to do and when to do it

	GPU-init storage
	Slide 5: GPU-initiated storage
	Slide 6: Problem: Large volume of random fine-grained accesses
	Slide 7: GPU-initiated storage usage models
	Slide 8: Scale GNN training and memory requirements
	Slide 9: Distributed GNN training pipeline
	Slide 10: GPU-initiated storage design goals and requirements
	Slide 11: GPU-initiated storage architecture
	Slide 12: Performance results
	Slide 13: Performance
	Slide 14: Graph neural network (GNN)
	Slide 15: AWS applicability
	Slide 16: GPU-initiated storage: Current POC limitations
	Slide 17: Credits

	GPU-init networking
	Slide 18: GPU-initiated networking
	Slide 19: GPU-initiated networking: NVSHMEM
	Slide 20: GPUDirect Async Kernel-Initiated Networking bandwidth gains
	Slide 21: GPUDirect Async Kernel-Initiated Networking latency benefits
	Slide 22: DOCA GPUNetIO

	Concl
	Slide 23: Call to action
	Slide 24: Safe travels home! Until next year…

	Backup
	Slide 25: Comparison with UVM

