

Data Integration in Data Lakes

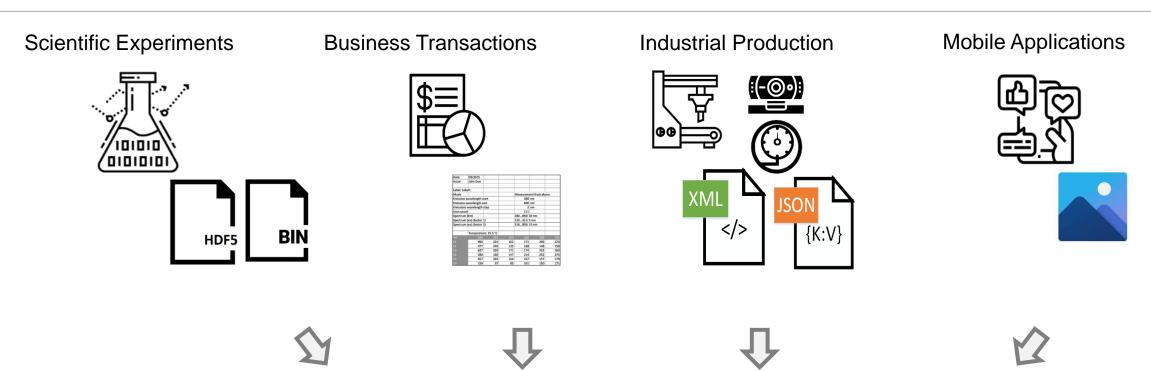
Rihan Hai

Web Information Systems

27.06.2022

Data Lake survey

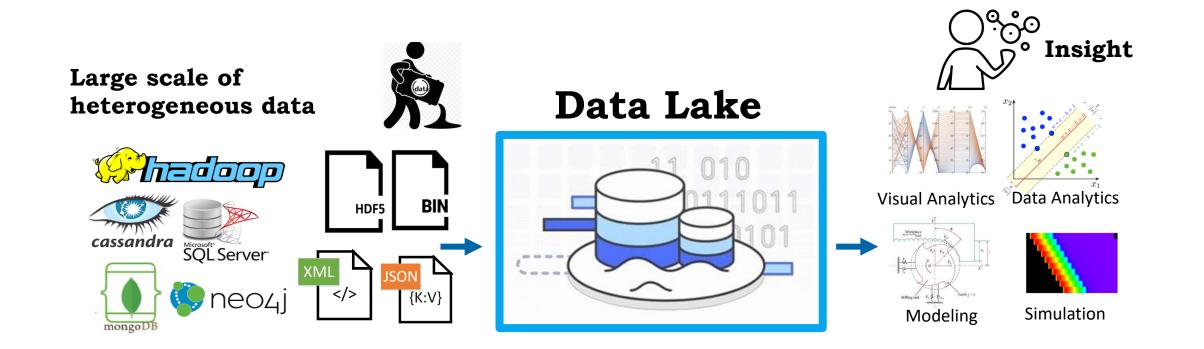
Problems of Big Data Management



Data Lake

What Is a Data Lake?

A data lake is a flexible, scalable data storage and management system, where raw data from heterogeneous sources can be ingested and stored in their original format, and later queried in an on-the-flymanner.



Our contribution in data lake solution landscape

Metadata Extraction

- Structures: DATAMARAN [Gao et al., 2018]
- Content and context: Skluma [Skluzacek et al., 2018]
- Schema and metadata properties: GEMMS [Quix et al., 2016b]
- Metadata Modeling
 - Generic metadata model [Quix et al., 2016b, Hai et al., 2019]
 - Data Vault [Nogueira et al., 2018; Giebler et al., 2019]
 - Network-based metadata model [Diamantini et al., 2018a,b]
 - Enterprise knowledge graph [Fernandez et al., 2018]
 - Data Integration
 - Mappin

- Query r
- Schema
- Dataset Organ
- Discover Relation

	Tier	Functions	Systems
i			GEMMS [112]
1		Metadata extraction	DATAMARAN [49]
			Skluma [129]
			GEMMS [61], [112]
	Ingestion		HANDLE [40]
	0	N	Data vault [54], [101]
1		Metadata modeling	Diamantiniet al. [31], [32], [33]
			Aurum [45]
			Sawadogoet et al. [122]
۱ i			GOODS [64], [65]
\setminus			DS-Prox [4], [5], [6]
			KAYAK [85], [86]
		Dataset organization	Nargesian et al. [98]
			Ronin [105]
N			Juneau [143]
			Aurum [45]
			Brackenbury et.al. [14]
		Related dataset discovery	JOSIE [145]
			$D^{3}L$ [13]
			Juneau [70], [142], [143]
			PEXESO [37]
ata			RNLIM [116]
			DLN [11]
36 5	Maintenance	Data integration	Constance [58], [59], [60], [62]
		Ť	CoreDB [8], [9]
			D^4 [104]
		Metadata enrichment	DomainNet [79]
_			Constance [61]
			GOODS [64], [65]
			CLAMS [44]
atio		Data cleaning	Constance [61]
			Song et al. [130]
		Schema evolution	Klettkeet et al. [75]
bing			IBM tool [134]
			Suriarachchi et al. [132]
y re		Data provenance	GOODS [64], [65]
-			CoreDB [8], [9]
018			Juneau [70], [142], [143]
-			JOSIE [145]
ma		Query-driven data discovery	$D^{3}L$ [13]
ma		Query-unventuata discovery	Juneau [70], [142], [143]
	Exploration		Aurum [45]
ani	Exploration		Constance [58], [62]
		Heterogeneous data querying	CoreDB [8], [9]
elati		ricerogeneous cutu querying	Ontario [41], [74] Squerall [89]

Query-driven Discovery

Explore related datasets with keyword • queries/primitive-based query language [Nargesian et al., 2018; Brackenbury et al., 2018; Fernandez et al., 2018; Zhu et al., 2019]

Query Heterogeneous Data with a Unified Interface

Support multiple query languages [Beheshti • et al., 2017;2018; Hai et al., 2016,2018b]

nrichment

and named entities [Beheshti et al., 2017; 2018] Ircing for descriptive metadata [Halevy et al., 2016a;b]

functional dependencies [Hai et al., 2019b]

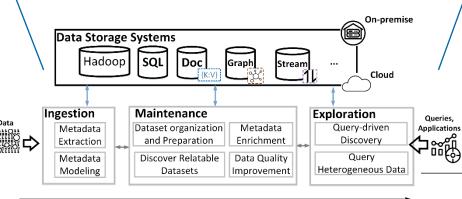
ata objects violating functional dependencies [Hai et al.,

CF triples violating conditional denial constraints [Farid et al., 2016]

Our contribution in data lake solution landscape

- Metadata Extraction
 - Structures: DATAMARAN [Gao et al., 2018]
 - Content and context: Skluma [Skluzacek et al., 2018]
 - Schema and metadata properties: GEMMS [Quix et al., 2016b]
- Metadata Modeling
 - Generic metadata model [Quix et al., 2016b, Hai et al., 2019]
 - Data Vault [Nogueira et al., 2018; Giebler et al., 2019]
 - Network-based metadata model [Diamantini et al., 2018a,b]
 - Enterprise knowledge graph [Fernandez et al., 2018]

- Hadoop and File-based Storage Systems
 - Hadoop Distributed File System [Stein et al., 2014; Boci et al., 2015]
 - Azure data lake store [Ramakrishnan et al., 2017]
- Single Data Store
 - RDBMS [Zhu et al., 2019]
 - > NoSQL store [Walker et al., 2015]
- Polystore Systems
 - Google Dataset Search (GOODS) [Halevy et al., 2016b]
 - CoreDB [Beheshti et al., 2017]
 - Constance [Hai et al., 2016]



Query-driven Discovery

 Explore related datasets with keyword queries/primitive-based query language [Nargesian et al., 2018; Brackenbury et al., 2018; Fernandez et al., 2018; Zhu et al., 2019]

Query Heterogeneous Data with a Unified Interface

• Support multiple query languages [Beheshti et al., 2017;2018; Hai et al., 2016,2018b]

time

Metadata Enrichment

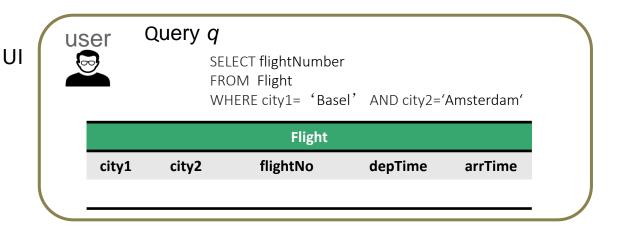
- Keywords and named entities [Beheshti et al., 2017; 2018]
- Crowd-sourcing for descriptive metadata [Halevy et al., 2016a;b]
- Relaxed functional dependencies [Hai et al., 2019b]
- Data Quality
 - Detect data objects violating functional dependencies [Hai et al., 2019b]
 - Examine RDF triples violating conditional denial constraints [Farid et al., 2016]

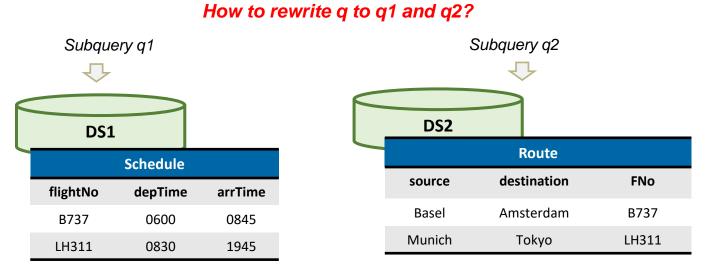
- Data Integration
 - Mapping generation: [Hai et al., 2018b, 2019a]
 - Query rewriting in Polystore based data lakes [Hai et al., 2018a]
 - Schema matching [Alserafi et al., 2020]
- Dataset Organization and Preparation
- Discover Relatable Datasets

When is data integration?

Goal:

- Combine multiple heterogeneous data sources
- Provide a uniform query interface for heterogeneous data





Motivation | Data Integration and Metadata Management

Schema Matching

Discover the correspondences among source schemas

Schema Merging

Resolve several related source schemas, and build the integrated schema

Schema Mapping

Capture semantic relationships between the source schemas and the integrated/target schema

Entity linkage

Discover records across different data sources, which represent the same entity

Data cleaning

Detect and correct corrupt or inaccurate records

Query Reformulation

	Schedule	
flightNo	depTime	arrTime
B737	0600	0845
LH311	0830	1945

	Route	
source	destination	FNo
Basel	Amsterdam	B737
Munich	Tokyo	LH311

Schema Matching

Discover the correspondences among source schemas

Schema Merging

Resolve several related source schemas, and build the integrated schema

Schema Mapping

Capture semantic relationships between the source schemas and the integrated/target schema

Entity linkage

Discover records across different data sources, which represent the same entity

Data cleaning

Detect and correct corrupt or inaccurate records

Query Reformulation

Translate user queries posed on the global/target schema to a set of subqueries based on source schemas

	Schedule			Route	
lightNo	depTime	arrTime	source	destination	n I
B737	0600	0845	Basel	Amsterdan	n B
LH311	0830	1945	Munich	Tokyo	LI
		Y			
			Flight		
	city1	city2	flightNo	depTime	arrTime
		•••••			

Schema Matching

Discover the correspondences among source schemas

Schema Merging

Resolve several related source schemas, and build the integrated schema

Schema Mapping

Capture semantic relationships between the source schemas and the integrated/target schema

Entity linkage

Discover records across different data sources, which represent the same entity

Data cleaning

Detect and correct corrupt or inaccurate records

Query Reformulation

Translate user queries posed on the global/target schema to a set of subqueries based on source schemas

	Schedule				Ro	ute
lightNo	depTime	arrTime		source	destin	ation
B737	0600	0845		Basel	Amste	rdam
LH311	0830	1945		Munich	Tok	уо
				Flight		
	city1	city2	fligh	tNo	depTime	arrTime

- Transformation: executable mapping constraint
 - Constructs target instances from source instances
 - E.g., SQL query, XSLT, C# program
- Mapping formalism: Tuple-generating dependency (TGD)

 $\forall c_1, c_2, d \ (Route(c_1, c_2, d) \to \exists a_1, a_2 \ (Flight(c_1, c_2, d, a_1, a_2)) \))$

Schema Matching

Discover the correspondences among source schemas

Schema Merging

Resolve several related source schemas, and build the integrated schema

Schema Mapping

Capture semantic relationships between the source schemas and the integrated/target schema

Entity linkage

Discover records across different data sources, which represent the same entity

Data cleaning

Detect and correct corrupt or inaccurate records

Query Reformulation

	Schedule			Route	
flightNo	depTime	arrTime	source	destination	FNo
B737	0600	0845	Basel	Amsterdam	B737
LH311	0830	1945	Munich	Tokyo	LH311

Schema Matching

Discover the correspondences among source schemas

Schema Merging

Resolve several related source schemas, and build the integrated schema

Schema Mapping

Capture semantic relationships between the source schemas and the integrated/target schema

Entity linkage

Discover records across different data sources, which represent the same entity

Data cleaning

Detect and correct corrupt or inaccurate records

Query Reformulation

Schedule			Route		
flightNo	depTime	arrTime	source	destination	FNo
B737	0600	0845	Basel	Amsterdam	B737?
LH311	0830	1945	Munich	Tokyo	LH311

Schema Matching

Discover the correspondences among source schemas

Schema Merging

Resolve several related source schemas, and build the integrated schema

Schema Mapping

Capture semantic relationships between the source schemas and the integrated/target schema

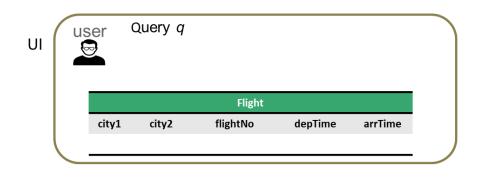
Entity linkage

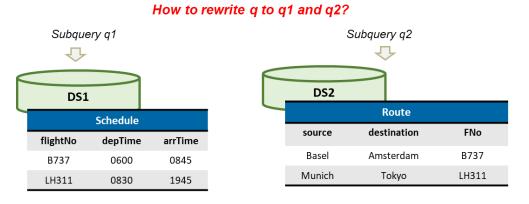
Discover records across different data sources, which represent the same entity

Data cleaning

Detect and correct corrupt or inaccurate records

Query Reformulation





• Open data: massive datasets, not all needed

- Various data: heterogeneous data models (e.g., relational, semi-structured)
- Insufficient metadata: structureless datasets, missing semantics



Data Lake

• Open data: massive datasets, not all needed

- Various data: heterogeneous data models (e.g., relational, semi-structured)
- Insufficient metadata: structureless datasets, missing semantics

Systems	Relatedness criteria	Similarity metrics	Applied technique
Aurum [45]	Instance value overlap Attribute name PK-FK candidate	Jaccard similarity (MinHash) Cosine similarity (TF-IDF)	Hypergraph
Brackenbury et.al. [14]	Instance value overlap Attribute name Semantics Descriptive metadata	Jaccard similarity (MinHash)	-
JOSIE [145]	Instance value overlap	Intersection size of sets	Inverted Index
$D^{3}L$ [13]	Instance value overlap Attribute name Semantics Data value representation pattern (Numerical) data distribution	Jaccard similarity (MinHash) Cosine similarity (Random projections)	5–dim Euclidean space
Juneau [70], [142], [143]	Instance value overlap Domain overlap Attribute name Key constraint New attributes rate New instance rate Variable dependency Descriptive metadata Null Values	Jaccard similarity	Workflow graph Variable dependency graph
PEXESO [37]	(Textual) instance values	Any similarity function in a metric space	High-dimensional vectors Hierarchical grids Inverted Index
RNLIM [116]	Table name Attribute name Attribute data type Attribute value domain	-	BERT [30]
DLN [11]	Attribute name Instance values	Jaccard similarity Cosine similarity	Classification models

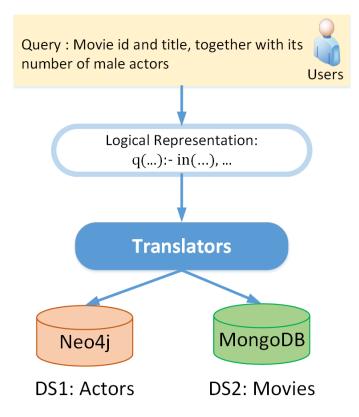
Table 3: Comparisor	of related	dataset discovery	approaches	in data lakes
rable of companioor	orrenated	autoce anocovery	approactico	in data mileo

- Open data: massive datasets, not all needed
- Various data: heterogeneous data models (e.g., relational, semi-structured)
- Insufficient metadata: structureless datasets, missing semantics

Query Rewriting in Data Lakes [Hai et al., ADBIS 2018]

Query rewriting for heterogeneous data

- User query might need data from multiple sources
 - Different source schemas and formats
 - Diverse query languages



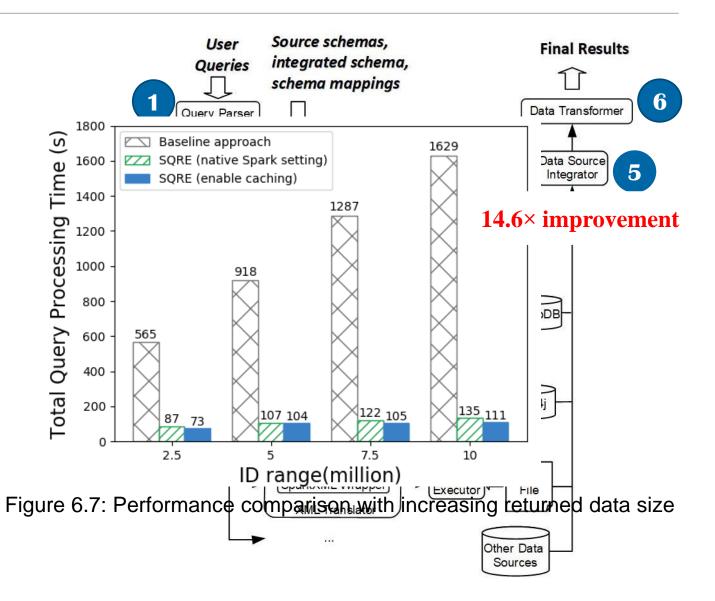
Query Processing over Diverse Polystore [Hai et al., ADBIS 2018]

Reformulate and process subqueries

- Rewrite an input query on integrated schema to logical rules in predicates
- 23Generate subqueries based on source schemas and stores
 - Execute subqueries on each data store
- **5** 6 Retrieve the query results, and create the final integrated results
- Optimize query execution

 $(\mathbf{3})$

- Push down selection predicates to the data sources
- 6 Reduce the amount of data that has to be returned and loaded into Spark



- Open data: massive datasets, not all needed
- Various data: heterogeneous data models (e.g., relational, semi-structured)
- Insufficient metadata: structureless datasets, missing semantics

System	KAYAK [85], [86] (pipeline)	KAYAK [85], [86] (task dependency)	Nargesian et al. [98]	Juneau [143] (variable dependency)
Function	Represent the primitives of a data preparation pipeline	Enforce correct execution sequence of tasks while parallelization	Semantic navigation	Measure table relatedness w.r.t. notebook workflow
Node	Primitives	Atomic tasks for data preparation operations	Sets of attributes	Notebook variables
Edge	Sequential execution order of two primitives	Sequential execution order of two tasks	Containment relationships	Notebook functions (as edge labels)
Edge direction	From the previous primitive to the subsequent primitive	From the previous task to the subsequent task	From the superset to the subset	From the input variable of the function to the output variable

Table 2: Comparison of DAG-based dataset organization approaches in Sec. 6.1.3

Future work: data lake for AI

Data Lake (2015-2020)

Christoph Quix

Matthias Jarke

Intelligent, scalable Data Lake (2021-)

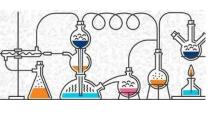
TUDelft Delft University of Technology

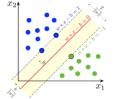
Rihan Hai

Asterios Katsifodimos

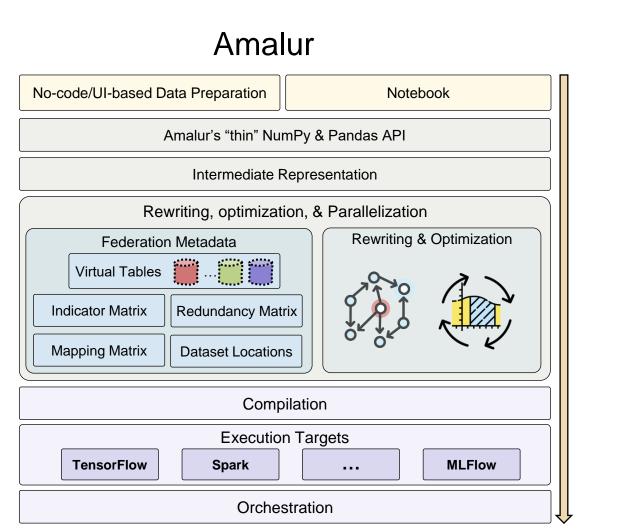
Amalur: a data science platform

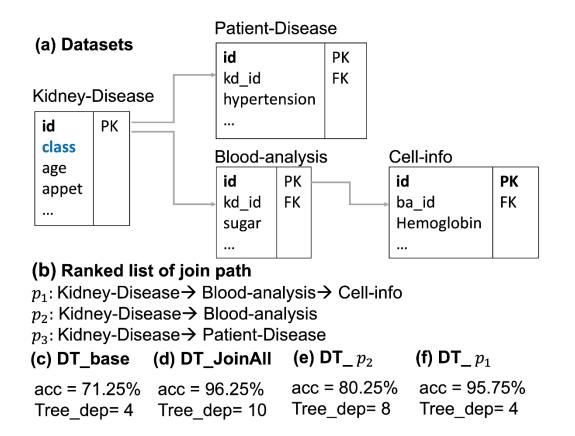
Use cases:



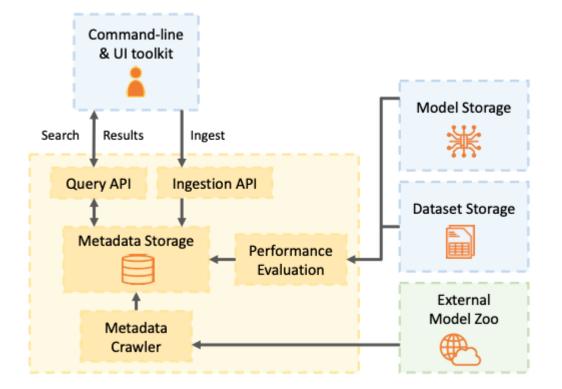


Data Analytics





Andra Ionescu, et al. "Join Path Based Data Augmentation for Decision Trees." ICDE Workshops. 2022.



Ziyu Li, et al. "Metadata Representations for Queryable ML Model Zoos." ICML Workshops. 2022.

Conclusion

- Data integration is a difficult problem, even more difficult in data lakes
 - Data structured with various schemas
 - Heterogeneous data models
 - Diverse query languages and systems
- New challenges, new technologies
 - Related dataset discovery
 - Dataset organization
 - Metadata extraction/dataset profiling
 - Entity resolution using ML/DL
 - Data cleaning for ML
 - Factorized Databases
 - Federated learning

• . . .

