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I/O in HPC

• MPI I/O performance and functionality

• Long recognition that for a subset of applications I/O is a non-trivial overhead

• I/O formats and functionality

• Domain users also desire more than just bits per second functionality

MPI-I/O HDF5 NetCDF



I/O at EPCC
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• Complexity of the hardware and software layers

• POSIX issues

• Shared resources

• Multiple requirements



Levels of concern

• User implementation

• API/Client interface

• Storage system software

• Hardware used



Small I/O performance



I/O application patterns
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MAD2Bench
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Multi-level memory exploitation

• Simple image sharpening stencil
• Each pixel replaced by a weighted average of its 

neighbours
• weighted by a 2D Gaussian
• averaged over a square region
• we will use:

• Gaussian width of 1.4

• a large square region

• then apply a Laplacian
• this detects edges

• a 2D second-derivative 2

• Combine both operations
• produces a single convolution filter

• 4 similar sized arrays, two that are updated and 
two that are source data



Multi-level memory exploitation

• Read-only data in DRAM

Calculation time was 56.175083 seconds

Overall run time was 58.261385 seconds

address = (int **) malloc(nx*sizeof(int *) + nx*ny*sizeof(int));

fuzzy = int2D(nx, ny, address);

pmemaddr1 = pmem_map_file(filename, array_size,PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, &mapped_len1, &is_pmem)

fuzzy =  int2D(nx, ny, pmemaddr1);

int **int2D(int nx, int ny, int **idata){

int i;

idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){

idata[i] = idata[i-1] + ny;

}

return idata;

}

• Read-only data in B-APM

Calculation time was 53.992465 seconds

Overall run time was 56.385472 seconds



Multi-level memory exploitation

• 2D CFD Stream function kernel

• Jacobi kernel updates the grid

• Swap update and data arrays at each iterator

𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
= 0

Ψ𝑖−1,𝑗 +Ψ𝑖+1,𝑗 +Ψ𝑖,𝑗−1 +Ψ𝑖,𝑗+1 − 4Ψ𝑖,𝑗 = 0

psinew[i][j] = 0.25*(psi[i+1][j] + psi[i-1][j] +

psi[i][j+1] + psi[i][j-1])



Multi-level memory exploitation

No persistence: Dram: 7.95 seconds   B-APM: 9.64 seconds

Persistence: Dram: 7.95 seconds         B-APM: 10.67 seconds

totalfilename = (char *)malloc(1000*sizeof(char));

strcpy(totalfilename,"/mnt/pmem_fsdax");

sprintf(totalfilename+strlen(totalfilename), "%d/", socket);

strncat(totalfilename, filename, strlen(filename));

sprintf(totalfilename+strlen(totalfilename), "%d", rank);

// total memory requirements including pointers

mallocsize = nx*sizeof(void *) + nx*ny*typesize;

if ((array2d = pmem_map_file(totalfilename, mallocsize,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, mapped_len, &is_pmem)) == NULL) {

perror("pmem_map_file");

fprintf(stderr, "Failed to pmem_map_file for filename: %s\n",totalfilename);

exit(-100);

}

void swap_pointers(double*** pa, double*** pb) {

double** temp = *pa;

*pa = *pb;

*pb = temp;

}



Local filesystem performance

• On-node filesystems optimised 
for non-volatile hardware
• Performance benefits for write 

operations and IOPs

• Trade-offs in terms of capacity and 
other functionality
• i.e. log append approaches, pre-

allocation, wear levelling, etc…



Adhoc or ephemeral filesystems

• Filesystems built using in-node storage resources on the fly 

• GekkoFS

• CHFS

• Simurgh

• Rocks DB for metadata

• Node-local FS or  

NVRAM library (i.e. 

PMDK) for storage

• Disaggregated resource usage



Climate/Weather domain

• Pursuing optimal I/O for applications

• Weather forecasting workflows

• End-to-end workflow performance important

• Simulation (data generation) only one part

• Consumption workloads different in dimension from production 
workloads



Structure free storage

• Granular storage with rich metadata

• Data retrieval leverages metadata

• Build structure on the fly

• Other domains can also benefit

• Radio astronomy

• Data collected and stored by antenna (frequency and location) and capture time

• Reconstruction of images done in time order

• Evaluation of transients or other phenomenon undertaken across frequency and location



Object store approach

• Data not naturally clustered into “file” wrappers

• Individual weather fields 1-10MB

• Object store potentially a more natural fit

• Each weather field is an object

• Meta data can be attached to uniquely locate them within the overall datasets

• Can object stores

• Enable high performance I/O?

• Enable distributed functionality?

• Enable granular access?

• Enable production level functionality?



DAOS

• Good bulk I/O performance



Performance Comparison Hardware configuration

• Setup compute nodes with Optane memory as DAOS server nodes or 
Lustre server nodes

• Comparison of Lustre and DAOS on the same hardware

• DAOS server nodes

• 2 DAOS engines per node (with workers)

• PMDK/Ext4 filesystem storage backend

• Lustre nodes

• 1 MDS with 2 targets

• 2 OSTs per server node

• Ext4 local storage backend



IOR bulk I/O performance comparison
Read Bandwidth Write Bandwidth

• IOR (easy) benchmark: Segments mode

• Segments: 100MB (size: 1MB  Segment count: 100)

• POSIX API for Lustre, DAOS API for DAOS



Application like benchmark: Field I/O

• DAOS Field I/O benchmark implements domain-specific object store

• Indexing with containers and arrays for data storage

• Lustre (POSIX) port of application – object interface

• Pools are a directory

• Containers are sub directories within a pool

• Key-Value objects are sub directories within a container

• Key is index file

• Array data separate files

• Two benchmark approaches

• Pattern A: Separate I/O phases (write then read)

• Pattern B: Mixed I/O phases (write and read at the same time)



Pattern A: 1MB 
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Pattern B: 1MB
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Data size

Read Bandwidth Write Bandwidth

• Pattern A: 

• 2 server nodes 4 client nodes



In-depth DAOS performance
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In-depth DAOS performance
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In-depth DAOS performance



Summary

• Performance impacts at all levels of I/O

• Hard to disentangle different aspects, but important to try

• Software granularity matter but doesn’t solve everything

• More complex systems are more complex

• Lots of interesting work to do
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