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Modular Supercomputing Architectures
A “Historical” Overview of a European Paradigm
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Dual Supercomputer Strategy [1]

Cluster-Booster Concept [2]

Modular Supercomputing Architecture [1]
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Supercomputing Systems at JSC
JURECA – Phase 2 (as of May 2021) [3]

Data Centric (DC) module (98,304 CPU cores, 768 GPUs):
• 768 compute nodes (with 2× AMD EPYC 7742, 2× 64 cores, 2.25 GHz)

 480 standard compute nodes with 512 GB DDR4

 96 large-memory compute nodes with 1024 GB DDR4

 192 accelerated compute nodes with 512 GB DDR4, 4× NVIDIA A100 GPU, 

and 4× 40 GB HBM2e

• 12 login nodes with 2× AMD EPYC 7742, 2× 64 cores, 2.25 GHz, 
1024 GB DDR4, and 2× NVIDIA Quadro RTX8000

• 3.54 (CPU) + 14.98 (GPU) Petaflop/s peak performance
• Mellanox InfiniBand HDR (HDR100/HDR) DragonFly+ network

Booster module (111,520 CPU cores):
• 1640 compute nodes with 1× Intel Xeon Phi 7250-F Knights Landing, 68 cores, 1.4 GHz and 96 GB 

memory plus 16 GB MCDRAM high-bandwidth memory 
• 5 Petaflop/s peak performance
• Intel Omni-Path Architecture high-speed network with non-blocking fat tree topology
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Supercomputing Systems at JSC
JUWELS: Jülich Wizard for European Leadership Science [4]

Cluster Module (122,768 CPU cores):
• All nodes: 2× Intel Xeon Platinum 8168 CPU, 

2× 24 cores, 2.7 GHz

• 2271 standard compute nodes, 96 GB DDR4

• 240 large memory compute nodes, 192 GB DDR4

• 56 accelerated compute nodes: 192 GB DDR4, 4×

NVIDIA V100 GPU, 16 GB HBM

• 12 login nodes: 64 GB DDR4, 2× 1TB HDD (RAID 1)

• 4 visualization nodes: 768 GB DDR4 2x 1TB HDD 

(RAID 1), 1× NVIDIA Pascal P100

• 10.6 (CPU) + 1.7 (GPU) Petaflop/s peak perf.

• InfiniBand EDR fat-tree network with 2:1 

pruning at leaf level and top-level HDR switches
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Booster Module (3,744 GPUs):
• 936 compute nodes: 2× AMD EPYC Rome 7402 

CPU, 2× 24 cores, 2.8 GHz, 512 GB DDR4, 4×

NVIDIA A100 GPU, 4× 40 GB HBM2e

• 4 login nodes: 2x 24 cores, 2.7 GHz, 12x 16 GB, 

2666 MHz

• 73 Petaflop/s peak performance

• Mellanox InfiniBand HDR DragonFly+ topology 

with 20 cells - 40 Tb/s connection to Cluster
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Supercomputing Systems at JSC
DEEP-EST Prototype
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Modular Supercomputing prototype developed 
within the DEEP-EST project [5, 6].

System architecture from the DEEP system, implementing 
the Modular Supercomputing Architecture (MSA) [5, 6].
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Supercomputing Systems at JSC
Juelich Storage Cluster (JUST)

Juelich Storage Cluster (JUST) [7]:

• GPFS Storage Server (DSS/DATA)

• End-to-End integrity

• Fast rebuild time on disk replacement

• GPFS + TSM Backup + HSM

JUST5-DSS [7]:

• Capacity: 75 PB gross

• Hardware: Lenovo Distributed Storage Solution

• Building blocks:

 21x DSS-G 24: each 2x Lenovo x3650 M5, 334 NL-SAS Disks and 2 SSDs

 1x DSS-G 26: each 2x Lenovo x3650 M5 Systems, 502 NL-SAS Disks and 2 SSDs
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DEEP-EST Prototype 
Main Hardware Features

DEEP System Cluster Module Booster Module Data Analytics Module

Usage and design target Applications and code 
requiring high single-
thread performance and 
a modest amount of 
memory.
=> typically moderate 
scalability

Compute intensive 
applications and code 
with regular control and 
data structures.
=> high parallel 
scalability

Data-intensive analytics 
and machine learning 
applications and code 
requiring large memory 
capacity, data streaming, 
bit- or small datatype 
processing.

Node Count 50 75 16

CPU Typ
CPU Codename
Cores @frequency

Intel Xeon 6146
Skylake
12 @3.2GHz

Intel Xeon 4215
Cascade Lake
8 @2.5GHz

Intel Xeon 8260M
Cascade Lake
24 @2.4GHz

Accelerators / node n.a. 1x NVIDIA V100 GPU 1x NVIDIA V100 GPU
1x Intel Stratix10 FPGA
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DEEP-EST Prototype 
Main Hardware Features cont.

DEEP System Cluster Module Booster Module Data Analytics Module

DDR4 capacity
HBM capacity
NVMe
Node max. mem BW

192 GB
n.a.
n.a.
256 GB/s

48 GB
32 GB (GPU)
n.a.
900 GB/s

384GB+32GB(FPGA)
32 GB (GPU)
3 TB Intel Optane
900 GB/s (GPU)

Storage 1x 512 GB NVMe SSD 1x 512 GB NVMe SSD 2x 1.5 TB NVMe SSD

Network Technology

Network Topology

EDR-IB (100 Gb/s)

Fat-tree

EDR-IB (100 Gb/s)

Tree

EDR-IB (100 Gb/s)
Ethernet (40 Gb/s)
Tree

Power / node
Cooling

500 W
Warm-water

500 W
Warm-water

1600 W
Air

Integration 1× Rack MEGWARE 
SlideSX-LC ColdCon

3× Rack MEGWARE 
SlideSX-LC ColdCon

1× Rack MEGWARE
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DEEP-EST Prototype 
Complex Network Federation

• IB-to-EXTOLL Bridge
 MPI

• IB-to-Ethernet Bridge
 MPI

• EXTOLL-to-Ethernet Bridge
 Linux functionality

 MPI

 GCE = Global Collective Engine

• Important Features
 3 bi-directional network gateways sufficient

 Accommodating key requirement for fast 

NAM access by dual fabrics in the DAM
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DEEP-EST Prototype 
Memory Technologies

Non-Volatile Memory (NVM)

• First gen Intel NVM device
 20nm MLC NAND Flash technology

 PCIe gen3 ×4 lanes

• IOZONE results vs. SATA 6G SSD
 Block accesses: Read 5×, write 2.5×

 Random accesses: Read 2×, write 3×
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Network-Attached Memory (NAM) [8]

• Architecture: 
 Xilinx Virtex 7 FPGA

 Memory: hybrid memory cube (HMC)

 EXTOLL fabric (with 2 links)

• Functionality
 RDMA functionality across EXTOLL

 Checkpoint/restart logic

DC P3700 
(Source: Intel)

NAM
(Source: Extoll)

2x EXTOLL (2x 
100Gbit/s)

10



DEEP-EST Prototype
Multi-level Memory Hierarchy Configuration

• CN: Xeon (Haswell)

• BN: Xeon Phi (KNL)
=> self booting

• NVM: Non-Volatile 
Memory

• NAM: Network 
Attached Memory

Extreme-scale I/O and Storage Infrastructures in Heterogeneous MSA • ©Sarah M. Neuwirth • Goethe-Universität Frankfurt 11



DEEP-EST Prototype 
Hardware Modules – Architectural Overview

Storage Environment:

• Permanent storage provided through JUST storage system (GPFS)

• Shared fast storage on Scalable Storage and Service Module (SSSM) – total of 304 TB of storage 
managed by BeeGFS

• Local ext3/ext4 file systems (hosted on CM, DAM, and ESB nodes)

• Local storage – BeeOND 

• All-Flash Storage Module (AFSM) – 1.8 PB of data storage capacity based on BeeGFS
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CM 
node

ESB 
node

DAM 
node
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DEEP-EST Prototype 
Storage Environment: SSSM and AFSM

Scalable Storage and Service Module (SSSM):
• Hosts a total of 304 TB of storage (spinning disks) managed by the BeeGFS parallel file system
• Data is stored in two RAID arrays with 24 disks each (=> RAID6 storage scheme)
• 4 file system data servers provide access, through BeeGFS clients on CM, DAM, and ESB
• Located under /work in the file system tree => standard POSIX interface
• Connected to the system using 40 Gbit/s Ethernet technology => data passed via IP gateways
• Temporary storage device mainly to serve data required by applications run on the DEEP-EST system

All-Flash Storage Module (AFSM):
• Complements the SSSM
• Based on modern PCIe3 NVMe SSD storage devices
• BeeGFS global parallel file system is used to make 1.8 PB of data storage capacity available
• 2 metadata servers and 6 volume data server systems, which are interconnected by a 100 Gbps EDR-

InfiniBand fabric
• Integrated into the DEEP-EST EDR fabric topology of the CM, ESB and DAM
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DEEP-EST Prototype
Software Environment 
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• Low-level SW: Inter-network bridging

• Scheduler: Torque/Maui -> SLURM

• Filesystem: BeeGFS

• Compilers: Intel, gcc, PGI

• Debuggers: Intel Inspector, TotalView

• Programming: ParaStation MPI 
(mpich), OpenMP, OmpSs

• Performance analysis tools: Scalasca, 
Extrae/Paraver, Intel Advisor, VTune…

• Benchmarking tools: JUBE

• Libraries: SIONlib, SCR, HDF5…
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DEEP-EST Prototype
Parallel I/O and Resiliency

Resiliency Software Architecture:

• SCR (checkpointing handling)
• ParaStation MPI (process CP)
• OmpSs (task checkpointing)
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I/O Software Architecture:

• BeeGFS (parallel FS)
• SIONlib (I/O concentrator)

=> Combination of SW packages provides new functionality and exploits HW
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DEEP-EST Prototype
Scalable I/O via BeeGFS Filesystem

• Two instances:

 Global FS on HDD server

 Cache FS on NVM at node

• API: cache domain handling

 Synchronous version

 Asynchronous version
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DEEP-EST Prototype
BeeGFS Extension to support MSA

(1) BeeGFS monitoring

• Adapted and optimized BeeGFS monitoring with a time 
series DB for a better integration with overall DEEP-EST 
monitoring system 

(2) BeeOND storage plugin

• Support for non-POSIX backend to the BeeGFS storage 
server and integrate persistent memory devices (NVRAM) 
as such backend

(3) BeeGFS installation on SSSM and AFSM

• BeeGFS installation used by all nodes as scratch filesystem
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DEEP-EST Prototype 
SIONlib: Shared Files for Task-local Data

• Extension of I/O-API (ANSI C or POSIX)

• C and Fortran bindings, 
implementation language C

• Current versions: 1.7.7

• Open source license: https://www.fz-
juelich.de/en/ias/jsc/services/user-
support/jsc-software-tools/sionlib
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Source: W. Frings @ HPC-
IODC, ISC 2016, Frankfurt.
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DEEP-EST Prototype 
SIONlib: MSA-aware Extensions

(1) MSA-aware collective I/O

• Collective I/O allows processes to cooperate on storage accesses

• “Collector“ processes perform operations on behalf of other processes

• MSA aware collective I/O allows transferring I/O duties to application tasks 

running on modules suitable for I/O

(2) CUDA-aware interface

• Read and write functions accept pointers to on-device buffers as 

arguments, similar to CUDA aware MPI => simplify I/O in ESB nodes

(3) I/O forwarding

• I/O forwarding allows transferring I/O duties to dedicated non-application I/O proxy tasks running on 

modules suitable for I/O
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DEEP-EST Prototype 
NAM Slurm Plugin for Resiliency Support

Functionality:

• Supports multiple NAMs and allocations, 

transient & persistent allocations

• User can create or request NAM allocations

• User can delete existing persistent 

allocations

Implementation:

• Based on Slurm burst buffer plugin

• Uses NAM management client library

• Passes known list of NAM allocations to PS-

MPI layer
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DEEP-EST Prototype
Mapping Applications to Modular Supercomputers

• Cost-efficient scaling

• Effective resource-sharing

• Fit application diversity
 Large-scale simulations
 Data analytics
 Machine- and Deep Learning

• Composability of heterogeneous resources

• Co-design recipe and feedback loop:
 Gather the requirements from applications
 Create HW relevant specific application use-cases 
 Identify how to best match the co-design use cases to MSA
 Assess the MSA as an architecture
 Adapting the Loop
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DEEP-EST Prototype
Set of Six Applications Ported [5]

• Neuroscience
 NEST: Simulation of point-like neurons
 Arbor: Simulation of detailed neurons
 Elephant: Analysis of electrophysiological experiments

• Molecular Dynamics – the most widely used code
• Radio Astronomy

 LOFAR correlator and imager
 SKA – most important astronomy project to come

• Space Weather
 CBA-application with modular extension: xPic

• Data Analytics in Earth Science
 Clustering of big data by PiSVM

• CERN: High Energy Physics
 Reconstruction workflows on GPUs, FPGAs
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Challenges and Future Directions
Overview
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• System scalability: future supercomputers may include hundreds 
of thousands of nodes and data is to be accessed by ~106 clients. 
Traditional parallel file systems cannot operate efficiently at this 
scale. => access to data becomes a critical issue

• Data scalability: bigger machines mean more data, which means 
more records or files. => I/O systems should be able to store 
hundreds of exabytes or even zettabytes

• Data heterogeneity: Small vs. large files, sequential vs. random 
access, access patterns (single vs. concurrent).
=> quite complex “data taxonomy” needs to be supported

• Data placement: To use complex supercomputing architectures 
such as MSA best, data must be used and produced as close as 
possible to the place where the simulation code runs.
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Challenges and Future Directions
DEEP-SEA Project

• Co-design the software- and programming 

environment of the upcoming European 

exascale systems.

• Provide tools to map complex applications 

and non-uniform workflows onto heterogeneous 

and modular computer architectures.

• Enhance the system software, programming 

paradigms, tools, and runtimes in order to extract 

the maximum performance from heterogeneous 

computer platforms and improve performance portability.

• Improve the use and management of new memory technologies 

and the placement of data in compute devices with deep and heterogeneous memory hierarchies.
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https://www.deep-projects.eu/

24

https://www.deep-projects.eu/


Challenges and Future Directions
IO-SEA Project  
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• Data workflow: Significantly improve 
workflow execution by allowing users / 
applications to tag data and therefore to 
add information about its future usage 
as well as of the usage of resulting data.

• Instrumentation: Extend existing tools to 
identify the data lifecycle and set up an 
optimal data-crentic I/O runtime env.

• Data Access and Storage application 
interface (DASI) => more later today 

• Hierarchical storage management: HSM 
mechanisms are rare in object stores. 
IO-SEA targets to use NVMe devices, 
HDD, SSD and tapes inside the same tier.

https://iosea-project.eu/
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Questions?
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