cfdm, cf-python and cf-plot: Python tools for CF-netCDF

ESiWACE Summer School on Effective HPC for Climate and Weather: Storage → Input/Output and Middleware 24th August 2021

Sadie Bartholomew National Centre for Atmospheric Science and University of Reading On behalf of the NCAS-CMS/UoR team working on CF Acknowledging the international netCDF and CF communities

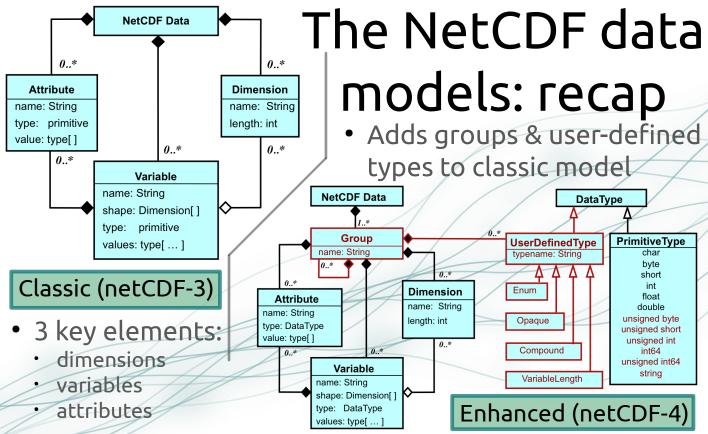
Introduction & scope

- NetCDF files + CF Metadata Conventions = CF-netCDF
 - flexible self-describing storage for array-based geoscientific data
 - plus standardised metadata to facilitate comparison & processing
- From the netCDF to the CF-netCDF data model
- A suite of Python tools for working with CF-netCDF
 - cfdm, cf-python, cf-plot & cf-checker
 - built around the CF data model, so able to process any CFcompliant dataset e.g. read, write, modify, analyse, regrid & plot

There is a ~45 minute walk-through session next demonstrating use of the data tools. These slides (~45 minutes) summarise the underlying concepts.

NetCDF in geoscience: recap Network Common Data Form

- Binary file format (.nc) adopted currently as de-facto standard for exchange & storage of earth science data
 - + supporting set of software libraries with APIs in many languages
 - originally (& still actively) developed by UCAR's Unidata project
 - netCDF-4/HDF5 backward compatible with "classic" netCDF-3
- self-describing (metadata categorises each data array) portable (machine independent) open source, actively maintained wide use by a diverse community very flexible (therefore...) 🗱 ... requires interpretation


Recommended resource: UCAR netCDF homepage, including documentation, release & support details, a tutorial, FAQs & more: www.unidata.ucar.edu/soft <u>ware/netcdf/</u>

National Centre for Atmospheric Science AL ENVIRONMENT RESEARCH COUNCIL

Diagrams by UCAR Unidata: found at www.unidata.ucar.edu/software/netcdf/papers/nc4_conventions.html

CF Metadata Conventions

- Intended for climate & forecast data (model, satellite, observational, etc.) for atmosphere, surface & ocean
- Metadata rules to provide a *definitive* description of:
 - what the data in each variable represents; &
 - the spatial & temporal properties of that data.
- Updated by established community consensus process

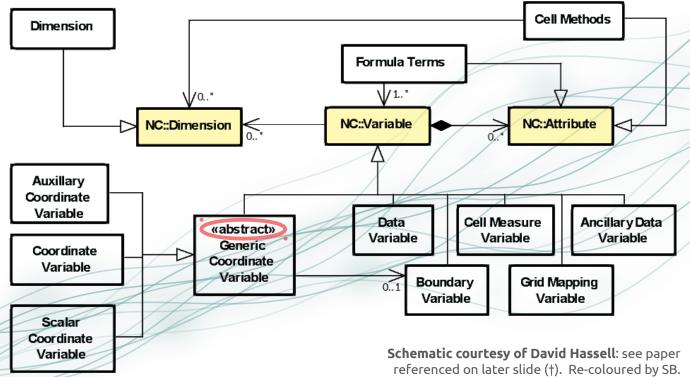
 reduces interpretation requirement on netCDF
 enables users of data from different sources to decide which quantities are comparable
 human- & machine- readable

 Recommended resource:
 → CF Conventions website, including the formal convention documents & tables, links to discussions, presentations, & more: <u>cfconventions.org</u>

National Centre for Atmospheric Science

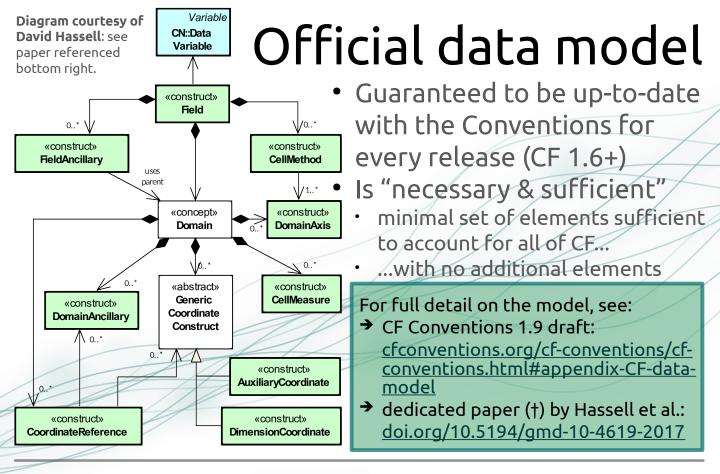
CF-netCDF elements

Table lifted from CF 1.9 draft document, first appearing in paper (see †). First column added & items re-ordered by SB.

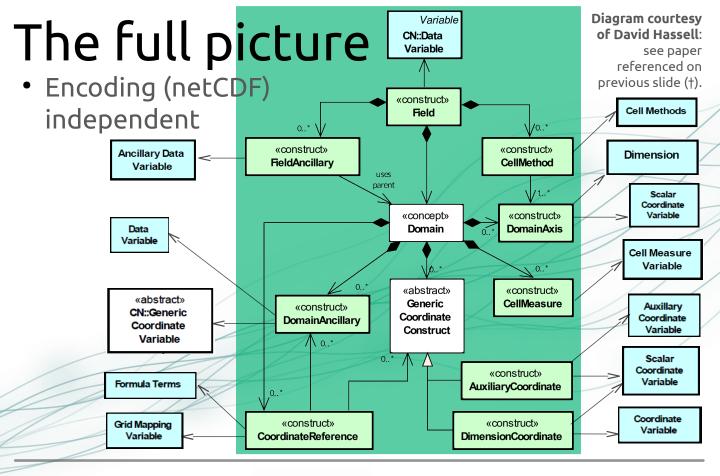

Туре	CF-netCDF element	Description
Dimension	Dimension	Independent axis of the domain
Variable	<i>Data</i> variable	Scientific data discretised within a domain
	<i>Coordinate</i> variable	Unique coordinates for a single axis
	Auxiliary coordinate variable	Additional or alternative coordinates for any axes
	<i>Scalar coordinate</i> variable	Coordinate for an implied size one axis
	Grid mapping variable	Horizontal coordinate system
	Boundary variable	Cell vertices
	Cell measure variable	Cell areas or volumes
	Ancillary data variable	Metadata that depends on the domain
Attribute	Formula terms attribute	Vertical coordinate system
	Feature type attribute	Characteristics of discrete sampling geometry
	Cell methods attribute	Description of variation within cells

Correspondence to netCDF

A data model for CF-netCDF


- Benefits of a formal, consistent model for CF-netCDF:
- one interpretation improve understanding of for every application: CF-netCDF by identifying With no data model: With a data model: distinct elements & inherent relationships App App App App App App facilitate enhancements Multiple applications using Multiple applications using to the CF Conventions multiple interpretations, one interpretation improved software tools CF-compliant data easier to CF data model represent in other file CF-netCDF conventions (CN) CF-netCDF conventions (CN) formats Schematic courtesy of David Hassell: see paper netCDF data model (NC) netCDF data model (NC) referenced on later slide (†). Re-coloured by SB.

National Centre for Atmospheric Science



National Centre for Atmospheric Science

Using CF-compliant netCDF

- Many excellent open-source tools exist for netCDF as listed in the links below, but not all recognising CF...
- ... including multiple Python libraries
- The official Python/NumPy interface to the netCDF C library is Unidata's netcdf4-python library:
 - NCAS CF suite of tools discussed next use this as a dependency
 - netcdf4-python: see <u>unidata.github.io/netcdf4-python</u>
 - To find and/or read about tools that can be used with (CF-)netCDF datasets:
 - Unidata's near-exhaustive list, 'Software for Manipulating or Displaying NetCDF Data': <u>www.unidata.ucar.edu/software/netcdf/software.html</u>
 - CF Conventions listing of 'Software that "Understands" CF Data': <u>cfconventions.org/software.html</u>

NCAS CF-netCDF Data Tools

- A small suite of complementary data tools
- All open-source (hosted on GitHub) & Python 3 based

Library	Description & purpose	Functionality
cfdm	Reference implementation of the CF data model	For the most part, only that required to read and write datasets, and to create, modify and inspect field constructs in memory
cf-python	CF-compliant geoscientific data analysis library	Much higher-level than cfdm, e.g. statistical operations, collapses, subspacing, regridding
cf-plot	Set of Python functions for making the visualisations often used by geoscientists	That for plotting e.g. contour, vector and line plots from field constructs (or numpy arrays)
cf-checker	CF compliance checking utility	Checks the CF compliance of a netCDF file

There is not sufficient time to cover the cf-checker, so for more info, see:
→ the code repository e.g. to install: <u>github.com/cedadev/cf-checker</u>
→ the browser-based interface: <u>pumatest.nerc.ac.uk/cgi-bin/cf-checker.pl</u>

The field construct

- Central object in cfdm & cf-python is the *field construct* → a CF-netCDF data variable with all of its metadata
- A field construct cfdm. Field or cf. Field consists of:
 - descriptive properties that apply to field construct as a whole (e.g. the standard name);
 - a data array; &
 - metadata constructs that describe the locations of each cell of the data array (the *domain*) → the eight other constructs of the data model i.e. classes in the UML diagrams on previous slides

For more information, please see:

field construct breakdown within the cfdm documentation: <u>ncas-cms.github.io/cfdm/cf_data_model.html</u>

cfdm Python library

- A reference implementation of the CF data model, hence a complete representation of CF!
- Designed to be subclassed, so that the creation of a new implementation of the CF data model, based on cfdm, is straight forward
- Includes a stand-alone core implementation, the cfdm.core package, that includes no functionality beyond that mandated by the CF data model

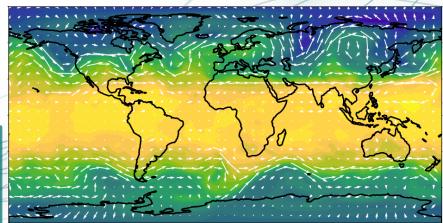
For more information, please see:
 → The documentation, including installation information & an API reference: <u>ncas-cms.github.io/cfdm/</u>

cf-python Python library

- Builds upon cfdm to provide diverse geoscientific data analysis capability → cfdm with high-level functionality
- As a small sample, cf-python can:
 - read, inspect, & write field constructs from netCDF & CDL (& more);
 - modify & analyse field construct metadata & data;
 - perform statistical collapses on field constructs;
 - create subspaces of field constructs;
 - regrid field constructs (several interpolation methods supported);
 - combine field constructs arithmetically; and
 - read & process netCDF & CDL containing hierarchical groups.

For more information, please see:

The documentation, including installation information & an API reference: <u>ncas-cms.github.io/cf-python/</u>



cf-plot Python library

- CF-aware geoscientific visualisation
- Generally uses cf-python to present the data & CF attributes for plotting (can also use numpy arrays)
 - contour plots
 - vectors plots
 - plots of trajectories
 - significance plots
 - & more...

For more information, see:

The documentation, including installation information, a gallery of plots & a user guide: <u>ajheaps.github.io/cf-plot/</u>

Example contour plot with overlaid vectors created with cf-plot. Colour bar and axes labels omitted since it is just for illustration.

National Centre for Atmospheric Science

Summary

- NetCDF files compliant with the CF Metadata Conventions (CF-netCDF) enable *flexible self-describing storage* of array-oriented geoscientific data
- CF-netCDF has become a community standard
- Different data models of CF-netCDF are possible, but an official model exists & is up-to-date for all CF 1.6+
 - formal model is "necessary & sufficient" & netCDF-independent
- Numerous tools for working with netCDF exist, including in Python, but NCAS's CF suite is built upon the official CF data model: CF compliance *at heart*
 - able to process any CF-compliant (or non-compliant) netCDF
 read, write, inspect, modify, analyse, plot, check compliance & more

Shortly we will move on to a walk-through of the NCAS CF libraries in practice. But any questions about the concepts at this stage are welcome.

- Quick links to useful related resources:
 - UCAR netCDF homepage: <u>www.unidata.ucar.edu/software/netcdf/</u>
 - CF-netCDF (Metadata) Conventions homepage: <u>cfconventions.org</u>
 - cf-python documentation: ncas-cms.github.io/cf-python/
 - cfdm documentation: <u>ncas-cms.github.io/cfdm/</u>
 - cf-plot documentation: <u>ajheaps.github.io/cf-plot/</u>
 - walk-through & lab materials: github.com/NCAS-CMS/cf-training

