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• Ingestion Challenge: Evolving applications and acquisition devices generate more and more diverse data
• Large volume of data to ingest 

• Heterogenous data types and file sizes (KBs to TBs), challenging data and metadata patterns

• Diverse and complex data pipelines: AI and DL , IO vs Mem, GPU vs CPU, distributed computing

• No single protocol for data acquisitions / Transfer

• Logistic Challenge: Complex data movements stumble on siloed architectures

• Significant waste of personnel and instrument time for data management

• Challenges exacerbated at-scale, data bottlenecks severely cripple AI effort

• On-prem, cloud and hybrid considerations

• Legal Challenge: data may have specific requirements

• Ethical aspect, responsibility, data bias,

• Ensure  integrity and availability for repeatability, collaboration and innovation

• Enforce data privacy, ownership, auditable access controls,

Data Challenges usually associated with AI for Science

ISC 2023 HPC-IODC  May 25, 2023

© DDN 2023



- Multiple stages

- Different processing / data 
requirements

- Complex process: parallelization, 
modifications are costly

- AI is building its legacy codes

Large Language Models have a specific data consideration
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LLM and Storage: a looming issue
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Data management in 3 Facebook use cases:
storage +  data ingestion consumes more power than training



ML Perf has a SIG focused on Storage: https://mlcommons.org/en/groups/research-storage

• Focused for the moment on training

• Key people McGill University

LLM and Storage: a looming issue
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Bandwidth requirement is 
growing faster than capacity.
• Bandwidth x4 over 2 years
• Capacity x2 over 2 years



Trend correspond to 10 years

Log scale on Y

In 3 years:

• model size x1000

• 1 order of magnitude per year

• GPU memory  x5

LLM Evolution of the number of parameters over time
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Memory pressure depends on model size Ψ expressed in number of parameters

 Parameters, half precision, 2xΨ Byte

 Gradient, half precision, 2 x Ψ Byte

 Optimizers states, 3 states single precision 12 x Ψ Byte

The total amount of memory needed:

Byte needed = 16 x number of parameters

A 17B parameters model = 272 GB of memory: Not available on the state-of-the-art H100 GPU

LLM Memory Consumption
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• To accommodate model growth, GPU will need 100s of TB

• Difficult for a single device

• Achievable for 100s of GPUS

LLM Memory Wall

Within 3 years models will be 100s of trillion of parameters
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More GPUs = More memory

• Data Parallelism, duplicate the model with each GPU memory. Does not solve memory 
issue, accelerate training

• Model Parallelism, split the model vertically. Reduce memory footprint by the degree 
of parallelism, generates lots of communications. Does not scale beyond a DGX (5% of 
efficient is spanned over multiple DGX)

• Pipeline Parallelism, split model horizontally. Complex to implement. Generate 
synchronization and overhead

LLM Parallelization Scheme

Adding hardware resources to overcome current limitations
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LLM Memory Offloading: Zero [2020] 

ZeRO: framework from Microsoft interleaving parallelization schemes to minimize 
memory footprint (at the cost of some communication overhead)
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Reduction of memory footprint
• Mixture of Data Parallelism, 
Model and Pipeline parallelism
• Cap communication overhead



Zero to Infinity, extension of the ZeRO model

Model's parameters, gradient and optimizers states are not offloaded on remote 
GPUS on but on CPU memory, local storage and remote storage

LLM Memory Offloading: ZeRO Infinity [2021]

The resurrection of out-of-core computing
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DGX Memory Hierarchy Two memory levels
• 80 GB per GPU
• 2TB shared with CPU

Two storage levels
• PCI Gen 5 local NVMes
• 2 NDR400 IB slots for network 

attached storage.



Storage micro-benchmarking
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Comparative bandwidth measurements on a DGX 
platform. Using FIO with threads number ranging 

from 1 to 256 and large payload.
The Lustre delivers x5 the read performance and x2 

the write performance of the local storage.

Comparative latency measurements on a DGX 
platform. Using FIO with a threads number 

ranging from 1 to 256 with a small payload.
Local storage delivers x5 the IOPS (IO operations 

per second) than Lustre and x100 the IOPS of 
Lustre for write operations. Lustre version 2.12 

used in this experiment does not support the most 
recent IOPS write optimizations



Latency is mostly a software issue
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28 µsec latency for a read request
• 9 µsec for NVMe driver
• 6 µsec for NVMe driver to the 

block device driver
• 13µsec for the block device

Software overhead (drivers) is 
dominating hardware latency.



LLM Experimental Results

Using BLOOM A 176B-Parameter Open-Access Multilingual Language Model under Open-Source
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Name BLOOM 7B1 BLOOM
(176B params)

BLOOM-mod-1 
(1.213T params)

BLOOM-mod-2
(24.17T params)

# hidden layers 30 70 960 4800

memory hierarchy levels to 
host the model

GPU GPU + CPU GPU + CPU + local 
NVMe

GPU + CPU + Local 
NVMe + Exascaler

hidden-dim 4096 14336 10240 20480

Storage used for offloading TODO 350 GigaBytes 2.3 TeraBytes 44 TeraBytes

Batch-size used 32 16 8 1



LLM Experimental Results (WIP)

Using BLOOM A 176B-Parameter Open-Access Multilingual Language Model under Open-Source
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For large models ExaScaler is 
competitive with CPU OffLoading
Outperforming consistently Local 
Storage



LLM Experimental Results (WIP)

Using BLOOM A 176B-Parameter Open-Access Multilingual Language Model under Open-Source
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For Small models fitting in GPU memory, GPU efficiency is 
very high. Exascaler outperforms local RAID



LLM Experimental Results (WIP)

Using BLOOM A 176B-Parameter Open-Access Multilingual Language Model under Open-Source
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For Large models not fitting in GPU, Exascaler 
outperforms local RAID



• Offloading of models' data to the ExaScaler alleviates complexity and delivers a constant 85% 
GPU efficiency

• ExaScaler scales seamlessly to hundreds of PetaByte, thus removing memory issue from the design 
consideration and complexity equation.

• Optimal model accuracy is reached by a balance between model size, volume of data available, 
amount of processing power devoted to training 

• Accuracy converged faster on the model size axis

• Current race to bring to market the highest-accuracy models has led to overlooking the data size 
aspect

• We expect the competition to displace in the field of data set size, thus increasing the need for data 
management solution, life cycle orchestration

What's next: Big Models vs Big Data
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Life Sciences need a versatile data solution
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MAX PERFORMANCE COMPLETE WORKFLOWS LIMITLESS SCALING

DATA MANAGEMENT MULTI-TENANCY DATA SERVICES

GPUDIRECT TO STORAGE REAL-TIME ANALYTICS AI OPS INTEGRATION

POSIX S3

DDN versatile software
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Future Proof AI solution

High-speed network

GPU training
On cached dataset

GPU inference
On streamed dataset
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Questions?

Thank 
You!
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