
Computational
Profiling Analysis for
Climate and Weather

Summer School on Effective HPC26/08/2021

Mario C. Acosta and Miguel Castrillo

• Objectives
• Define performance analysis fundamentals (objectives, methods, metrics,

hardware counters, etc.)
• Define a methodology to study HPC performance for numerical models,

know your enemy.
• Describe the BSC performance analysis tools suite (Extrae, Paraver,

Dimemas)
• Interpret uses cases from Earth System Models (HARMONIE, IFS, NEMO,

etc.) that illustrate how to identify and solve performance issues
• Apply profiling techniques to identify performance bottlenecks in your code
• Summarise typical performance problems
• Discuss specific knowledge about performance analysis applied to earth

system modelling

Computational Profiling Analysis for
Climate and Weather

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

• To be able to use the computing power of modern
supercomputers, applications must exploit parallelism.

• Parallelism produce overhead (extra computation and
communications)
– “Overhead does not look a problem in my model” → But if the

needs increase (i.e. higher resolutions), a bad implementation will
be a problem in some point.

– We need a method to evaluate the parallelism efficiency of our
computational models.

• When the hardware change
• When the number of resources change
• When the model complexity change
• When the resolution change
• …

Introduction

• The necessary refactoring of numerical codes is given a lot of
attention and is stirring a number of discussions.
– Computational performance analysis and new optimizations are needed for

actual numerical models.
– Study new algorithms for the new generation of high performance platforms (path

to exascale).
• Several European institutions and projects working together on the

same direction (ESCAPE2, ESiWACE2, IS-ENES3, ETP4HPC…)

Introduction

CES-Performance Team & ES Department

• Knowledge about the mathematical and computational side
of Earth System Applications

• Knowledge about the specific needs in HPC of the Earth
System Applications

• Researching about HPC methods specifically used for Earth
System Applications

Methodology

• Mathematical study

– Some methods could be better than others

• Discretization used (explicit, implicit,

semi-implicit…)

• Parallel adaptation (solvers, preconditioners…)

– How to implement new algorithms for new

architectures

• Computational study

– Achieve load balance among components

– Reduce overhead introduced by parallel

applications

– Assure that the computational algorithm takes

advantage of the architecture

Methodology

•

Possible load balance of coupled components of a Earth System Model

Methodology

•

Methodology

• Introducing optimizations

– Improvement of the mathematical and/or

computational algorithm

• Apply scientific methods which are found in the

literature

• Improve the method with a new approach

– Revolution: Create a new (and better)

algorithm taking into account the research line

followed

Methodology

• Reproducibility study

– Evaluate if the accuracy and reproducibility of the model is similar

using or not the optimizations proposed

– Take into account the nature of climate models

• How to evaluate, in parallel executions, if the differences

between runs are significant or not.
mean

5-member
range

Methodology

• Reproducibility study

– Evaluate if the accuracy and reproducibility of the model is similar

using or not the optimizations proposed

– Take into account the nature of climate models

• How to evaluate, in parallel executions, if the differences

between runs are significant or not.
Kolmogorov-Smirnov differences of two 5-members ensambles

Methodology

Profiling Analysis: BSC Tools

- BSC Tools

- General description

- Extrae

- General description

- How to use it

- Paraver

- General description

- How to use it

- Configurations available

- Dimemas

- General description

- How to work with large traces

- Filtering/Burst mode

- Cutting

BSC Tools

- Since 1991

- Based on traces

- Open Source → http://www.bsc.es/paraver

- Extrae: Package that generates Paraver-trace files for a post-morten analysis

- Paraver: Trace visualization and analysis browser

- Dimemas: Message passing simulator

- Include traces manipulation: Filter, cut traces...

BSC Tools

https://tools.bsc.es/downloads

BSC Tools

https://tools.bsc.es/tutorial_guidelines

BSC Tools:Extrae

- Trace generation

BSC Tools:Extrae

- Trace Generation: Set Environment

- Module load extrae

- load extrae 3.X.0 (PATH, EXTRAE_DIR,

EXTRAE_ROOT, EXTRAE_LIB)

- Job script → trace-fortran.sh | trace-c.sh

- Extrae config → extraeMPI.xml | extraeMPI+OMP.xml

- Files modified for model→ run_parallel.sh

BSC Tools:Extrae

- Job script:trace-fortran.sh

- Available loading extrae module

True if openmp is used

Extrae config by default

BSC Tools:Extrae

- Extrae config:extrae.xml

- Available using nama_CY43R1_IFS_traces branch

Activate MPI tracing and emit hardware
counters at MPI calls

Emit call stack information (number of
levels) at acquisition point

Add instrumentation at
specific user functions

PAPI counters used

Activate OpenMP tracing

BSC Tools:Extrae

- Extrae config:extrae.xml

- Available using nama_CY43R1_IFS_traces branch

Emit computation burst of a minimal duration

Plus summarized MPI events

Merge individual traces automatically

BSC Tools:Extrae

- Files modified for run_parallel

- If BSCTRACE=1 → Extrae is used

-

Trace files generated

Parameter to activate profiling

BSC Tools:Paraver

BSC Tools:Paraver

- Paraver traces: made up from records (timestamp + event or
activity) of three different kind:

- State records: intervals of thread status, i.e, waiting in a barrier (either MPI or
OpenMP), waiting for a message, computing...

- Event records: punctual event occurred in a given timestamp, as entry & exit
points of user functions, MPI routines, OpenMP parallel regions...

- Communication records: relationship between two objects, as communication
between two processes (MPI), task movement among threads
(OpenMP/OmpSs) or memory transfers (CUDA/OpenCL).

How a trace looks like: basic overview

Timeline

M
PI

 p
ro

ce
ss

es

Computation Communication

MPI call color
legend

BSC Tools:Paraver

BSC Tools:Paraver

MPI calls and profile

• Different types of MPI functions are quantified

• In this case, only the MPI_Alltoallv and MPI_Waitany functions represent a

significant amount of time with 14.65% and 9.29% respectively.

Point-to-point connectivity matrix

• It indicates who communicates with whom

• Almost all point-to-point communications are locally

performed between MPI processes neighbours

Collective communications

• Four calls to

MPI_Alltoallv each

time step

• The most significant

in terms of size and

duration is the

second one
Size

Bandwidth

Duration

Enumeration

Call

BSC Tools:Paraver

BSC Tools:Paraver

- Semantic functionality

BSC Tools:Paraver

- Data handling capability

- Original trace containing all the events

- Filtering/Burst mode

- Subset of records in original trace

- By duration, time, value, event type

- Trace filtered can be analysed in the same way

- Also using burst mode from xml file

- Save only computation bursts longer than a value

- Cutting

- All records in a given time interval

- Only some processes

BSC Tools:Paraver

- Filtering

- Filter original trace discarding most of the records, only keeping most

relevant information (MPI events can be used for this purpose)

MPI events

BSC Tools:Paraver
- Cutting

- Cut original trace to obtain a fully detailed trace for the time interval considered

representative or of interest

- Use filtered trace to know the area of interest (remember that input must be the original

trace)

- Right click → run → cutter

Area of interest

Original trace

BSC Tools:Paraver
- Configurations for analysis (usr/local/apps/paraver/X.X.X/cfgs)

- General

- Including basic views (timelines) and analysis (2D/3D profiles)

- Counters_PAPI

- Hardware counters derived metrics

- Program: related to algorithm/compilation (instructions, FP ops…)

- Architecture:related to execution on specific architectures (cache

misses…)

- Performance: metrics reporting rating per time (MIPS, IPC…)

- MPI → Views and analysis of MPI events

- OpenMP → Views and analysis of OpenMP events

- Complete Profile (general_cfgs)

BSC Tools:Dimemas

Profiling Methodology

• Area of study
• Deployment efficiency
• Benchmarking
• Profiling analysis
• Validation

Profiling Methodology

• Area of study
• Configuration used (Operational, New algorithms, Global,

Parallelization paradigm…)

• Components activated and cyclic patterns
• IO, ICE, Radiation, MPI, OpenMP

• Area of study
• 1 complete time step

• Deployment efficiency
• Benchmarking
• Profiling analysis
• Validation

Types of time step for the practical
example

Time steps with radiation are much more expensive due to the
extra computation in the grid-point part

Regular time step

Regular time step
plus radiation

Structure of a regular time step

A B DC

A - Inverse transformations
B - Grid-point computations
C - Direct transformations
D - Spectral computations

Profiling Methodology

• Area of study (IFS)
• 24 hours of simulation, T511L137 on CCA (ECMWF)

• Selected 1 time step: 104 MPI processes + 4 IO (No OpenMP)

• Metrics collected for large areas of computation automatically

Profiling Methodology

• Area of study (NEMO)
• 1 day of simulation, ORCA025L91 on MN4 (BSC)

• Selected the fastest time step automatically

• 1 time step: 72 MPI processes (No IO, No OpenMP, No SI3)

• Metrics collected for User functions manually

Profiling Methodology

• Area of study (NEMO)

Profiling Methodology

• Area of study
• Deployment efficiency

• Compilation flags
• Comparing fp options (fast, precise, strict...) and optimization

options (OX, vectorization, approximations...)

• Checking external libraries compilation

• Debug flags (-g, Optimization reports, -f-instrument-functions...)

• Benchmarking
• Profiling analysis
• Validation

Profiling Methodology

• Area of study
• Deployment efficiency
• Benchmarking

• Basic Tests to collect Hardware metrics
• Communications (Latency, Bandwidth, CPU, Parallel Efficiency…)

• Weak and Strong scaling (MPI, OpenMP, Block processing and

Hybrid sets)

• Comparing optimizations (Double VS Single Precision...)

• Extrae metrics collection and trace production

• Profiling analysis
• Validation

MPI strong scaling: trace views

1800 MPI (50 nodes)

1008 MPI (28 nodes)

576 MPI (16 nodes)

285 MPI (8 nodes)

• Computation and parallel efficiency factors for MPI only:
• Good computation scalability and serialization efficiency

• Not very good load balance neither transfer efficiency

Basic Analysis: MPI Strong Scaling

Basic Analysis: Double P VS Single P

Profiling Methodology

• Area of study
• Deployment efficiency
• Benchmarking
• Profiling analysis

• MPI and OpenMP profile summary and Basic Analysis Tool

• PAPI counters

• MPI and OpenMP evaluation in detail

• Clustering and Tracking Tools

• Sampling and Folding Tools

• Connection to the code

• Dimemas Tool

• Validation

MPI Profile Summary

Parallel and Communication efficiency, Global load balance →
less than 85%?

Parallel Efficiency

Communication Efficiency
Global Load Balance

IFS

PAPI Counters

• PAPI counters collected during the execution
• Some of them are based on other native PAPI counters and

derived from the base metrics

Derived
Instructions
Cycles
Useful Duration X
Useful Instructions X
Useful IPC X
Loads
Stores
L3/L2/L1_Total_Misses
L3/L2/L1_MISS_RATIO X
FP_OPS
FP_TOT_INS
INS_VEC X

PAPI Counters

PAPI Counters

PAPI Counters

MPI Events

IPC

L1 Misses
per 1000

INS

MPI evaluation
Fourier Trans. Legendre Trans.

MPI evaluation

• IPC less than 1 for calculation areas?
• Are there load imbalance regions?

IPC_Profile

MPI evaluation

• Are MPI communications efficient according to the map
affinity?

Affinity per node

Clustering Tool

Applying Clustering for an automatic profiling analysis

• Characterizes computing bursts that are similar and groups
them into clusters

• Allows to study the behavior of the clusters separately,
identify patterns, etc.

Tracking Tool

• A friendly way to quantify and visualize the evolution of the
clusters among several traces

• The tool has 2 parts
• Recognition algorithm of “who-is-who”, based on heuristics
• A visualization GUI

• Examples analyzing multiple traces
• Scaling number of MPI/OpenMP resources (64 – 128 – 256…)
• Testing different microarchitecture features
• Changing the problem size
• Trying different compiler optimizations

Tracking Tool

Tracking Tool

Tracking IFS MPI+OMP Strong Scaling

Sampling Tool

• Extrae can be configured to capture performance metrics on
a periodic basis using alarm signals and specifying period and
variability (10 and 2 respectively for IFS and NEMO tests).

• This means that we will capture samples every 10 ms with a
random variability of 2 ms.

• Every sample contains processor performance counters
(where every PAPI counter is referred at configured time) and
callstack information.

Folding Tool

• Combine instrumentation and sampling to provide
instantaneous performance metrics, source code and
memory references. This mechanism receives a trace-file and
generates plots showing the fine evolution of the
performance.

• The samples collected are gathered from scattered
computing regions into a synthetic region by preserving their
relative time within their original region so that the sampled
information determines how the performance evolves within
the region.

• The performance evolution is connected to source code and
memory references at the same time.

Folding Tool

Folding Tool

Folding Tool

Folding Tool

TOT_INS

TOT_CACHE_MISSES

Connection to the code

USER_FUNCTION_LINE

DIMEMAS Tool

DIMEMAS Tool
Ideal Network for IFS
execution

Profiling Methodology

• Area of study
• Deployment efficiency
• Benchmarking
• Profiling analysis
• Validation

• Reproducibility Test

• Validation Test

Forcing Fixed Cmip and Amip simulations

Validation
Reproducibility Test: Are your results comparable to the EC-Earth
community results?

The Test proposed:

The results comparing platforms or configurations:
AMIP platform (Rhino;CCA) comparison

Kolmogorov-Smirnov differences of two 5-members ensambles

AMIP platform (Rhino;CCA) comparison
mean 5-member

range

Validation Test (NEMO)

• Initial conditions perturbed with white noise in the 3D
temperature field.

• Evaluating 53 output variables.

Validation Test (NEMO)

• Initial conditions perturbed with white noise in the 3D
temperature field.

• Evaluating 53 output variables.

Validation Test (NEMO)

Example: Compiling with -xHost

Examples

1
6

4
8

Function
Timelines28

8

Examples

Border Exchange

Examples
• Diagnostic for NEMO:

– Scalability is constrained by:
• 1) Algorithms with too much communication
• 2) Sub-optimal implementation

• Actions taken
– Improve communication implementation to reduce number

of point-to-point messages
– Reduce number of collectives

Examples
• First studies showed that IFS-NEMO coupling was not a big issue

IFS: 128 cores

NEMO: 128 cores

IFS: 512 cores

NEMO: 128 cores

Coupling time
is increased

• But it seems that it is when increasing number of coresTIME

Examples
- BSC has been working successfully with the EC-Earth Technical Working Group to improve the execution of

the model

- A success case: coupling field gathering and OPT option of OASIS coupler for global conservative

transformations

- With these optimizations, up to 90% improvement in coupling process can be achieved

- These improvements are now in trunk EC-Earth 3.2.2, substantially benefiting our CMIP6 simulations

- BSC has been working successfully with the EC-Earth Technical Working Group to improve the

execution of the model

- A success case: coupling field gathering and OPT option of OASIS coupler for global conservative

transformations

- With these optimizations, up to 90% improvement in coupling process can be achieved

- These improvements are now in trunk EC-Earth 3.2.2, substantially benefiting our CMIP6

simulations

Examples

Examples
- Synchronal point to point communication could be a bottleneck even for only one

message from one master to hundreds of slaves

- Sigcheck method

- Using one asynchronal collective communication this time is

reduced almost to 0

Examples
• Hybrid Test (128 MPI+4 OpenMP, Total: 512)

One Complete Time Step

OpenMP Parallel Regions

Grid Point Computation

Very small granularity of the OpenMP parallel Regions

Examples Small OpenMP parallel Regions

Only one coarse OpenMP parallel region

18 % of reduction

128 MPI processes
and 4 OpenMP

threads per process

128 MPI processes
and 4 OpenMP

threads per process

Thank you

mario.acosta@bsc.es

