Utilizing Data Lakes for Managing Multidisciplinary Research Data

Mark Greiner

Max-Planck Institute for Chemical Energy Conversion 2022-06-27

Problem Space

Presentation Outline

Description of domain

Problem statement

Data Governance

Architectures

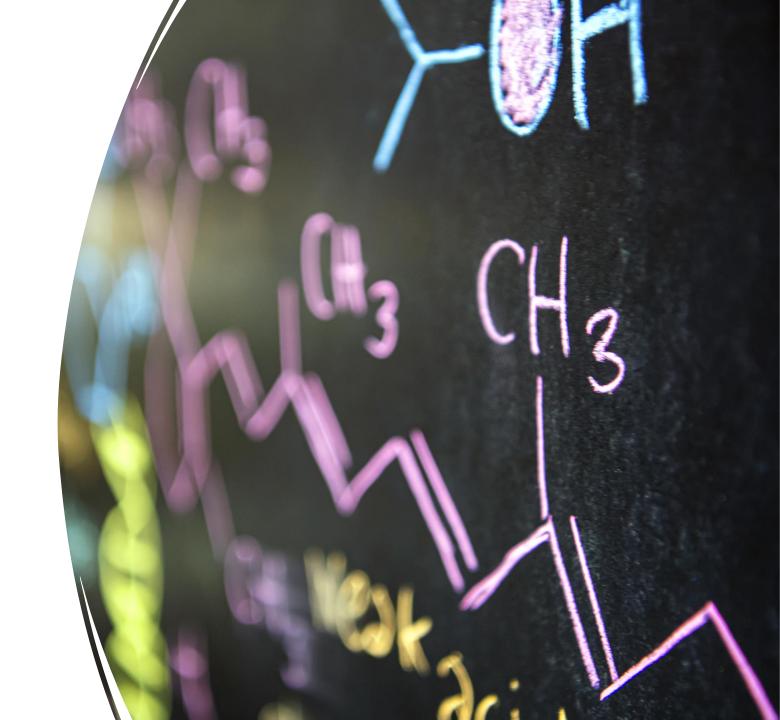
Technologies

Future directions

Solution Space

1. Description of the Domain

Problem space


About MPI-CEC

Research Discipline

- Catalysis for chemical energy
- Water splitting, bio-catalysts, chemical production

Magnitude

- 218 Researchers
- 22 Research Groups
- 3 Departments

Synthesis Lab

- Focus on:
 - Creating new chemicals
- Workflow:
 - Plan, Synthesize, Characterize, Analyze results, Iterate, Test in some application
- Challenges:
 - Multi-disciplinary
 - Harmonize ELN with diverse data sources

Self-service facilities

- Focus on:
 - routine measurements
- Can be performed with minimal training
- Workflow:
 - Schedule, Measure, Retrieve data, Analyze data,
- Challenge:
 - Harmonize users' ELN with instrument
 - Associate data with sample

Testing facilities

- Focus on:
 - Behavior in applications
 - Testing parameters
- Workflow:
 - Plan, Schedule, Measure, Retrieve data, Analyze data
- Challenges:
 - Analysis
 - Linking data-sample-conditions

Large facilities

- Focus on:
 - Characterizing
- Workflow:
 - Plan, Schedule, Measure, Retrieve data, Analyze data
- Major challenges:
 - Data sizes
 - Integrating with home ELN

Roles and skills

Student (Master/PhD)

Skills

- Conducts experiments
- Documents results

IT interactions

Measure things

Interact analysis software

Post-Doc

Skills

- Designing experiments
- Analysis workflows
- Documents results

IT Interactions

- Interact measurement software
- Interact analysis software
- Supervise students
- Review results

Principal investigator

Skills

- Provides research questions
- Supervises research of Students and Post-Docs
- Administrative Tasks

IT Interactions

Interacts with management software

Roles and skills

Technical Staff

Skills

- Maintenance Laboratory equipment
- Keep services running
- Administer stock
- Supervise experiments

IT Interaction

 Interact with monitoring software

Group Leaders

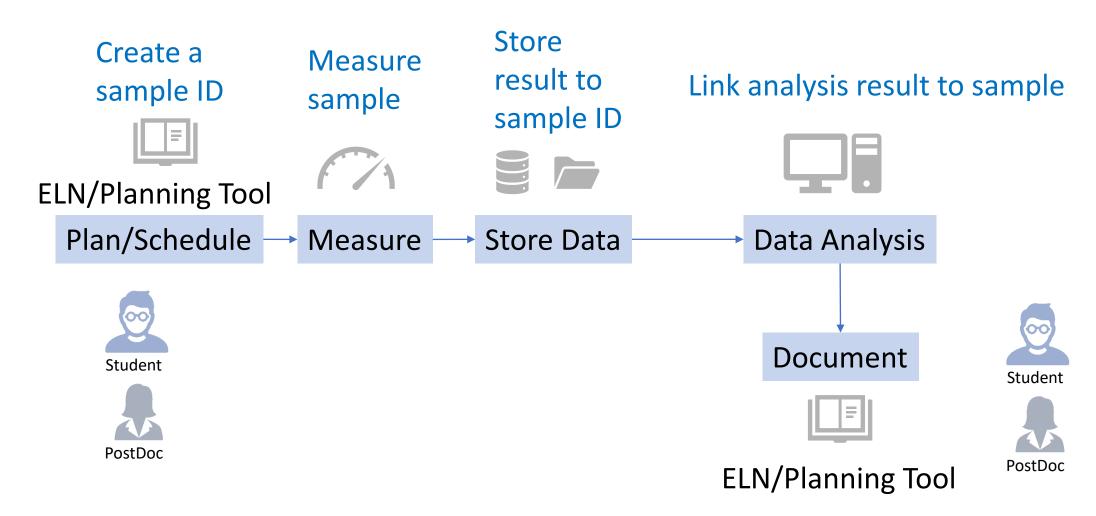
Skills

Project management

IT Interaction

Interact with management software

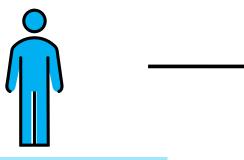
Directors


Skills

Management

IT Interaction

 View dashboards and reports


Use Case: Self-service testing facitlity

Modified from 2021-05-31_NFDI4Cat Consortium meeting - ELN task force.pptx

Different Users; Same Data

Measurement Requester

Provides samples

Provides measurement requirements

ELN/LIMS

Database

Instrument Operator

Performs measurements
Provides data

Instrument control software

Semi-structured application format

Data Analyst

Processes the data Analyzes the data

Analysis software

Semi-structured application format

2. ProblemStatements

Problem Space

Problem Statement

- Data assets are not organized.
- It is distributed across many locations, with no contextual metadata.
- Thus, searching and organizing tools cannot be used to utilize the data.
- Knowledge cannot be automatically extracted from it.

Problem Statements

- Researchers spend too much time on repetitive manual work, related to organizing, searching and processing data.
- Takes away from value-added work, increases errors, leads to re-work.

Problem Statements

• Users do not have easy access to all their data assets.

Problem Statement

- It is difficult, sometimes impossible, to trace back the origin of a research result.
- Leads to excessive time spent searching when report revisions are needed.
- Decreases knowledge retention.

Problem Statement

- The structure of the organization's data assets are not suitable for large-scale analysis algorithms.
- Unable to utilize modern algorithms for meta-analysis.

Example of governance problems

	АВ	С	D	Е	F	G	H
1 ID	building_name	building_identificati	building_identificatic •	room_number 🔻	floor_numb 🔻	storage_name	▼ storage_characteristic ▼
2	1 Physikgebaude	D	Physikgebaude	110	TKG	Kuhlschrank 2 +4°C	
3	4 Physikgebaude	D	Physikgebaude	102	TKG	102-1-Hazards	
4	5 Physikgebaude	D	Physikgebaude	102	TKG	102-2-Solvents	
5	6 Physikgebaude	D	Physikgebaude	103	TKG	Chem	einfacher Schrank ohne Absaugung
6	7 Physikgebaude	D	Physikgebaude	104	TKG	104-1-Hazards	
7	8 Physikgebaude	D	Physikgebaude	104	TKG	104-3-Bases	
8	9 Physikgebaude	D	Physikgebaude	104	TKG	104-4-Acids	
9	10 Physikgebaude	D	Physikgebaude	104	TKG	Betriebsmitteltonne	Spannringfass 30L oder 60L zur Entsorgung
10	11 Physikgebaude	D	Physikgebaude	107	TKG	107-3-Hazards	
11	12 Physikgebaude	D	Physikgebaude	107	TKG	107-4-Hazards	
12	13 Physikgebaude	D	Physikgebaude	107	TKG	107-1-Solvents	
13	14 Physikgebaude	D	Physikgebaude	107	TKG	Kuhlschrank	
14	15 Physikgebaude	D	Physikgebaude	107	TKG	107-5-Acids	
15	16 Physikgebaude	D	Physikgebaude	107	TKG	Betriebsmitteltonne	Spannringfass 30L oder 60L zur Entsorgung
16	17 Physikgebaude	D	Physikgebaude	110	TKG	110-2-Hazards	
17	18 Physikgebaude	D	Physikgebaude	110	TKG	110-1-Inorg Acids	
18	19 Physikgebaude	D	Physikgebaude	110	TKG	Betriebsmitteltonne	Spannringfass 30L oder 60L zur Entsorgung
19	20 Physikgebaude	D	Physikgebaude	111	TKG	Glovebox A	nur fur ungef Ağhrliche Substanzen geeignet
20	21 Physikgebaude	D	Physikgebaude	111	TKG	Glovebox B	nur fur ungefĤhrliche Substanzen geeignet
21	22 Physikgebaude	D	Physikgebaude	101	TKG	Glovebox C	nur fur ungefĤhrliche Substanzen geeignet
22	24 Physikgebaude	D	Physikgebaude	113	TKG	F90 Gase	F90
23	25 Physikgebaude	D	Physikgebaude	113	TKG	F90 Gase Formiergas	F90
24	26 Physikgebaude	D	Physikgebaude	113	TKG	Betriebsmitteltonne	Spannringfass 30L oder 60L zur Entsorgengg
25	27 Physikgebaude	D	Physikgebaude	142	TKG	Hausdienste	ganzer Raum

3. Data Governance

Solution Space

What is a data strategy?

- A data strategy can be considered as an approach that enables to derive new knowledge from data
- A comprehensive data strategy is the basis for the successful implementation of data related projects

A Data Strategy describes the ...

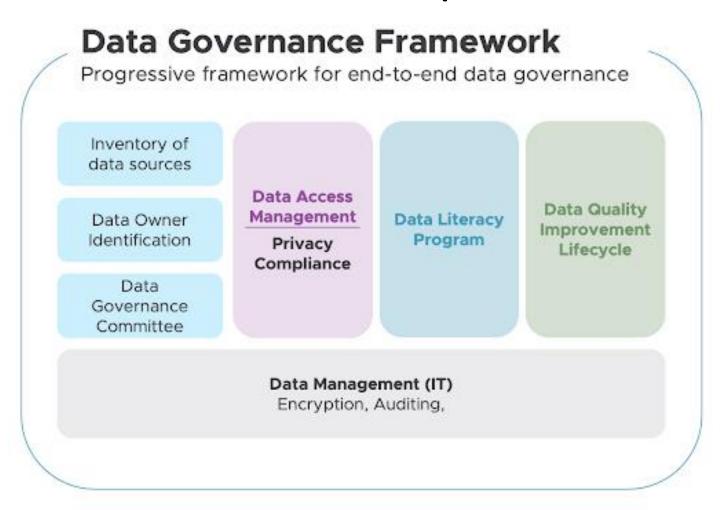
- ... organizational structure for the successful use of data with relevant processes for dealing with data
- ... required skills & roles
- ... technology and tools

https://www.gartner.com/en/documents/3975595/creating-a-data-strategy

Goals of a Data Strategy

Remove Information Silos

Keep knowledge of research


Make reasearch more accessible

Enable meta research

Improve sustainability

https://datagovernance.com/goals-and-principles-for-data-governance/

Data Governance Concepts

Roles and skills in a business context

Data Engineer

Transform and harmonise data

Data Architect

Provide data processing concepts

Data Scientist

Analyse and model data

Data Artist

Visualize data

Data Custodian

Data storage and security

Data Steward

Steering and household data

Data Security Admin.

Data security concepts

Domain Expert

Domain knowledge

Data Evangelist

Explores data potential

Data Governance Roles

Student (Master/PhD)

DG Roles

- Data engineer
- Data scientist

Post-Doc

DG Roles

- Data scientist
- Data architect
- Data engineer
- Domain expert

Principal investigator

DG Roles

- Data steward
- Data evangelist
- Domain expert

Data Governance Roles

Technical Staff

DG Roles

Data steward

Group Leaders

DG Roles

- Data steward
- Data evangelist
- Domain expert

Take-away message

- Data governance has specialized roles
- Academia often fulfills these roles by loading responsibility onto operational staff
- It may be time to have dedicated data-governance roles in academia
- However, due to scale and diversity at academia organizations, it may need a different structure than is used in industry

Data Governance Concepts

Where does the data come from and how was Data lineage it transformed? Complete traceability Does the data meet regulatory requirements Data security for compliance and auditability? of data Where is the data located? Data availability

https://datagovernance.com/goals-and-principles-for-data-governance/

What is metadata?

Data about data

- Metadata can describe a single piece of data, a dataset or collection.
- Standard types of metadata:
 - Descriptive: information about who created a resource, what it is about and what it includes (e.g. title, author, subjects, keywords etc.)
 - Structural: information about the way data elements are organized, their relationship and the structure they exist in (e.g. ER-model)
 - Administrative: information about the origin of resources, their type and access rights
 (e.g. file type, date of creation etc.)

Table with 4
books, created by
Joe Dow

Descriptive METADATA

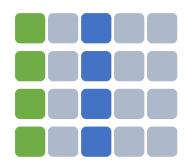
ID	Title	Author	Year	Cover	Edition	Price
1	Emma	Austen	1815	Paperbac k	20th	€ 4,30
2	Dracula	Stoker	1897	Hardback	15th	€ 10,00
3	Ivanhoe	Scott	1820	Hardback	8th	€ 20,00
4	Kidnapped	Stevenson	1886	Paperbac k	11th	€ 3,50

Origin of resources: Book store

Access rights: read only - everyone; write and read - Joe Dow

Created on 5. January 2019

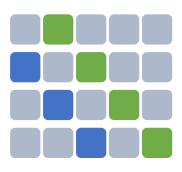
Unsorted table; related to sales data; key is 'ID'


Administrative METADATA

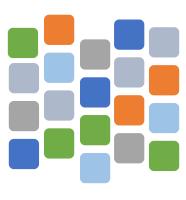
Structural METADATA

What is data structure?

Data structure is the particular way of ORGANIZING & STORING digital information.



Information with a specific and high degree of organization (tabular form)



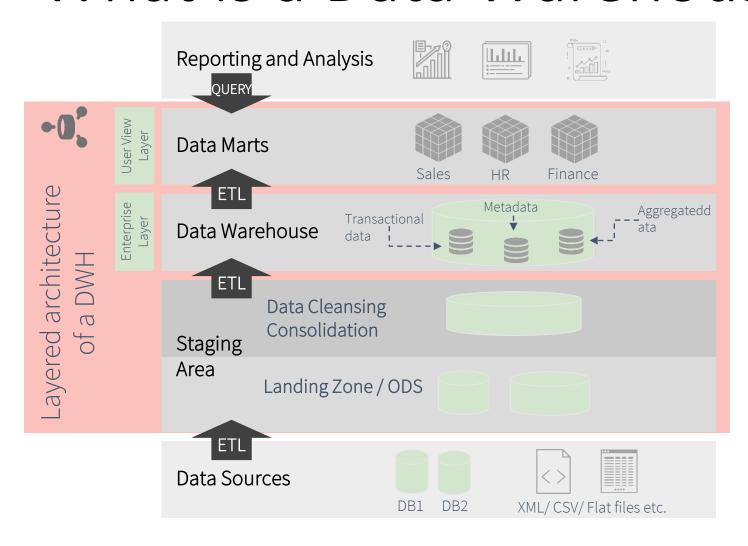
Semi-structured data:

Information with some degree of organization

Unstructured data:

Information with no predefined organizational structure

How do we store data?


	Data	abases	File System	Object Storage	
Definition	Collection of stored data organd determined by the database (e.g. ER-diagram) Relational DB	anized in data model underlying the Non-relational DB	Store data in a space with a pre-defined scheme (e.g. a file hierarchy)	Store data as objects in a space with no predefined scheme Every file has a unique	
	Based on relational data model (data is organized in tables) Structured Query Language (SQL) for querying the database	Based on any data model other than the relational model Examples include keyvalue stores, document stores and graph databases		identifier, so it can be found (e.g. URL)	
щ ю	MS SQL Server, MySQL, Oracle	MongoDB, Cassandra, Neo4J	NTFS (Windows), Hadoop Distributed File System, ext3	AWS S3 buckets Azure Blob Storage	

4. Data Architectures

Solution Space

What is a Data Warehouse?

"A Data Warehouse is a subject oriented, integrated, non-volatile and time-variant collection of data in support of management decisions"*

*Source: Immon, WH. Building the Data Warehouse

What is a Data Lake?

Reporting and Analysis

ata Lake

- Security
- Data Dictionary
- Data Catalogue
- Data Quality

Data Access

tools that provide the interfaces for retrieving Data,

Data Processing

- Processing Technologies
- Data Transformation upon request
- Transformed Data can be stored again Speed Layer

Data Storage

- Various storage technologies, e.g. Databases, file systems, object storage etc. Usually a layered
- approach

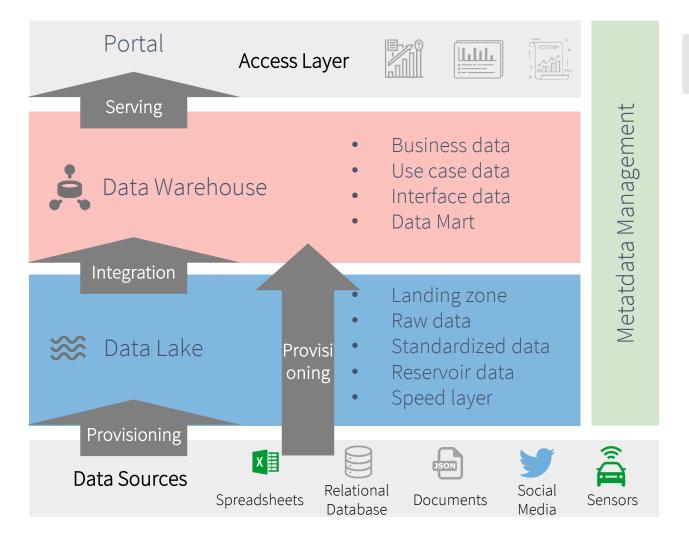
Data Sources

Spreadsheets

Relational Database

Documents

Media

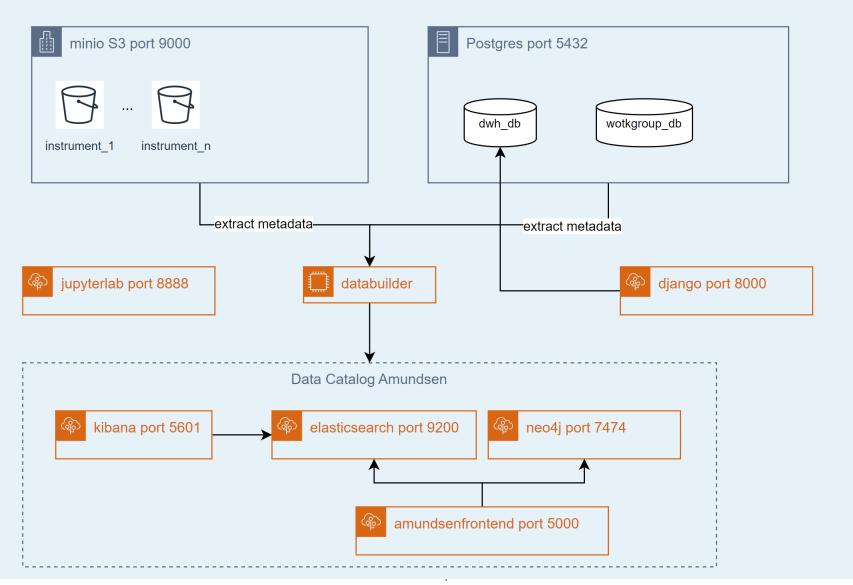


A Data Lake is a modular system of data storage and processing technologies. Like a DWH it is a logical concept rather than a tangible entity.

Benefits of a Data Lake

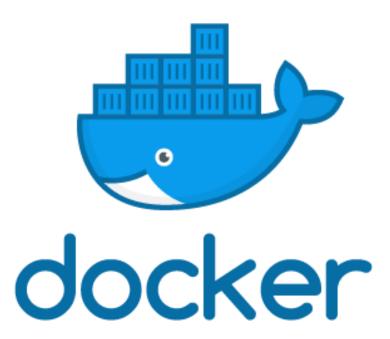
- stores all kinds of data, e.g.:
 - Structured Tables
 - Text Documents
 - Pictures
- Central entry point for data access

How can both architectures be combined?


Advantage

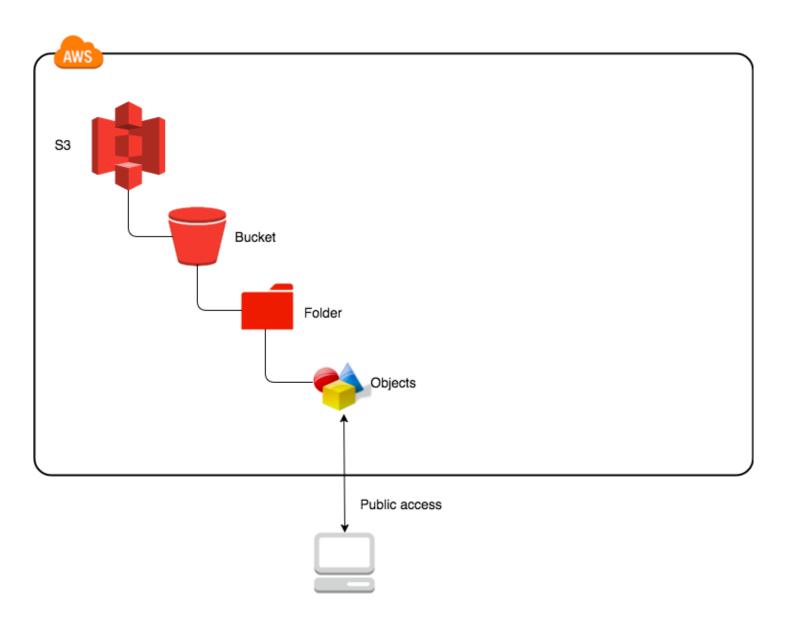
- One platform for different requirements
- Best of both architectures

5. Technologies



Solution Space

Docker

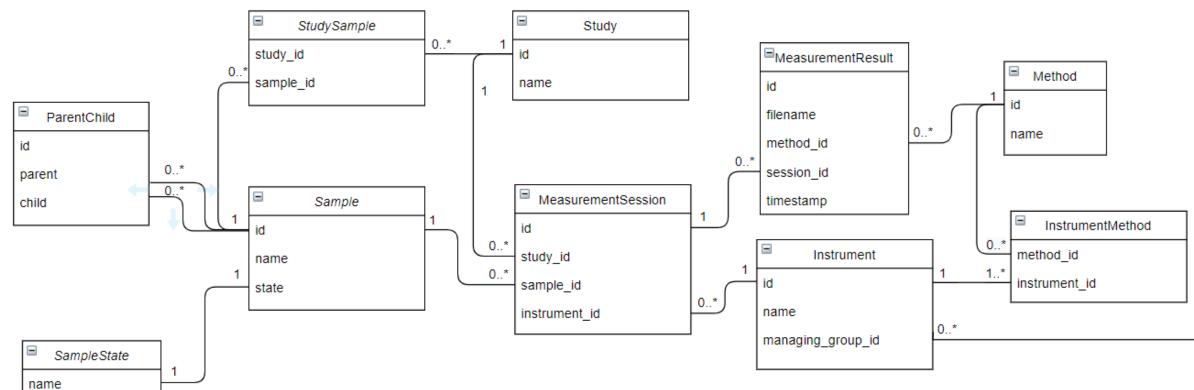

- Containers for running microservices
- Isolated environments
- Needs less resources than a VM

Minio

- Object storage
- Same as Amazon S3
- Can store any kind of data

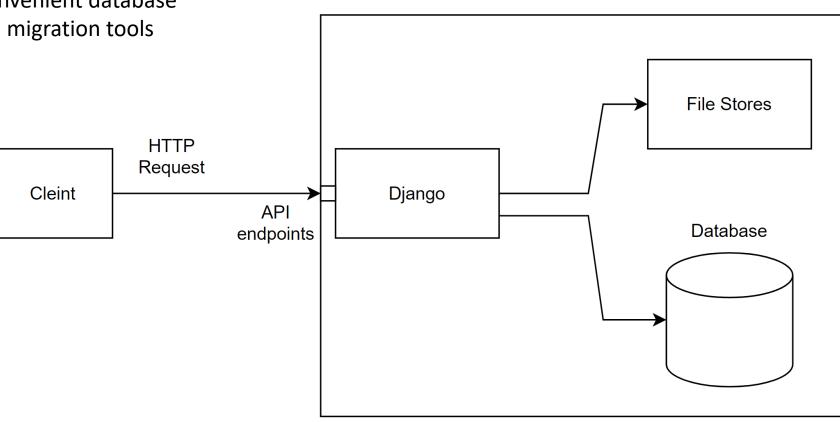
MINIO

- Buckets hold objects
 - Define access rights
- Objects have immutable metadata
- Client can access data over API


PostgreSQL

- Relational database
- Used for storing structured data
- Transactional data and data warehouse
- Strict and robust data models

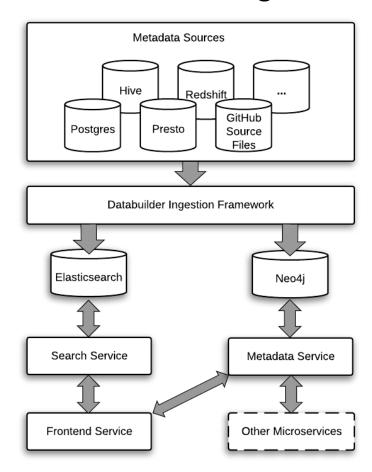
- Used for storing:
 - Transactional Data
 - Data Warehouse tables


Django

- Back-end Web application framework written in python
- Robust and scalable
- Used for providing REST API for accessing Relational Database

- API endpoints provide client with ability to CRUD database entries
- Will be used to connect front-end apps
- Access to File stores
- Django provides Authentication and Authorization to access resources
- Django provides convenient database schema history and migration tools

Amundsen

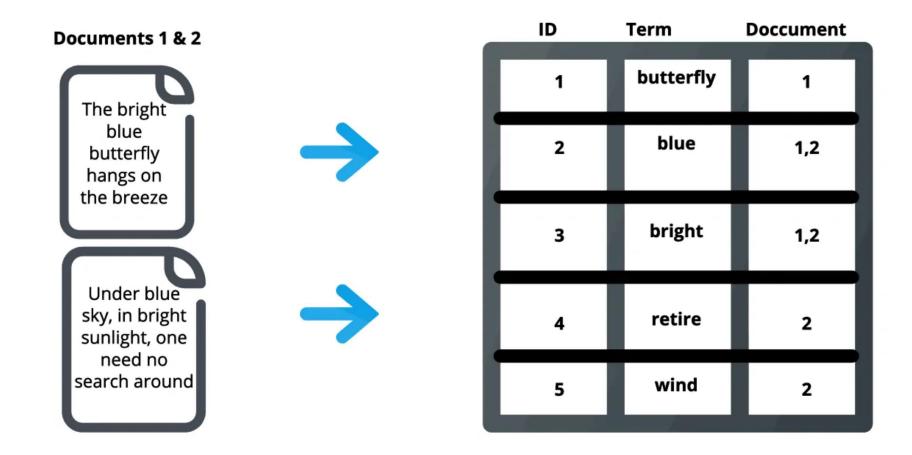

- Data catalog
- PageRank-inspired search algorithm
- Provides REST API for search engine

How does the data catalog work?

- Amundsen collects Metadata via the data builder ingestion framework
- Metadata and lineage data are stored in Neo4j and elasticsearch
- Metadata is made accessible via search interface
- Metadata can be made searchable for all users, whereas the content remains visible only with sufficient access permissions

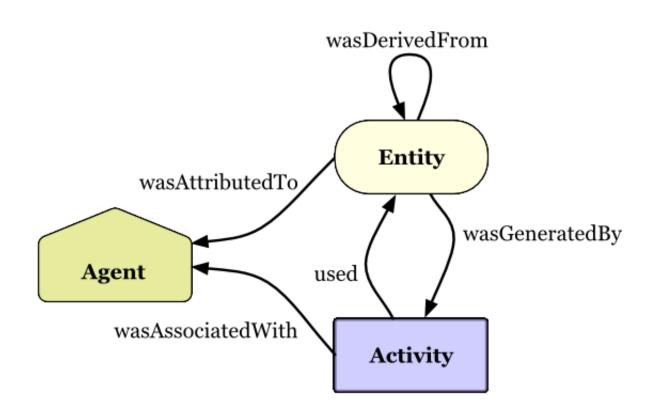
Amundsen data catalog architecture

https://www.amundsen.io/amundsen/architecture/


Elasticsearch

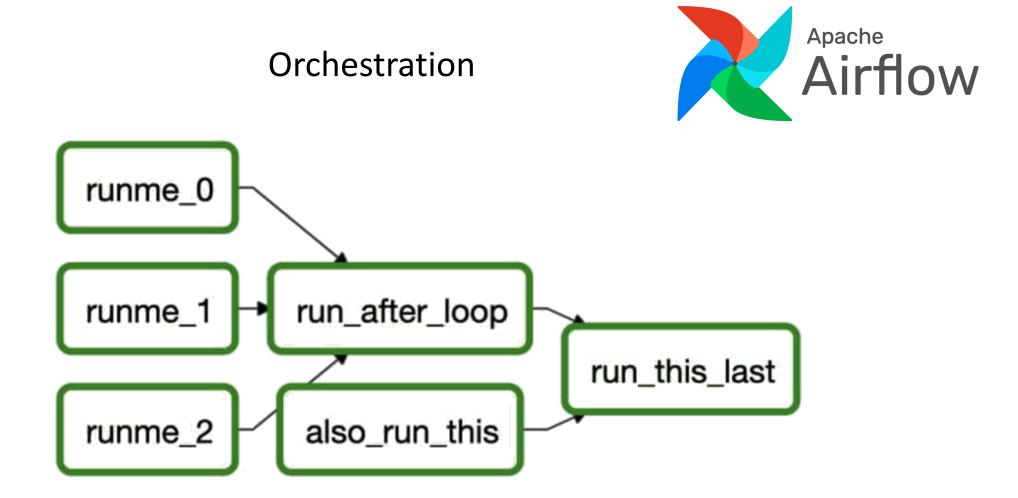
- Search engine
- Service behind Amundsen's search library
- NoSQL data store
- Stores data as documents (like JSON)

Inverted Index


Neo4j

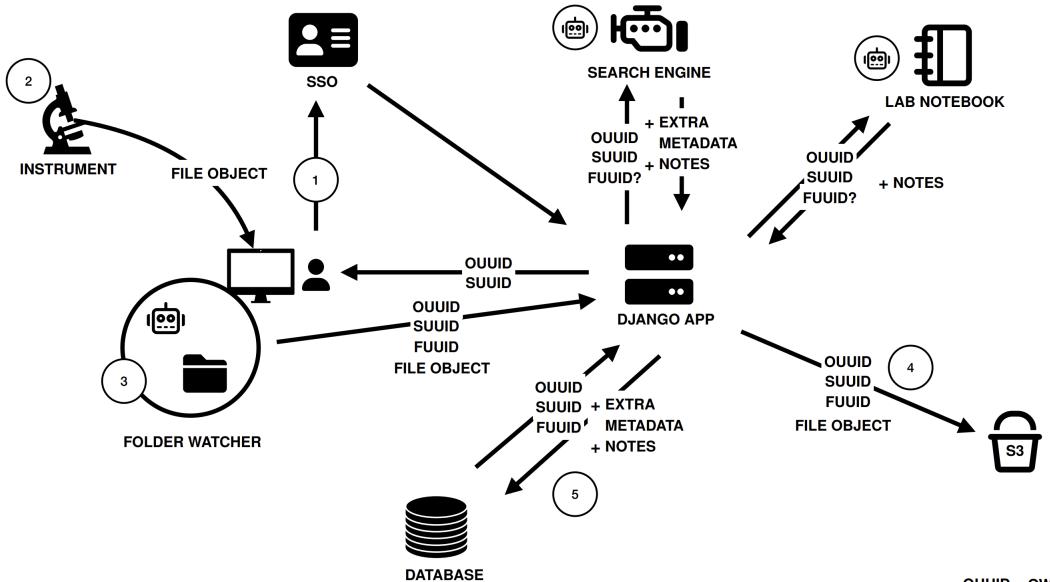
- Graph database behind Amunden's metadata service
- Stores 'Triples' (subject, predicate, object)
- Great for traversing relationships

Data Provenance

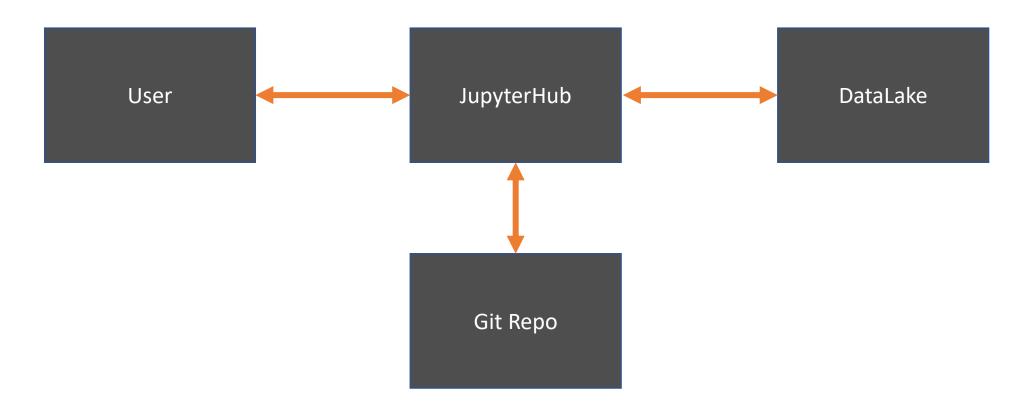


Apache Airflow

- Orchestration tool
- Build for running complex cron jobs
- Will be used for ETL processes



6. Future Directions



Solution Space

OUUID OWNER UUID
SUUID SESSION UUID
FUUID FILE UUID

Jupyterhub

Continued Improvement

- Improved data management architecture
- Get buy-in for having more dedicated data governance roles
- Continually evolve data governance policies

7. Summary

Problem Space

- Diverse requirements
- Non-conventional use case
- Overlapping roles

Solution Space

- Common Data governance Philosophies
- Common Data Governance Architectures
- Lots of tech needed
 - Docker, Object storage (S3), RDBMS (PostgreSQL), Data catalogue (Amundsen), Orchestration (Airflow)
- Change
 - New roles, new infrastructure, new concepts for data management in academia