
Adrian Jackson

EPCC, The University of Edinburgh

a.jackson@epcc.ed.ac.uk

@adrianjhpc

Optimising

Performance

Through Data

Localisation

NVRAM / B-APM

Persistent memory performance

Workflows

1 node

4 processes

4 files

20 nodes

80 processes

80 files

1 node

4 processes

80 files

I/O Optimisation with persistent memory

• n3d CFD application that uses combined forward/adjoint

method

– DNS used for Navier Stokes forward approach

– Adjoint method requires full DNS output

– DNS state is very large

• Medium simulation

– 72 processes maximum

– DNS state requires 4TB for storage

• Large simulation

– 512 processes maximum

– DNS state requires 40TB for storage

• Filesystem used to store data for the transition between

phases

I/O Optimisation with persistent memory

• Assuming compute nodes with 256GB DRAM, to fit in DRAM

– Medium case would require a minimum of 16 nodes

– Large scale would require a minimum of 160 nodes

• Using filesystem (Lustre) takes:

– Medium case using 3 nodes: ~9800 seconds

– Large case using 22 nodes: ~80000 seconds

• Using persistent memory for I/O on the nodes

– Medium case using 3 nodes: ~8500 seconds (~15% faster)

– Large case using 22 nodes: ~9200 seconds (~90% faster)

• Using persistent memory as memory on the nodes

– Medium case using 3 nodes: ~8300 seconds

– Large case using 22 nodes: ~9000 seconds

Analyzing the Energy Cost of Data Movement in Scientific Applications,

Gokcen Kestor, Roberto Gioiosa, Darren Kerbyson, Adolfy Hoisie

Data access sizes

IOR - Data block sizes

MAD2Bench

MAD2Bench

MAD2Bench

Multi-level memory exploitation

• Simple image sharpening stencil

• Each pixel replaced by a weighted
average of its neighbours

• weighted by a 2D Gaussian

• averaged over a square region

• we will use:

• Gaussian width of 1.4

• a large square region

• then apply a Laplacian

• this detects edges

• a 2D second-derivative 2

• Combine both operations

• produces a single convolution filter

• 4 similar sized arrays, two that are

updated and two that are source data

Multi-level memory exploitation

• Read-only data in DRAM

Calculation time was 56.175083 seconds

Overall run time was 58.261385 seconds

DRAM required 285GB

address = (int **) malloc(nx*sizeof(int *) + nx*ny*sizeof(int));

fuzzy = int2D(nx, ny, address);

pmemaddr1 = pmem_map_file(filename, array_size,PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, &mapped_len1, &is_pmem)

fuzzy = int2D(nx, ny, pmemaddr1);

int **int2D(int nx, int ny, int **idata){

int i;

idata[0] = (int *) (idata + nx);

for(i=1; i < nx; i++){

idata[i] = idata[i-1] + ny;

}

return idata;

}

• Read-only data in Persistent Memory

Calculation time was 53.992465 seconds

Overall run time was 56.385472 seconds

DRAM required 170GB

Multi-level memory exploitation

• 2D CFD Stream function kernel

• Jacobi kernel updates the grid

– Swap update and data arrays at each iterator

𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
= 0

Ψ𝑖−1,𝑗 +Ψ𝑖+1,𝑗 +Ψ𝑖,𝑗−1 +Ψ𝑖,𝑗+1 − 4Ψ𝑖,𝑗 = 0

psinew[i][j] = 0.25*(psi[i+1][j] + psi[i-1][j] +

psi[i][j+1] + psi[i][j-1])

Multi-level memory exploitation

No persist: DRAM: 7.95 seconds B-APM: 9.64 seconds

DRAM required: 40GB

Partial persist: DRAM: 7.95 seconds B-APM: 10.67 seconds

DRAM required: 25GB

Full persist: DRAM: 7.95 seconds B-APM: 41.84 seconds

DRAM required: 2GB

strcpy(totalfilename,"/mnt/pmem_fsdax");

sprintf(totalfilename+strlen(totalfilename), "%d/", socket);

strncat(totalfilename, filename, strlen(filename));

sprintf(totalfilename+strlen(totalfilename), "%d", rank);

// total memory requirements including pointers

mallocsize = nx*sizeof(void *) + nx*ny*typesize;

if ((array2d = pmem_map_file(totalfilename, mallocsize,

PMEM_FILE_CREATE|PMEM_FILE_EXCL,

0666, mapped_len, &is_pmem)) == NULL) {

perror("pmem_map_file");

fprintf(stderr, "Failed to pmem_map_file for filename: %s\n",totalfilename);

exit(-100);

}

void swap_pointers(double*** pa, double*** pb) {

double** temp = *pa;

*pa = *pb;

*pb = temp;

}

Architectural optimisation

• Single application performance key to users and developers
– Very few systems are application specific

• Multi-purpose, multi-user systems require hardware choices
– Processor, memory, accelerator, storage

– Optimising for a range of applications hard

• A64FX one end of the spectrum
– Small memory footprint for high performance/energy balance

• SGI UV2000 the other end of the spectrum
– Very large memory footprint for shared memory/non-scaling applications

• Persist memory provides scope to optimise DRAM usage and I/O

performance
– Support low volume high performance memory

– Support very high performance I/O

– Enable application specialisation for memory performance

• Multi-tiered memory configurations
– 3 tier memory structures to be investigated

– HBM – DRAM – B-APM

