
Visualizing I/O Bottlenecks with DXT Explorer 2.0
Jean Luca Bez, Hammad Ather, Suren Byna

Lawrence Berkeley National Laboratory
jlbez@lbl.gov

How to understand I/O behavior?

● Using the HPC I/O stack efficiently is a tricky problem!

● Darshan is a popular tool to collect I/O profiling

● It aggregates information to provide insights

● Extended tracing mode (DXT)

● Fine grain view of the I/O behavior

● POSIX or MPI-IO, read/write

● Rank, segment, offset, request size

● Start and end timestamp

SC22 | Dallas, TX | hpc accelerates. 2

DXT Explorer

● No tool to visualize and explore yet

● Static plots have limitations

● Features we seek:

● Observe POSIX and MPI-IO together

● Zoom-in/zoom-out in time and subset of ranks

● Contextual information about I/O calls

● Focus on operation, size, or spatiality

● By visualizing the application behavior, we are one step closer to optimize the application

SC22 | Dallas, TX | hpc accelerates. 3

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

Explore the timeline by zooming in and out and observing how the MPI-IO calls are translated to the POSIX layer.
Visualize relevant information in the context of each I/O call (rank, operation, duration, request size, and OSTs if Lustre) .

Explore the operations by size in POSIX and MPI-IO.
You can, for instance, identify small or metadata operations from this visualization.

Explore the timeline by zooming in and out and observing how the MPI-IO calls are translated to the POSIX layer.
Truncated (by rank, time, or both) plots help visualize larger traces.

New Features
Coming Soon!

HPC Application
Darshan DXT

I/O Analysis
Behavior and I/O Phases

Insights
Recommendations

Interactive Plots
Plotly

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Parsing
pyDarshan

Explore the I/O phases detected based on behavior and threshold.

Explore the stragglers in the entire execution and the critical path.
Upon hovering over a phase, all the information related to the fastest and slowest rank is shown. The dotted lines are the start and the end of a phase.

Novel interactive visualizations towards exploring file system usage.

How to get DXT Explorer?

Install DXT Explorer on your local machine

$ pip install dxt-explorer

Run DXT Explorer with the provided .darshan DXT traces

$ dxt-explorer --verbose samples/REPLACE_WITH_FILE_NAME.darshan

On NERSC systems you can also use the container version with Shifter

$ shifter --image=docker:hpcio/dxt-explorer -- dxt-explorer samples/REPLACE_WITH_FILE_NAME.darshan

How to run DXT Explorer?

usage: dxt-explorer [-h] [-o OUTPUT] [-p PREFIX] [-t] [-s] [-i] [-oo] [-ot] [-d] [-l] [--start START] [--end END] [--from START_RANK]
[--to END_RANK] [--browser] [-r] [-u] [-st] [-v] darshan

DXT Explorer:
positional arguments:
 darshan Input .darshan file

optional arguments:
 -h, --help show this help message and exit
 -o OUTPUT, --output OUTPUT Output directory
 -p PREFIX, --prefix PREFIX Output directory
 -t, --transfer Generate an interactive data transfer explorer
 -s, --spatiality Generate an interactive spatiality explorer
 -i, --io_phase Generate an interactive I/O phase explorer
 -oo, --ost_usage_operation Generate an interactive OST usage operation explorer
 -ot, --ost_usage_transferGenerate an interactive OST usage data transfer size explorer
 -d, --debug Enable debug mode
 -l, --list List all the files with trace
 --start START Report starts from X seconds (e.g., 3.7) from beginning of the job
 --end END Report ends at X seconds (e.g., 3.9) from beginning of the job
 --from START_RANK Report start from rank N
 --to END_RANK Report up to rank M
 --browser Open the browser with the generated plot
 -r, --rank_zero_workload Determine if rank 0 is doing more I/O than the rest of the workload
 -u, --unbalanced_workloadDetermine which ranks have unbalanced workload
 -st, --stragglers Determine the 5 percent slowest operations in the time distribution
 -v, --version Show program's version number and exit

Visualizing I/O Bottlenecks with DXT Explorer 2.0
Jean Luca Bez, Hammad Ather, Suren Byna
jlbez@lbl.gov

github.com/hpc-io/dxt-explorer

docker pull hpcio/dxt-explorer

