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Trend of Memory and Storage

Historical Cost of Computer Memory and Storage
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http://hblok.net/storage

: i‘%% NUS
Bandwidth Gap
1,000,000
-+-SSD BW / device
(MB/s)
100,000 /
-=-Network BW / cable _W
(MB/s)
~+~DRAM BW / CPU Socket )
10,000 (GB/s) W
-.Q
S
» =
1,000 S éa
' ® 9
O
D
100
10
1 l
1990 1995 2000 2005 2010 2015 2020 2025
Year
3




e
N US

Nationa | Universi ty
of Singapore

Latency Gap
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Trend of network bandwidth
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Nielsen's Law of Internet Bandwidth:
Users' bandwidth grows by 50% per year (10% less than Moore's Law for computer speed). 5
The new law fits data from 1983 to 2019. https://www.nngroup.com/articles/law-of-bandwidth
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ldea 1. Near-Data Processing NUS

Architectures

of Singapore

Data movement is costly.

Move computation to the data, rather than moving
data to computation.

This I1s a fundamental shift from the current hardware
architecture.

We need new HW-SW codesign.
 DPU
« Smart NIC
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End of Moore’s Law?

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

https://www.blopig.com/blog/2019/01/making-the-most-of-your-cpus-when-using-python/



Emerging HPC Hardware: Parallelism SINUS
and Heterogeneity

From CPU to accelerators (co-processors)

ASIC
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Trimberger, Stephen M. Steve. "Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology." IEEE Solid-State Circuits Magazine, 2018.
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ThunderGP: Fast Graph Processing on  mmnus

HLS-based FPGAS
« Supportin-memory graphs and streaming graphs

« Users express their logic with high-level APIs

* Fully utilize memory bandwidth

S e e s
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*More details can be found on https://github.com/Xtra-Computing/ThunderGP/ 10



https://github.com/Xtra-Computing/ThunderGP/
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ThunderGP vs. the State-of-the-art [1]

Algorithm Dataset Throughput Our throughput Speedup

of work [1]
SpMV WT 1,004 3,138 3.1x
SpMV LJ 1,906 2,860 1.5x
PR R21 3,410 4,759 1.4x
PR LJ 2,110 3,133 1.5x
SSSP WT 2,156 2,954 1.4x

Performance (MTEPS) comparison on Xilinx VCU1525 board

*Notes:

1. Since work [1] 1s not open sourced, performance is collected from their paper.

2. Our performance 1s measured on-board implementations while their performance
1s presented with simulation.

[1] Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman, and Qing Wu. 2019. HitGraph: High-
throughput Graph Processing Framework on FPGA. TPDS (2019) 1



. . . EBNUS
ThunderGP is Publicly Available ko

 GitHub: https://qgithub.com/Xtra-Computing/ThunderGP

« Also featured at Xilinx Apps and Libraries

 |nvited tutorial at HPCA 2021 with Xilinx

@‘Thundercp

A" / Apps and Libraries

Q thundergp

Supported Workload v

Machine Learning

icense |apache? [ issues [open'] D01 10.5281/zen0do.4306001

¢ ThunderGP: HLS-based Graph Processing Framework on
FPGAs NS

' 2 ThunderGP: Fast Graph
What's new? Processing for HLS-based

. . o . . ] ThunderGP enables data scientists to
ThunderGP won the third place in 2020 Xilinx Adaptive Computing Developer Contest, top 9 out of 79 teams. enjoy the performance of FPGA-based

graph processing without

ThunderGP is accepted to be FPGA 2021. Read the paper. o

. o . . Acceleration vs CPU: N/A
ThunderGP is featured at Xilinx Apps and Libraries.

Learn More >

ThunderGP was presented at XACC@NUS Workshop Series 2020: Reconfigurable Computing Systems. see Slides, .

Video/Youtube, Video/hilibili.


https://github.com/Xtra-Computing/ThunderGP
https://www.xilinx.com/products/apps-and-libraries.html

ldea 2: In-Memory Computing

National University

Basic idea: fit data into memory for fast accesses.

Pure DRAM solutions only make sense for TB-scale
 Cost
« Energy consumption

NVRAM will be the future enable for PB-scale

We need to capture the best of NVRAM (capacity) to
achieve close to pure DRAM speed.

13
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On-line Inference FEDB

Joint work with 4ﬁaradiﬁm. 14
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Intel® Optane™ DC Persistent Memory TINUS

(PMEM) aaaaaaa yrafoe

of Singapore

Capacity
DRAM: 4GB ~ 128GB

PMEM: 128GB ~ 512GB

15




Different Wavs of Usina PMEM in FEDB =~ ®¥==>
Original Naive Our Approach
o Ty e N e
. (App Direct Mode)

D ' Reduce ~20%
/ Persistent \ X

-
— o o m o n o om mm on

Core Data Structure

Volatile Volatile | . of long tail latency
Double-layered Double-layered . Double-layered
Skip List Skip List - Skip List '
il P | P save 58.4%

of total cost

- Reduce 99.7%
. of recovery time
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See VLDB 2021: Optimizing In-memory Database Engine for Al-powered On-line Decision

. ) ) 16
Augmentation Using Persistent Memo
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Summary

* Trends of future storage

* |dea 1. Near data processing architectures

* |ldea 2: In-memory computing




Thank you!

More information:

Dr. Bingsheng He,
hebs(@comp.nus.edu.sg
https://www.comp.nus.edu.sg/~hebs/
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Skew-Oblivious HLS-based Data Shuffling LR

* The throughput can be “skew-oblivious”.

 Significant speedup over the baseline that does not have skew
handling mechanism.
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The throughput of HyperLogLog implementations with different number of SecPEs over Zipf distributions.

Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, Deming Chen:
Skew-Oblivious Data Routing for Data-Intensive Applications on FPGAs with HLS. DAC 2021. 19
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FPGAs Moving to Datacenters 05 e
 Microsoft adopts FPGAs to accelerate Bing search
engine [1] and starts BrainWave project [2] with
FPGAs.
 Baidu takes FPGA approach to accelerate SQL at scale
[3].

e Cloud venders such as Amazon, Huawel, Tencent and
Alibaba are providing FPGA services.

[1] https://blogs.microsoft.com/ai/build-2018-project-brainwave/
[2] https://www.microsoft.com/en-us/research/project/project-catapult/
[3] https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sqgl/

20


https://blogs.microsoft.com/ai/build-2018-project-brainwave/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/

Promising Performance of FPGA FNUS
Accelerators

of Singapore
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FPGA Accelerators for Datacenter Applications

[1] Putnam, Andrew, et al. "A reconfigurable fabric for accelerating large-scale datacenter services." ACM SIGARCH Computer
Architecture News.

[2] Shan, Yi, et al. "FPMR: MapReduce framework on FPGA." in FPGA, 2010.

[3] Sukhwani, Bharat, et al. "Database analytics: A reconfigurable-computing approach." Micro, 2013.

[4] Choi, Yuk-Ming, and Hayden Kwok-Hay So. "Map-reduce processing of k-means algorithm with FPGA-accelerated computer
cluster." in ASAP, 2014.

[5] Blott, Michaela, et al. "Scaling out to a single-node 80Gbps memcached server with 40terabytes of memory." HotStorage, 2015.
[6] Kachris, Christoforos, et al. "An fpga-based integrated mapreduce accelerator platform.” Journal of Signal Processing Systems, .
2017.




