
Modern Storage

Sai Narasimhamurthy (Seagate, UK)
sai.narasimhamurthy@seagate.com

Jean-Thomas Acquaviva (DDN, France)
jtacquaviva@ddn.com

Konstantinos Chasapis (DDN, Germany)
kchasapis@ddn.com

mailto:jtacquaviva@ddn.com
mailto:jtacquaviva@ddn.com

Foreword

This session has been designed to be vendor agnostic and only reflects the
personal views of the authors.
The content cannot be interpreted as a commitment from their respective
companies.

Outline

9:00am

● Infrastructure hardware: - 30 minutes -KC

○ Storage devices characteristics

○ Storage devices evolution

○ Importance of software in infrastructure

○ Resulting stack and standardization aspects

○ New applications
● Infrastructure software - 30 minutes - Sai

○ posix

○ mpi-io

○ netcdf

○ object

● Storage trend and possible futures

○ Deep and multi-tier storage hierarchy

○ Technical challenges

■ metadata, data policies, fault tolerance

■ perspective - Storage Class Memory

10:00am KC

● Introduction to Darshan - 30 minutes -

○ Why, Install, HOWTO

○ Darshan DXT

10:30am virtual break

10:45am - KC
● Hands-on session - 1H -

○ 4 differents code to analyse

12:00 wrap-up

Storage devices characteristics

● Storage Medium
○ Magnetic Tapes, Hard Disk Drive (HDD)
○ Solid State Drive (SSD), Non-Volatile Memory (NVM)
○ Intel Optane Memory based on 3D Xpoint

● Throughput
○ How many bytes can it pass per second

● Latency
○ How much time does it need to perform one operation

● IOPS
○ How many operations performed per second

● Capacity
○ How much data can it store

● Connection Type
○ Which type of connection/protocol does it use

Important Performance Considerations

Storage Medium - Capacity - Connection Type
Throughput - Latency - IOPS

● Different Storage device technologies fall at different points in these parameter space

● Possibility to aggregate storage devices to achieve different throughput and Capacity

● For example – Possibility of taking advantage of multiple hard disks in parallel to achieve better

throughput (& Capacity)

● Latency and IOPS are very device dependent

Historical Performance of HDDs

Ref: Intel

SSDs now offer better near-line performance than HDDs

Ref: Enterprise Storage Forum

HDD VS SSD cost comparison

The arrival of NVMe protocol for accessing SSDs

NVMe gain over SSD is software based

Ref: Flash Memory Summit

Access Latency Compared to DRAM

CPU register O(0.1ns)

Cache O(1ns~10ns)

DRAM O(10ns~100ns)

SCM O(1000ns)

NVM O(10μs~100μs)

HDD O(10ms)

Dramatic latency difference between memory and different storage mediums

I/O path call trace

I/O behavior performance impact
● The performance observed by the application might be orders of magnitude

lower than the maximum performance the storage system can offer
○ Implications factors

■ File Access pattern
■ File I/O model

● File access pattern categories
○ Sequential / strided
○ Random
○ Request size
○ Aligned

● File I/O models
○ File per process
○ Shared file model

■ Serial I/O (each process sends data to a single master)
■ Parallel I/O (each process performs I/O directly to the file)

Serial and parallel I/O

Serial I/O

Parallel Shared file I/O

Parallel file per process

File

P1 P2 P3

File

P1 P2 P3

File File

File 1

P1 P2 P3

File 2 File 3

IO500 Benchmark

Community developed and maintained benchmark which aims
to covers various I/O workloads

● Workloads
○ IOEasy: Applications with well optimized I/O patterns
○ IOHard: Applications that require a random workload
○ MDEasy: Metadata/small objects
○ MDHard: Small files (3901 bytes) in a shared directory
○ Find: Finding relevant objects based on patterns

Additional analysis for write performance

Taking further the IO500 idea of easy / hard pattern

● Write access
○ Random / Sequential access
○ Small (4K) / Medium (32k) / Large (1MB)
○ Single Shared File / File Per Process

Peak network performance:
 2 EDR = 25 GB/s

Results obtained with Lustre

Results obtained with Spectrum Scaler v4

Introducing an FLASH cache

Results obtained with IME 1.2

→ thinner software layer brings better performance

Is random small write an artifact?
Single shared file sparse access is intrinsic to many simulation
workloads
-> Byte addressability is a performance enabling feature of
flash device

Flash as an additional layer in the storage stack

Complexity of storage stack

With multiple layers the requirements of POSIX consistency are more challenging to implement

-> de facto standard: NFS open()/close() consistency

New applications?

➔ New workloads
◆ Numerical simulation tends to be write driven and bandwidth

limited, AI is read driven: latency becomes the new challenge.
● Magnum I/O from NVIDIA to reduce the critical path and

keep the GPU busy

◆ On-Prem / Cloud interoperability, mix of on-premise and cloud
dataflow require connectors and interoperable system

➔ New usages
◆ Objects and files are two data API to support
◆ Container, part of the interoperability discussion
◆ Python, numerical apps and AI workload are now routinely

scripted in Python

Outline

9:00am

● Infrastructure hardware: - 30 minutes -KC

○ Storage devices characteristics

○ Storage devices evolution

○ Importance of software in infrastructure

○ Resulting stack and standardization aspects

○ New applications
● Infrastructure software - 30 minutes - Sai

○ posix

○ mpi-io

○ netcdf

○ object

● Storage trend and possible futures

○ Deep and multi-tier storage hierarchy

○ Technical challenges

■ metadata, data policies, fault tolerance

■ perspective - Storage Class Memory

10:00am KC

● Introduction to Darshan - 30 minutes -

○ Why, Install, HOWTO

○ Darshan DXT

10:30am virtual break

10:45am - KC
● Hands-on session - 1H -

○ 4 differents code to analyse

12:00 wrap-up

Infrastructure Software
❑ Parallel File Systems

❑ Posix compliant
❑ Data exposed to clients as hierarchical files

Ref: Lustre wiki

POSIX

❑ POSIX Compliancy and problems

❑ POSIX is an IEEE standard
❑ POSIX I/O API and POSIX I/O Semantics

❑ Read(), write(), open(), close(), etc
❑ State: Open() before Read()/Write()

❑ Overkill when there are millions of processes wanting to read/write
a file

❑ Prescriptive/inflexible metadata
❑ All files in a directory have same metadata
❑ Not easy to have additional data descriptions

❑ Consistency
❑ Read() always returns the latest write()

❑ Write() required to block an application until its “committed”
❑ Extreme performance penalty

❑ Will be good to avoid these problems within HPC
❑ One solution: Object stores

Object stores

❑ Organization of data as “objects” rather than hierarchical files

❑ Without pre-defined structure, it’s a “flat” organization of data as objects

❑ Objects can have any user defined metadata

❑ Can overlay and impose any structure on the organization of data

❑ For example: Hierarchical files as needed by POSIX, different data
formats such as HDF5, NetCDF etc (described next)

❑ Consistency can be relaxed & tunable

❑ Key Value stores can be used to describe metadata (& can of course be

very fast!)

❑ Provides a foundation to build multiple “views” – such as POSIX, S3,
HDF5

Data Formats (eg : HDF, NetCDF)

❑ Designed to store and manage large
amounts of data

❑ Used a lot of represent data in the
scientific community

MPI-IO

❑ Two fundamental ways to for
parallel I/O in
multi-process/Message
Passing applications parallel
I/O

❑ File per process
❑ Shared file

❑ MPI-IO provides a mechanism
to access a parallel file
system to store data from
application processes

❑ Collective I/O

Ref: Northwesterm University

Storage Trends and Possible Futures

❑ NVRAM in I/O Stack

❑ Advent of Object stores in HPC

❑ In-Storage Computing

❑ Quality of Service

❑ Federation of data stores

❑ Advanced Telemetry

❑ A place for all storage types in HPC!

Deep and Multi-tier Storage Hierarchy

❑ Storage landscape is changing

❑ New storage devices (and memories) are now appearing on the scene

❑ How can the applications get the best out of persistent storage?

❑ How to Mix and match each of the different storage technologies to give the
best performance for applications?

❑ We next look at the different individual storage technologies

Hierarchical Storage Systems

❑ Achieving as many possible performance/capacity points within a single storage system

❑ The different tiers of storage devices technologies stacked in the same storage system

❑ Organized as “Tiers”

❑ Applicable to a wide variety of workloads
❑ Eg: Archival workloads can use the lowest most tiers
❑ Transactional workloads can use the highest performance tiers

❑ Can use a combination of infrastructure software
❑ Eg: Parallel File systems, Object Stores, Tape file systems

❑ Data moved between the tiers based on policy
❑ User driven
❑ Machine Learning based (Automated)

Arrival of Storage Class Memories

Ref: Western Digital

SCM in the stack

Ref: Status of Memory industry report , 2019

SCM Usage

Ref: Flash Memory Summit

3DXPoint Technology (SCM)

Ref: The Register

3DXPoint Performance

Ref: Intel

Example Hierarchical Storage System
SAGE System at Juelich

Example Hierarchical Storage System
SAGE System at Juelich

Hierarchical Storage – SAGE Stack Example

Technical Challenges in Hierarchical
Storage Systems

❑ Fault Tolerance

❑ Hierarchical storage systems can have multiple possible faults (Different
storage tiers have different fault tolerance characteristics)

❑ Infrastructure needed to handle

❑ Software failures (handled within file systems, object stores, etc)

❑ Hardware Failures

❑ Storage devices & techs have their own techs (eg: RAID for
HDD)

❑ Network RAID, PDRAID, & Erasure coding

Technical Challenges in Hierarchical
Storage Systems

❑ Data Policies (Key questions)

❑ How long to retain data in a tier?
❑ When to migrate the data to a lower tier?
❑ How to deal with Tape tiers?
❑ Usage of specialized Hierarchical storage managers (example below,

used in SAGE)

Outline

9:00am

● Infrastructure hardware: - 30 minutes -KC

○ Storage devices characteristics

○ Storage devices evolution

○ Importance of software in infrastructure

○ Resulting stack and standardization aspects

○ New applications
● Infrastructure software - 30 minutes - Sai

○ posix

○ mpi-io

○ netcdf

○ object

● Storage trend and possible futures

○ Deep and multi-tier storage hierarchy

○ Technical challenges

■ metadata, data policies, fault tolerance

■ perspective - Storage Class Memory

10:00am KC

● Introduction to Darshan - 30 minutes -

○ Why, Install, HOWTO

○ Darshan DXT

10:30am virtual break

10:45am - KC
● Hands-on session - 1H -

○ 4 differents code to analyse

12:00 wrap-up

I/O tracing and monitor possibilities

● I/O path consist of several layers
○ Different options to monitor each layer

● Applications level tracing
○ Tools: Darshan, Scalatrace etc.

● File System instrumentation
○ Not always the same as application I/O,

libraries may modify the I/O pattern
○ Tools: Lustre and GPFS diagnostics

● Block device instrumentation
○ I/O requests to the actual devices
○ Tools: Linux block tracing, etc.

Application

File System

Storage Devices

I/O libraries

Typical I/O stack

● I/O the access pattern in all layer impacts
performance

● Applications developers
○ Control the I/O request from the

Application to the I/O libraries and the
file system

○ Can not control how file system will
internally translate their I/O requests

■ However, the fadvice() to pass hints
for access patterns

● File System developers / System Admins
○ Control file system request to storage

devices

Application

File System

Storage Devices

I/O libraries

Typical I/O stack

fadvise()

I/O stack tuning

Application level I/O monitoring with Darshan

● What is Darshan

○ Name means “sight” or “vision” in Sanskrit

○ Lightweight, scalable I/O characterization tool

○ Transparently captures application I/O access pattern information

○ Open source library and runtime

■ Developed and maintained at Argonne National Laboratory

Key features

● Captures several I/O interfaces

○ POSIX I/O, MPI-IO, and limited HDF5 and PNetCDF

● Instrumentation on compile time or at run time

● Compatible with popular compilers and MPI implementations

● File system agnostic

○ Can be used with any file system

● Does not impact application performance in measurable way

○ Use it on production runs

● No need for applications code modification

Components

● darshan-runtime

○ Used to capture I/O statistics while the application is running

○ Installed on an HPC system to instrument MPI applications

■ Installation steps vary depending on the platform

● darshan-util

○ Use to annayle Darshan log files

○ Installed on a workstation to analyze Darshan log files

■ (log files themselves are portable)

○ Installation is generic for almost any unix-like platform

Compilation and Installation process
● System-wide (available to all users)
● User’s home directory (no root access required)

○ There is no difference in functionality

● Download source code from
○ https://www.mcs.anl.gov/research/projects/darshan/download/

● tar -zxvf darshan-$version.tar.gz
● Compile Darshan runtime, use the same compiler as your application

○ cd darshan-$version/darshan-runtime
○ ./configure CC=mpicc --prefix=$installation-dir

--with-log-path-by-env=DARSHAN_LOGPATH
--with-jobid-env=NONE --with-mem-align=128

○ make && make install
● Compile Darshan util

○ cd darshan-$version/darshan-util
○ ./configure --prefix=$installation-dir
○ make && make install

https://www.mcs.anl.gov/research/projects/darshan/download/

How to use it
● The simplest method to use Darshan is to build a dynamic executable that is

dynamically linked with the MPI library
○ To determine if your executable is dynamic or not:

■ ldd a.out
■ libmpi.so.1 => /$inst_path/libmpi.so.1 [...]

● Set log path directory
○ export DARSHAN_LOGPATH=./

● Then prefix the MPI execution command with the Darshan library
○ LD_PRELOAD=$path/libdarshan.so mpirun -np 4 a.out

● Each job instrumented with Darshan produces a single log file
○ Application must call MPI_Finalize() to generate the log file

● Darshan command line utilities are used to analyze these log files
● Online doc:

○ https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runti
me.html

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-runtime.html

Log file analysis tools
● darshan-job-summary.pl

○ creates pdf file with graphs useful for initial analysis
○ packages needed: Perl, pdflatex, epstopdf, and gnuplot

● darshan-summary-per-file.sh
○ similar to above, but creates a separate pdf file for each file opened by

the application
● darshan-parser

○ dumps all information into ascii (text) format

● Online documentation at
○ https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.ht

ml

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html

Darshan job summary example

Darshan job parser example

#<module><rank><record id> <counter> <value><file name> <mount pt> <fs type>

POSIX -1 22..36 POSIX_OPENS 8 file /home nfs4
POSIX -1 22..36 POSIX_FILENOS 0 file /home nfs4
POSIX -1 22..36 POSIX_DUPS 0 file /home nfs4
POSIX -1 22..36 POSIX_READS 16 file /home nfs4
POSIX -1 22..36 POSIX_WRITES 16 file /home nfs4
POSIX -1 22..36 POSIX_SEEKS 32 file /home nfs4
POSIX -1 22..36 POSIX_STATS 8 file /home nfs4
POSIX -1 22..36 POSIX_MMAPS -1 file /home nfs4
POSIX -1 22..36 POSIX_FSYNCS 0 file /home nfs4
POSIX -1 22..36 POSIX_MODE 436 file /home nfs4
POSIX -1 22..36 POSIX_BYTES_READ 4194304 file /home nfs4

Darshan eXtended Tracing (DXT) module

● “Advanced” Darshan to report every intercepted call
● Not on by default, to enable

○ export DXT_ENABLE_IO_TRACE=1
● I/O Traces appear as a time series
● Special tool for post process analysis

○ darshan-dxt-parser
● Provide tools for applying different types of analyses to the logs.
● Provides different levels of granularity

○ DXT_TRIGGER_CONF_PATH environment variable to notify DXT of the
path of the configuration file

■ file triggers: trace files based on regex matching of file paths
■ rank triggers: trace files based on regex matching of ranks
■ dynamic triggers: trace files based on runtime analysis of I/O

characteristics (e.g., frequent small or unaligned I/O accesses

darshan-dxt-parser example output

DXT_POSIX module data

DXT, file_id: 16457598720760448348, file_name: /tmp/test/testFile
DXT, rank: 0, hostname: shane-thinkpad
DXT, write_count: 4, read_count: 4
DXT, mnt_pt: /, fs_type: ext4
Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
 X_POSIX 0 write 0 0 262144 0.0029 0.0032
 X_POSIX 0 write 1 262144 262144 0.0032 0.0035
 X_POSIX 0 write 2 524288 262144 0.0035 0.0038
 X_POSIX 0 write 3 786432 262144 0.0038 0.0040
 X_POSIX 0 read 0 0 262144 0.0048 0.0048
 X_POSIX 0 read 1 262144 262144 0.0049 0.0049
 X_POSIX 0 read 2 524288 262144 0.0049 0.0050
 X_POSIX 0 read 3 786432 262144 0.0050 0.005

Other darshan tools

● darshan-convert:

○ converts an existing log file to the newest log format

● darshan-diff:

○ provides a text diff of two Darshan log files, comparing both job-level metadata and module

data records between the files

● darshan-analyzer:

○ walks an entire directory tree of Darshan log files and produces a summary of the types of

access methods used in those log files

● dxt_analyzer:

○ plots the read or write activity of a job using data obtained from Darshan’s DXT modules (if

DXT is enabled)

Hands on tutorial

● Download virtual machine
○ https://rb.gy/n82oex

● Download sample applications
○ https://github.com/kchasapis/esiwace_demo_darshan

https://rb.gy/n82oex
https://github.com/kchasapis/esiwace_demo_darshan

Guidelines for optimizing I/O

● Large request size
● Avoid single shared file for parallel file systems
● Sequential I/O performs always better
● For MPI-I/O Collective I/O results in better performance

ESiWACE2 has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 823988

The ESiWACE2 is on Zenodo, the Open Access
repository for our results
https://zenodo.org/communities/esiwace

Interested in getting in touch?
Twitter: https://twitter.com/esiwace
Website: www.esiwace.eu

https://zenodo.org/communities/esiwace
https://twitter.com/esiwace
http://www.esiwace.eu/

